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Propagating two-particle reduced density matrices without wave functions
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Describing time-dependent many-body systems where correlation effects play an important role remains a
major theoretical challenge. In this paper we develop a time-dependent many-body theory that is based on
the two-particle reduced density matrix (2-RDM). We present a closed equation of motion for the 2-RDM by
developing a reconstruction functional for the three-particle reduced density matrix (3-RDM) that preserves norm,
energy, and spin symmetries during time propagation. We show that approximately enforcing N -representability
during time evolution is essential for achieving stable solutions. As a prototypical test case which features
long-range Coulomb interactions we employ the one-dimensional model for lithium hydride (LiH) in strong
infrared laser fields. We probe both one-particle observables such as the time-dependent dipole moment and
two-particle observables such as the pair density and mean electron-electron interaction energy. Our results are
in very good agreement with numerically exact solutions for the N -electron wave function obtained from the
multiconfigurational time-dependent Hartree-Fock method.
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I. INTRODUCTION

The direct solution of the time-dependent N -particle
Schrödinger equation has remained a major challenge for
systems with a large number of particles N . This is in
particular true for the time-dependent many-electron problem
in atoms, molecules, and condensed matter with the long-range
Coulomb interactