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Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton
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The Cooper minimum has recently been observed in the high-order-harmonic spectrum issued from the
interaction of a short and intense laser pulse with krypton atoms [A. D. Shiner et al., J. Phys. B 45, 074010 (2012)].
Here we compare this observation to a semiclassical description using the single-active electron approximation.
Particular attention is paid to the description of the interaction of the active valence electron with the ionic core
in the framework of a mean-field approach. The computed harmonic spectrum presents a minimum at about
83 eV, which does not show up so clearly in the measurements probably because of second-order diffraction of
the grating used to disperse the harmonic spectrum.
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I. INTRODUCTION

Photoionization spectroscopy is an optical technique that
has been developed to probe the structure of matter. It has been
applied to a large set of atomic and molecular systems [1,2] and
it has even been employed in condensed matter contexts [3].
Dynamical information on some photoinduced chemical reac-
tions can also be deduced from photoionization experiments
using pump-probe techniques (see, e.g., [4,5]). However, with
the advent of short and intense laser pulses, a new technique,
with improved spatial and temporal accuracies, has emerged:
the so-called high-order-harmonic spectroscopy (HHS). High-
harmonic generation (HHG) is suitably described in terms of
a three-step process [6]: an electron is tunnel-ionized from
the target under the influence of the strong field; it is then
accelerated and driven back to the ionic target core as the
field changes sign. Radiative recombination then occurs and
results in the emission of a photon in the extreme ultraviolet
spectral range. Within the last step, the returning electron
probes the target as does the impinging photon in conventional
photoionization. The energy of the returning electron can reach
3.17UP , where Up is the ponderomotive energy of the laser
pulse, which corresponds to large de Broglie wavelengths
for typical infrared (intense) pulses. Moreover, HHG mainly
occurs within an oscillation of the primary laser field. These
two characteristics explain the improved accuracies of HHS,
down to the Angström and attosecond scales [7], respectively.
Furthermore, the geometrical properties of the target can
be resolved more easily in HHG setups than in the usual
photoionization; in the former case, the momentum vector
of the scanning returning electron can be easily handled—
by using an elliptical one-color field [8] or orthogonally
polarized two-color fields [9]—while retrieving vectorial
properties from photoelectron spectra necessitates rather com-
plicated detection techniques of coincidences between ejected
particles [11,12]. A large amount of work has thus been
devoted to decoding from HHG spectra structural [9,10,13]
and dynamical [14,15] information on atomic and molecular
systems.

These experimental works have motivated theoretical in-
vestigations. However, it was soon realized that accurate
modeling of HHS is very demanding, especially in the case of
molecular targets. Multiple orbitals can contribute to the HHG
signal [16], the holes created by primary tunnel ionization can

evolve nonadiabatically [17], and the nuclear and electronic
degrees of freedom can be effectively coupled [18,19].
The modeling is commonly thought to become easier for
atomic targets, particularly for rare-gas species whose inner
shells lie deeply in the energy scale so that they cannot be
efficiently ionized and therefore would not participate in the
HHG process (see, however, [20,21]). These “simple” atomic
systems are thus appropriate candidates for characterizing in
depth some fundamental capabilities of HHG spectroscopy,
and this explains the recent revival of HHS experiments on
rare-gas atoms [20,22–24]. In particular, the occurrence and
characterization of the Cooper minimum in the HHG spectra
of Ar have been the subject of many works [10,23–27];
Cooper minima are indeed direct traces of the target electronic
structure [28] that HHS aims at picturing. In spite of some
controversial observations about the importance of HHG phase
matching [23,24], all experiments have demonstrated that
the Cooper minimum clearly shows up in the HHG spectra
of Ar. Simulations [26,27] have indicated that the precise
location of the Cooper minimum within the HHG spectrum
is significantly influenced by multichannel (multielectron)
interactions, which is at variance with the common neglect
of inner shell contributions. However, calculations performed
in the framework of the single-active electron (SAE) approxi-
mation [29] and employing a carefully optimized model poten-
tial [30] reproduced the experimental findings [23]. Moreover,
these semiclassical calculations, labeled CTMC-QUEST as
they combine classical trajectory Monte Carlo (CTMC) and
quantum electron scattering (QUEST) techniques, allowed one
to understand why the Cooper minimum is located at 53.5 eV
in the HHG spectra while it shows up at 50 eV in total
photoionization cross-section (PICS) measurements [31,32]:
on the one hand, HHG-based photorecombination is highly
differential, contrary to total PICS, which induces a first blue
shift of ∼1 eV; on the other hand, the decrease of the electron
returning density with increasing electron energy further shifts
the minimum to ∼53.5 eV.

Recently Shiner et al. [33] reported HHS measure-
ments on Kr. The linearly polarized driving pulse has a
1.8-μm wavelength with a maximum intensity I0 = 1.8 ×
1014 W/cm2, so that the HHG cutoff stands at ∼190 eV. Such
an energy range is (largely) broad enough to include the Cooper
minimum which is expected to appear, according to PICS
measurements [31,32,34,35] and simulations [36], at ∼85 eV.
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As a matter of fact, Shiner et al. did observe a minimum
at about 85–90 eV in the HHG signal stemming from the
so-called short [37] trajectories. The published experimental
spectrum also presents an unexpected local maximum around
130 eV. We present here CTMC-QUEST simulations of the
Schiner experiment which indicate that the peculiar shape of
the HHG spectrum results from the shortness of the pulse. This
pulse, corresponding to 1.8 optical cycles at half maximum, let
half-cylce cutoffs [38,39] appear and shape the spectrum. The
computed spectrum exhibits a minimum at 83 eV. The overall
agreement with the measurements is satisfactory, except in the
crucial ∼85-eV region where second-order diffraction seems
to distort the experimental spectrum. However, the global
agreement is good enough to state that HHG in Kr can be
described in the SAE framework, as for Ar, provided the
model potential describing the interaction of the active valence
electron with the ionic core is adequately built.

Our paper is organized as follows: our CTMC-QUEST
approach is outlined in Sec. II, putting special emphasis
on the definition of the mean-field potential; the results of
our simulations, including various carrier-envelope phases,
intensities, and forms of laser pulses are presented in Sec. III;
concluding remarks are finally given in Sec. IV. Atomic units
are used unless otherwise stated.

II. CTMC-QUEST APPROACH TO HHG EMISSION

The CTMC-QUEST method has been described in details
in [23] so that it will be only outlined herein. It merges a
classical description of the first two steps of HHG, i.e., target
ionization and electron propagation into the ionic continuum,
and a quantum-mechanical representation of the recombina-
tion step. The approach employs the SAE approximation so
that a mean-field (spherical) potential [29] has first to be
designed to represent the interaction of the valence electron
with the ionic core which is assumed to remain frozen
throughout the interaction.

A. Design of a model potential for Kr valence electron dynamics

In [40], Le et al. noted that the location of the Cooper
minimum in the HHG spectra of Ar significantly depends
on the model potential employed within SAE simulations.
Therefore particular care must be taken to the design of this
potential. Here we employ a parametric potential of the form

Vmod(r) = −Z − N

r
− A exp(−Br) + (N − A) exp(−Cr)

r
,

(1)

where Z = 36 is the nuclear Kr charge, N = 35 is the number
of core electrons, and {A,B,C} are positive parameters so
that Vmod fulfills the expected limits Vmod(r) →r→∞ −(Z −
N )/r and Vmod(r) →r→0 −Z/r . The numerical values of the
parameters are usually optimized to reproduce as accurately
as possible the valence state energies of Kr. In practice, the
optimization consists of diagonalizing iteratively the one-
electron Hamiltonian H = −∇2/2 + Vmod with varying A, B,
and C until diagonalization yields eigenenergies that match
reference data. In our case, the energies of reference are those
tabulated in the NIST Atomic Spectral Database [41], and

TABLE I. Kr(nl) valence electron binding energies (in a.u.)
obtained from model potential calculations with large-scale Slater
basis (see text) compared to reference data taken from NIST [41]
for Kr[4s24p5 (2P 3/2) nl] levels (statistically averaged on j values).
Vmod(I) and Vmod(II) distinguish two model potentials considered in
the present work, as discussed in Sec. II A.

Level NIST Vmod(I) Vmod(II)

4p −0.514 48 −0.513 97 −0.514 46
4d −0.066 70 −0.066 46 −0.070 56
4f −0.031 46 −0.031 35 −0.031 37
5s −0.148 48 −0.148 26 −0.147 08
5p −0.093 07 −0.092 96 −0.092 11
5d −0.036 54 −0.036 75 −0.038 23
5f −0.020 13 −0.020 08 −0.020 09
6s −0.060 09 −0.060 25 −0.059 77
6p −0.044 30 −0.044 50 −0.044 16
6d −0.022 87 −0.022 91 −0.023 58
6f −0.013 96 −0.013 94 −0.013 95

H is diagonalized in a large-scale basis of even-tempered
Slater-type orbitals (see [42] for details). Importantly, the
underlying basis has to be really large enough to be considered
as effectively complete (see [42,43] for details).

This first optimization procedure yields A = 5.250, B =
0.902, and C = 3.640. In Table I, we compare the energies of
our computed Kr eigenstates with the reference data taken from
NIST, focusing on the lowest bound states which are the most
affected by the core. One can observe a very good agreement
between both sets of data, the largest difference not exceeding
5.5 × 10−4 a.u. Beyond eigenenergies, it is quite common
to further check the accuracy of the Vmod description at the
level of eigenfunctions, by comparing oscillator strengths with
reference data issued from either experiments or theoretical
descriptions beyond the SAE approximation (see, e.g., [42]).
We are not aware of such reference data for Kr. However,
Huang et al. [36] have reported total and differential PICS
obtained by means of the relativistic random phase approxima-
tion (RRPA) approach, which includes electronic correlations
and associated multichannel interactions. Since the third
step of HHG, i.e., photorecombination, is directly linked to
differential photoionization through detailed balancing [29],
those RRPA calculations are ideal probes of the accuracy of
the Vmod description of HHG. Focusing on photoionization in
the forward direction where the electron is ejected from the
φ4pz

initial state in the ẑ direction, the differential PICS is
expressed as

dσPI

d�k
= 4π2

c
kω

∣∣〈�−
k |ẑ · r

∣∣φ4pz

〉∣∣2
, (2)

where k is the ejected electron wave vector, ω is the photon
frequency, and c the velocity of light. �−

k is the ingoing
scattering continuum state, normalized on the k scale so that
its partial-wave decomposition onto the spherical continuum
states φklm(r) = Rkl(r)Ym

l (θr,ϕr) is

�−
k (r) = 1

k

∞∑
l=0

l∑
m=−l

ile−iδkl Rkl(r)Ym
l (�r)Ym∗

l (�k), (3)
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FIG. 1. (Color online) (a) Radial densities of probability for the
fundamental Kr(4p) state, obtained by means of the Vmod(I) (- -) and
Vmod(II) (—) model potentials described in Sec. II A; Vmod(I) (- -)
and Vmod(II) (—) are compared in the inset as functions of the radial
coordinate r . (b) Differential photoionization cross section for Kr(4p)
in the forward direction as a function of the incident photon energy,
obtained by means of the Vmod(I) (- -) and Vmod(II) (—) descriptions,
compared to the RRPA cross section (– - –) of Huang et al. [36]; in
the inset are displayed the radial integrals Rk0 and Rk2, associated
with Vmod(I) (- -) and Vmod(II) (—), and involved in the definition of
the cross section [see Eq. (4)].

where δkl are the phase shifts depending on both k and l.
Inserting Eq. (3) into Eq. (2) and making use of φ4pz

=
R4p(r)Y 0

1 (�r), an explicit expression of the differential
PICS (2) is obtained

dσPI

d�k
= π

3c

ω

k
|Rk0e

−iδk0 − 2Rk2e
−iδk2 |2, (4)

where Rkl = ∫ ∞
0 RklR4pr3dr are radial integrals linking the

initial 4p and final continuum states. We display in Fig. 1(b)
the comparison of our differential PICS with its RRPA
counterpart. While both results present a similar shape, a
significant shift is clearly visible between them: RRPA yields
a Cooper minimum located around 85 eV while the Vmod

approach moves it to 78 eV. On the one hand, the similarity of
the shapes indicates that dynamical electron correlations do not
drastically influence the photoionization process, contrary to
what happens in Xe [20,21]. In other words, the electron-core
interaction could be described in the framework of a mean-field
(average) approach. On the other hand, the present Vmod

potential does not represent accurately enough this mean field,
and the Cooper minimum is misplaced.

Therefore we have decided to implement an optimization
procedure of Vmod more adequate to HHG. Besides eigenen-
ergies, we constrained the mean-field description to yield a
shape of differential PICS similar to the RRPA one, using
a least-squares fitting method. This approach has led to the
Vmod parameters A = 6.42, B = 0.905, and C = 4.20. The
resulting eigenenergies are given in Table I and named Vmod(II)
to differentiate them from our previous [Vmod(I)] calculations.
The agreement with NIST values is not as good as when
we employ Vmod(I), which has to be expected since the
present least-squares fit includes additional constraints, but
it remains very satisfactory. The energy of the fundamental
4p state is precisely reproduced, and the most noticeable
difference concerns low-lying n states of d symmetry. Our
new differential PICS is presented in Fig. 1(b). Its shape
closely resembles that of the RRPA cross section, with a
Cooper minimum appearing at 85 eV. Vmod(II) thus describes
the electron-core average interaction more satisfactorily than
Vmod(I), and therefore we will use it in our dynamical
calculations. Before presenting these calculations, we illustrate
the reasons for the shift of the Cooper minimum between
the two Vmod calculations. In the inset of Fig. 1(a) we show
that differences between Vmod(I) and Vmod(II) appear in the
inner r � 4 a.u. region; they both behave as −1/r for larger
r [see Eq. (1)]. Around the energy of the fundamental Kr
state (∼−0.5 a.u.), Vmod(II) has a slightly longer range than
Vmod(I); this induces a (small) shift of the Kr fundamental
eigenstate issued from Vmod(II) calculations towards larger r ,
as shown in Fig. 1(a) by means of the comparison of the
radial densities of probability. This also influences the radial
bound-free integrals (as well as the associated phase shifts)
entering the definition (4) of the differential PICS, as shown
in the inset of Fig. 1(b). All of this leads to the shift observed
for the Cooper minimum.

B. CTMC-QUEST approach

1. CTMC ionization and propagation until recombination

The CTMC approach [44] employs an N -point discrete
representation of the phase-space distribution �(r,p,t) in terms
of independent electron trajectories {ri(t),pi(t)}

�(r,p,t) = 1

N

N∑
i=1

δ(r − ri(t))δ(p − pi(t)). (5)

Here N = 40 × 106 in order to fulfill statistical convergence.
At t = 0, the initial distribution is usually defined as a

microcanonical set where all trajectories have the energy
of the initial quantum state, i.e., Ei(t = 0) = p2

i (t = 0)/2 +
Vmod(ri(t = 0)) = −IP where IP is the ionization potential.
However, such a distribution does not properly span the
(classical forbidden) r > 1/IP region of the phase space.
As a consequence, the transitions to excited and ionizing
states, which involve outer electron trajectories, are underes-
timated [45–48]. It was thus proposed in the latter references
(and works cited therein) to use an improved distribution which
better matches the quantum distribution in both configuration
and momentum spaces. In this work, we use a Wigner-like
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distribution [47,48] built as a sum of 40 microcanonical
sets with an average energy −IP . The energy spread of the
improved distribution is given by the partition of the classical
phase space into adjacent and nonoverlapping energy bins that
mimics the quantization of bound states (see [23,48,49] for
details). Here the electron trajectories have initial energies
lying between −0.8 and −0.15 a.u. This energy spread is at
the root of the improved description of ionization (see [50–52]
as well as the previous references [45–48]).

Once the initial distribution is defined, its subsequent
evolution is described by the motion of the N independent
trajectories tailored by Hamilton’s equations

∂rj (t)

∂t
= pj (t), (6)

∂pj (t)

∂t
= −∇r[Vmod(r) + r · F(t)]|rj (t), (7)

where r · F(t) is the laser-Kr interaction expressed in the
length gauge, within the dipolar approximation. It is clear
from Eq. (7) that CTMC treats the ionic (Vmod) and laser
[F(t)] fields on the same footing, beyond the well-known
strong-field approximation (SFA, [37]) that neglects the ionic
field and therefore leads to unfair descriptions of harmonic
features close to the ionization threshold [53].

The CTMC calculations are gauge independent: in the
length gauge, combining Eqs. (6) and (7) yields New-
ton’s law r̈j (t) = −∇rVmod(r)|rj (t) − F(t); in the veloc-
ity gauge, the total Hamiltonian is expressed as H =
p2/2 + Vmod(r) + p.A(t), where A(t) is the laser poten-
tial vector, so that Hamilton’s equations are [∂rj (t)/∂t =
−∇rVmod(r)|rj (t), ∂pj (t)/∂t = pj (t) + A(t)], leading to the
same Newton’s law r̈j (t) = −∇rVmod(r)|rj (t) − F(t), since
F(t) = −Ȧ(t).

In the present work, the electric laser pulse F(t) is defined
so as to mimic the pulse employed in the experiment of Shiner
et al. [33]; in practice we employ a linearly polarized sin2-
shaped pulse

F(t) = F0 sin2

(
πt

τ

)
cos

(
ω0t − ω0τ

2
+ φCE

)
ẑ (8)

of pulsation ω0 = 0.025 33 a.u., maximum amplitude F0 such
that I0 = ε0cF

2
0 /2, and total duration τ = 909.1 a.u. (corre-

sponding to 1.8 optical cycles at half maximum). While the
HE-TOPAS parametric amplifier employed in [33] guarantees
a fixed carrier-envelope phase φCE from shot to shot [54], its
absolute value has not been measured; we will accordingly
make (separate) simulations with φCE varying from 0, where
F (t = τ/2) = F0, to 3π /4. Alternatively to Eq. (8), we have
also considered a Gaussian-shaped pulse defined to comprise
1.8 optical cycles at half maximum, like Eq. (8); simulations
employing such a pulse led to results almost identical to
those using Eq. (8), at least in the � 40 eV energy region of
interest. Therefore all the results presented in the next section
correspond to computations using the sin2-shaped pulse (8).

Driven by the laser field, some trajectories come back to
the ionic core onto which they may recombine to give rise
to HHG. However, describing quantitatively recombination
within purely classical statistics is unrealistic because the
recombination probability is so low that we would have to

discretize the phase-space distribution in terms of billions of
trajectories. We circumvent this problem by assuming that
every electron which returns to the vicinity of the ionic core
forms a part of a recolliding wave packet amenable to HHG
through (quantum) recombination. In practice, we define a
recombination sphere, centered on the target nucleus, of radius
Rrec of the order of the extension of the fundamental Kr wave
function. Then, simply counting the number of electrons which
have been ionized, left the sphere, and entered back into it
at time ti allows us to obtain the returning electron density,
integrated over the whole laser-target interaction time, as

�ret(E,k̂) = 1

N
∑

i

δ(Ei(ti) − E)δ(k̂i(ti) − k̂), (9)

where Ei(ti) and ki(ti) are the energy and the direction of the
wave vector of the returning electron when this latter enters
the recombination sphere of radius Rrec. Photorecombination
of the trajectory is assumed to occur suddenly at time ti . Here
we set Rrec = 5 a.u. but we explicitly checked, as in [23],
that varying Rrec around this selected value does not change
the shape of �ret. For a given couple (E,k̂), CTMC allows us
to discriminate between short, long, and even multiple return
trajectories by means of a simple [ti ,Ei(ti)] mapping [48]; this
is one of the advantages of the CTMC-QUEST approach.

2. QUEST recombination

Once a returning electron enters the recombination sphere
at time ti with energy Ei in the direction k̂i , sudden photore-
combination leads to emission of a HHG photon of frequency
ω = Ei + IP with probability PPR(Ei,k̂i). Counting among
theN independent trajectories those which fulfill this criterion
allows us to define the time-integrated HHG yield with
frequency ω as

S(ω) =
∫

dE�ret(E,k̂)PPR(E,k̂)δ(E + IP − ω), (10)

where PPR(E,k̂) is the probability rate for (field-free) pho-
torecombination of an electron impinging on the ionic core
in the k̂ direction with energy E. Since the driving laser is
linearly polarized along the z axis, the harmonic radiation is
also polarized in the ẑ direction.

Assuming that the wave-packet component associated with
each returning electron has unit amplitude, the total flux
jret of returning electrons is linked to the total density
� by jret(E,k̂) = �ret(E,k̂)k; under the same assumption,
photorecombination rate and cross section are related to
each other through PPR(E,k̂) = σPR(E,k̂)k. It follows from
these relations that the HHG yield (10) can be expressed
as S(ω) = jret(E,k̂)σPR(E,k̂), with ω = E + IP , which is the
factorization formula resulting from time-dependent effective
range theory [55] and employed within quantitative rescat-
tering schemes [40,56]. For a given value of energy E, the
mean value of k̂, computed as the average of k̂i among
the Nret trajectories that come back into the recombination
sphere with Ei = E, is 0. The factorization then simplifies
to S(ω) = jret(E,0◦)σPR(E,0◦). Note that in the case of
elliptically polarized driving fields and nonisotropic target
initial states, such a single factorization is not possible since
primary tunnel ionization selects a quantization axis slanted
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with respect to the main axis of the driving field. S(ω) then
involves orthogonal components at 0◦ and 90◦ [57]. However,
the statistical CTMC-QUEST approach can still be applied in
such cases [8].

Because of the discretized (statistical) nature of �ret

[Eq. (9)], Eq. (10) transforms into

S(ω) = 1

N

Nret∑
i=1

PPR(Ei,k̂i)W (Ei,�E), (11)

where W (Ei,�E) is a rectangular window function such that
W (Ei,�E) = 0 if |ω − Ei − IP | > �E/2 and W (Ei,�E) =
1 otherwise. In the following illustrations, �E = 1 eV, but we
explicitly checked that the shape of S(ω) is not changed when
�E = 0.5 or 2 eV.

The photorecombination rate PPR is computed by means of
the Fermi golden rule [29], which gives

PPR(E,k̂) = 1

2π

ω3

c3

∣∣〈φ4pz

∣∣ẑ.r|�+
k 〉∣∣2

, (12)

with ω = E + IP as before. Equation (12) is consistent with
the expression (2) of the differential PICS, since σPR =
8π3PPR/k as �+

k is normalized on the wave-vector scale,
and σPI = k2c2σPR/ω2 because of the principle of detailed
balancing [29]. Finally it is worth recalling that replacing
the stationary scattering state �+

k in Eq.(12) by its plane-
wave approximation distorts not only the representation of
HHG features close to the ionization threshold but also the
description of Cooper minima [10,23]; the ionic potential is of
paramount importance in the three steps of the HHG process.

III. RESULTS

A. A pulse with I0 = 1.8 × 1014 W/cm2 and φCE = 0

We first present the CTMC-QUEST results corresponding
to the driving laser field of Eq. (8) with maximum intensity
I0 = 1.8 × 1014 W/cm2 and carrier-envelope phase φCE = 0.
This field, displayed in Fig. 2(a), presents four half-cycle
maxima of large enough amplitude to ionize the Kr target
and subsequently lead to HHG. We superimpose onto the
field the energy E of the rescattering electron trajectories
as a function of their photorecombination time, and four
arches indeed appear in the course of the interaction. As is
well known [37,53], each arch is composed of short (left)
and long (right) branches which coalesce at the HHG cutoff
corresponding to the maximum energy that can be gained by
the electron through propagation in the continuum.

Among all these rescattering trajectories, we mimic the
experimental detection [33] by isolating the short ones, and
we plot in Fig. 2(b) the associated returning density ρret(E)
integrated over the k̂ directions, ρret(E) = ∫

�ret(E,k̂)dk̂, as
a function of the emitted photon energy ω = E + IP . Three
half-cycle cutoffs clearly show up in �ret, corresponding to
the tops of the three first arches of Fig. 2(a); a weak density
is associated with the fourth arch, located at (t ∼ 750 a.u.,
E ∼ 30 eV) in Fig. 2(a), so that it is hidden in the background
of the more energetic contributions in Fig. 2(b). Beyond the
conspicuous cutoffs, the electron density associated with one
short branch of an arch presents a slightly decreasing shape as
E increases, until the cutoff is reached where �ret peaks. Such
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FIG. 2. (Color online) (a) Temporal evolution of the field
[Eq. (8)] with λ = 1800 nm, I0 = 1.8 × 1014 W/cm2, and φCE = 0
(blue thin line) to which are superimposed the energies Ei(t)
of the short [dark (black) points] and long [light (red) points]
trajectories at time of recombination. (b) Time- and angle-integrated
returning electron density of short trajectories (black histogram) and
photorecombination rate at zero degree (blue line), as functions of the
emitted photon energy ω = Ei + IP . (c) Computed (black histogram)
and experimental [33] (blue circles) HHG spectra.

behavior is noticeable in the 40–125 eV photon energy range
in Fig. 2(b), corresponding to the short branch of the third arch
in Fig. 2(a). Two opposite effects are at play to determine the
behavior of �ret(E) with E. First, longer trajectories are born
at earlier times when the laser field is more intense and thus
benefit from stronger ionization rates; this implies an increase
of �ret(E) as E increases. However, longer trajectories are also
subject to a stronger lateral displacement during propagation
in the continuum, which induces �ret(E) to decrease as E

increases. Combining these two effects then leads to the typical
shape of �ret(E) appearing in Fig. 2(b) between 40 and 125 eV.
Note that multiplying �ret(E) by k = √

2E to obtain the flux
of returning electrons, commonly referred to as the returning
wave packet in quantitative rescattering theories [40,56], one
obtains an essentially flat profile as a function of E, consistent
with the findings of [40].

Since the harmonic yield S(ω) basically consists of the
product of the returning density �ret and photorecombination
rate PPR [see Eq. (10)], we include in Fig. 2(b) PPR(E,0◦)
as a function of ω = E + IP . The rate presents a minimum
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at ω = 79 eV, shifted with respect to the minimum of the
differential PICS σPI(ω,0◦) which is located at 85 eV [see
Fig. 1(b)]; this shift is due to the different prefactors in
PPR(E,0◦) and σPI(ω,0◦), consistent with the principle of
detailed balancing [see Eqs. (12) and (2)]. However, the
descending shape of the returning density �ret in this energy
range makes the Cooper minimum appear in the computed
HHG yield around 83 eV, as displayed in Fig. 2(c). The
location of the Cooper minimum in the HHG spectrum with
respect to that observed in differential PICS measurements
thus depends on the competition between the shift associated
with transition from photoionization to photorecombination
and the shift associated with the local shape of the returning
wave packet. While the first shift dominates in Kr under the
present irradiation conditions, leading to a Cooper minimum
appearing at lower energy in the HHG spectrum (∼83 eV)
than in the differential PICS (∼85 eV), the reverse applied
in Ar [23] where the Cooper minimum in the HHG spectra
was shifted by 3 eV towards high energies with respect to its
location in differential PICS.

We compare in Fig. 2(c) the HHG yield S(ω) obtained by
means of the present Vmod description with the experimental
result of Shiner et al. [33], the latter being arbitrarily scaled to
match the computed S(ω) at low energies. We judge that the
agreement between the two results, far from being perfect,
is satisfactory. The computed spectrum nicely matches its
experimental counterpart for ω � 60 eV and in the 100–130 eV
energy region. For ω > 130 eV, the experimental spectrum
falls down while the calculations exhibit half-cycle cutoffs, as
expected because of the shortness of the pulse [see Fig. 2(a)]
and previously observed in Ref. [38]. Later on, we will
investigate whether carrier-envelope phases φCE different from
0 or averaging over the focal volume of the laser beam can
improve the agreement between theory and experiment. Before
this, it is important to note that in the crucial ∼85 eV energy
range where CTMC-QUEST leads to a clear Cooper minimum,
the measurements yield a seemingly filled hole. Such a filling
can be due to second-order diffraction of the grating used to
disperse the HHG spectrum; according to this mechanism, the
local maximum observed at 130 eV indeed appears in second
order at 65 eV, and this second-order peak, of lower magnitude,
is amenable to fill in the Cooper minimum. Contamination of
HHG spectra by second-order diffraction is usually avoided at
low energies using Al filters [23,33]; this procedure cannot be
used for a Kr target since the Al filters impede emission above
75 eV [33] which is the region of present interest.

If we admit second-order contamination, the agreement
between the measured and computed HHG spectra of Kr is
then quite satisfactory. This means that HHG dynamics in Kr
can be accurately described within the SAE approximation that
underlies the present CTMC-QUEST approach, provided the
mean electron-core ionic field is suitably defined. As a matter
of fact, a worse agreement is herein obtained with experiment
if we use the Vmod(I) potential instead of the optimized Vmod(II)
one.

B. Varying the carrier-envelope phase

The calculated HHG spectrum of Fig. 2(c) presents large
half-cycle cutoffs which do not show up in the measurements.
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FIG. 3. (Color online) Computed (black histograms) and experi-
mental [33] (blue points) HHG spectra for a driving field [Eq. (8)] with
λ = 1800 nm, I0 = 1.8 × 1014 W/cm2, and φCE = π/4 (a), π/2 (b),
and 3π/4 (c). In the insets are displayed the temporal evolutions of
the fields (thin blue lines) to which are superimposed the energies
Ei(t) of the short [dark (black) points] and long [light (red) points]
trajectories at time of recombination, similar to Fig. 2(a).

As previously mentioned, the HE-TOPAS parametric amplifier
employed in the experiment [33] guarantees a fixed carrier-
envelope phase φCE from shot to shot, but its absolute value
has not been measured. φCE controls the magnitude of the
half-cycle maxima of the pulse electric field, and subsequently
the energy of HHG half-cycle cutoffs. We therefore performed
additional CTMC-QUEST calculations with φCE = π/4, π/2,
and 3π/4, with the aim of checking whether the agreement
between theory and experiment is improved for φCE �= 0,
especially in the (cutoff) energy range 120–150 eV [see
Fig. 2(c)].

Our results are given in Fig. 3. For each value of φCE,
we display the pulse field F (t) and the associated arches of
returning trajectories as functions of time, similar to Fig. 2(a).
The computed HHG yields stemming from short trajectories
are then compared with the measurements of Shiner et al.
Considering Fig. 2(c) and Figs. 3(a)–3(c), it is clear that
the better agreement between CTMC-QUEST computations
and experiment is obtained for φCE = 0, which we therefore
venture to identify as the carrier-envelope phase of the pulse
employed in [33].
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C. Averaging over the focal volume

From now on, we thus consider that φCE = 0. But we
aim at taking into account that HHG occurs within the focal
volume of the driving laser beam. As our model does not
include phase-matching effects related to the propagation of
harmonic light within the generating medium, considering the
focal volume amounts to summing incoherently the harmonic
yields associated with laser pulses with intensities decreasing
from I0, consistent with the waist of the beam. We assume a
Gaussian spatial profile for the intensity of the the laser pulse;
further, owing to the experimental details about the generation
of the short 1800-nm pulse given in [33], associated with the
fact that the last focusing mirror has a 25 cm focal length [58],
we estimate that the radius of the (cylindrical) spot in the
interaction region, located ∼2 mm after the focal point,
is ∼55 μm.

In practice, additional CTMC-QUEST calculations have
been performed for I0 = 1.71 × 1014 and 1.62 × 1014 W/cm2

which correspond to 95% and 90% of the former maximum
intensity I0 = 1.8 × 1014 W/cm2, respectively. Constraining
the transverse intensity dependence of the beam to these three
intensities within a numerical scheme where the Gaussian
profile is described by adjacent and nonoverlapping bins
amounts to restricting the radius of the interaction region
to 14.2 μm. The averaged HHG signal then consists of the
(normalized) sum of the yields associated with the three
intensities.

Our averaged HHG yield is presented in Fig. 4, together
with the measurements of Shiner et al. The averaging smooths
the conspicuous half-cycle cutoffs which appeared in Fig. 2(c)
around 125–145 eV where we considered only a driving in-
tensity I0 = 1.8 × 1014 W/cm2. This had to be expected since
lowering the intensity I0 leads to a shift of these cutoffs towards
lower energies, so that the sum involved in the averaging
yields a smoother shape of the total HHG yield. Beyond the
second-order diffraction issue, the agreement of the averaged
yield with measurements is now very satisfactory. However,
additional measurements at higher energies would be useful to
test the CTMC-QUEST calculations (and restricted averaging)
in the whole energy range 40–190 eV.
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FIG. 4. (Color online) Computed HHG spectrum after averaging
over the focal volume (black histogram), as defined in Sec. III C,
compared to the experimental data [33] (blue points).

D. Driving sinusoidal fields

As atomic or molecular targets interact with (common)
driving laser pulses of 30 fs duration or so, HHG spectra
do not generally exhibit half-cycle cutoffs, because of the
superposition of underlying adjacent contributions associated
with the cycles comprising the shaped pulse (similar with what
happened in the previous averaging), or because of moderate
intensities such that HHG mainly occurs around the maximum
field strength. To mimic such an interaction with reduced
computational cost, one can use a simple sinusoidal driving
field F (t) = F0 sin(ω0t) associated with an effective intensity
I0 = ε0cF

2
0 /2. Furthermore t ∈ [0,1.25/ω] so that multiple-

return trajectories do not contribute to HHG while above-
threshold short and long trajectories are all included [37,48].

Here we still consider ω0 = 0.025 33 a.u. (corresponding
to wavelength λ = 1800 nm) and two distinct values of I0,
I0 = 1.2 × 1014 and I0 = 1.8 × 1014 W/cm2, respectively.
Our results are displayed in Fig. 5 which includes two columns,
the left one being related to I0 = 1.2 × 1014 W/cm2 while the
right one is associated with I0 = 1.8 × 1014 W/cm2. In the first
row of this figure, we show the sinusoidal laser fields together
with the [t,E(t)] mapping which illustrates the energy E(t) of
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FIG. 5. (Color online) Calculations for driving sinusoidal fields
(Sec. III D) with I0 = 1.2 × 1014 W/cm2 (left column) and I0 =
1.8 × 1014 W/cm2 (right column) for short (dark black) and long
(light red) trajectories. Top row: Temporal evolution of the fields
(blue thin line) to which are superimposed the energies Ei(t) of the
short and long trajectories at the time of recombination. Middle row:
Time- and angle-integrated returning electron density of short and
long trajectories. Bottom row: Computed HHG spectra for short and
long trajectories.
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the rescattering electrons as a function of the recombination
time t . The short and long branches form one arch that ends up
at the maximum energy Emax = 0.3IP + 3.17UP , so that the
maximum energy of the harmonic photons will fulfill the well-
known scaling ωmax = 1.3IP + 3.17UP [37]; in the previous
cases of shaped fields, this scaling does not apply exactly.

We separate the short and long contributions to the arch, and
we display in the second row of Fig. 5 the associated (angle-
integrated) electron densities ρ

(short,long)
ret (E) as functions of

ω = E + IP . We have already commented in the present paper
on the mechanisms responsible for the shape of ρ

(short)
ret (E).

Contrary to this latter, ρ
(long)
ret (E) monotonically increases as

E increases. Among the long trajectories, those with lower
E were born around the first maximum field strength, at
t ∼ T = 2π/ω0, and thus benefit from strong ionization rates.
However, they recombine later, up to t ∼ 1.25T , and are
then subject to strong lateral displacements which minimize
the recombination probability. The reverse applies for long
trajectories with high E: born later than the trajectories with
low E, they experience lower ionization rates; but they benefit
from higher recombination probabilities because of smaller
times of flight. Therefore the increasing shape of ρ

(long)
ret (E)

indicates that for long trajectories, electron propagation into
the continuum (and correlated effect on recombination) plays
the major role. ρ

(short)
ret (E) and ρ

(long)
ret (E) coincide at the cutoff

energy Emax, where short and long trajectories cannot be
distinguished from each other.

We present in the last row of Fig. 5 the computed HHG
yields associated with short and long trajectories, S(short)(ω)
and S(long)(ω), respectively. The Cooper minimum appears in
both S(short) and S(long) but its location on the photon energy
scale depends on the type of trajectories; for instance, at
I0 = 1.2 × 1014 W/cm2, the minimum is located at ω = 83 eV
in S(short)(ω) and at ω = 75 eV in S(long)(ω). We explained in
Sec. III A how the decreasing shape of ρ

(short)
ret (E) around E ∼

80 eV induces a blue shift of the minimum in S(short)(ω). This
still happens here. For long trajectories, ρ(long)

ret (E) is increasing
as E increases so that the shift of the Cooper minimum with
respect to that appearing in the differential photorecombination
cross section occurs in the reverse direction, towards low
photon energies. Finally, the dependence of the minimum
position on the intensity of the driving field is rather weak:
varying I0 from 1.2 × 1014 to 1.8 × 1014 W/cm2 results in
a shift of the minimum of ∼2 eV towards high energies.
This behavior stems from the local variations of the shapes
of ρ

(short,long)
ret (E) with I0. As I0 is (largely) increased, the HHG

cutoff is pushed back to high ωmax so that the decreasing shape
of ρ

(short)
ret (E) around 80 eV is accentuated while the increasing

shape of ρ
(long)
ret (E) is softened.

IV. CONCLUSIONS

We have performed semiclassical calculations of high-
order-harmonic generation in Kr in order to simulate recent
experiments on high-order-harmonic spectroscopy of the
Cooper minimum by Shiner et al. [33]. The agreement between
theory and experiment is rather satisfactory even if the Cooper
minimum, which clearly shows up in the computations around
83 eV, is blurred in the experimental spectrum probably
because of second-order diffraction of the grating used to
disperse the harmonics.

The calculations employed the single-active electron ap-
proximation, in which the inner shells of Kr are assumed to
remain frozen throughout the HHG dynamics. The agreement
with experiment therefore indicates that the HHG dynamics
in Kr can be described reliably in the single-active electron
framework, as for Ar. However, we carefully refrain from
stating that this is generally the case, even for rare-gas atoms.
Xe, in which dynamical multichannel interactions shape both
photoionization cross sections and harmonic spectra [20,21],
is the counterexample. Nevertheless we state that for Cooper
minima in atoms, whose features have been described in terms
of properties related to valence electrons since the pioneering
work of Cooper [28], Xe is a quite special case so that the
single-active electron approximation can safely be applied
for most systems, provided sufficient care has been taken to
represent the mean field between the valence electron and the
ionic core. We do not extend this to molecules where inner
shells, lying close to the valence one on the energy scale, can
actively participate in the dynamics [16].

Concerning Kr, additional measurements would be de-
sirable to test further the present semiclassical calculations
over an extended energy range. Longer pulse durations would
prevent the appearance of half-cycle cutoffs, especially in the
120–140 eV region which contaminates the Cooper minimum
through second-order diffraction. Dividing the observed spec-
trum by the RRPA photorecombination cross section would
thus yield an experimental estimate of the returning electron
wave packet that could be compared to our single-active
electron calculations, to definitely elicit whether electron
correlations play an important role in the first two steps of
high-order-harmonic generation in Kr.
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[4] P. Löffler et al., Chem. Phys. Lett. 252, 304 (1996).

[5] Y. Zhang, K. Yuan, S. Yu, D. H. Parker, and X. Yang, J. Chem.
Phys. 133, 014307 (2010).

[6] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[7] K. Midorikawa, Jpn. J. Appl. Phys. 50, 090001 (2011).
[8] D. Shafir et al., Phys. Rev. Lett. 108, 203001 (2012).

023415-8

http://dx.doi.org/10.1088/0953-4075/34/18/201
http://dx.doi.org/10.1088/0953-4075/34/18/201
http://dx.doi.org/10.1088/0953-4075/34/18/201
http://dx.doi.org/10.1088/0953-4075/34/18/201
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103814
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103814
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103814
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103814
http://dx.doi.org/10.1088/0953-8984/15/44/R01
http://dx.doi.org/10.1088/0953-8984/15/44/R01
http://dx.doi.org/10.1088/0953-8984/15/44/R01
http://dx.doi.org/10.1088/0953-8984/15/44/R01
http://dx.doi.org/10.1016/0009-2614(96)00174-1
http://dx.doi.org/10.1016/0009-2614(96)00174-1
http://dx.doi.org/10.1016/0009-2614(96)00174-1
http://dx.doi.org/10.1016/0009-2614(96)00174-1
http://dx.doi.org/10.1063/1.3456738
http://dx.doi.org/10.1063/1.3456738
http://dx.doi.org/10.1063/1.3456738
http://dx.doi.org/10.1063/1.3456738
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.7567/JJAP.50.090001
http://dx.doi.org/10.7567/JJAP.50.090001
http://dx.doi.org/10.7567/JJAP.50.090001
http://dx.doi.org/10.7567/JJAP.50.090001
http://dx.doi.org/10.1103/PhysRevLett.108.203001
http://dx.doi.org/10.1103/PhysRevLett.108.203001
http://dx.doi.org/10.1103/PhysRevLett.108.203001
http://dx.doi.org/10.1103/PhysRevLett.108.203001


SEMICLASSICAL DESCRIPTION OF HIGH-ORDER- . . . PHYSICAL REVIEW A 91, 023415 (2015)

[9] D. Shafir, Y. Mairesse, D. M. Villeneuve, P. B. Corkum, and
N. Dudovich, Nat. Phys. 5, 412 (2009).

[10] H. J. Wörner, H. Niikura, J. B. Bertrand, P. B. Corkum, and
D. M. Villeneuve, Phys. Rev. Lett. 102, 103901 (2009).

[11] H. Lörch, N. Scherer, T. Kerkau, and V. Schmidt, J. Phys. B 32,
L371 (1999).

[12] M. Lebech, J. C. Houver, and D. Dowek, Rev. Sci. Instrum. 73,
1866 (2002).

[13] J. Itatani et al., Nature (London) 432, 867 (2004).
[14] H. Ruf et al., J. Chem. Phys. 137, 224303 (2012).
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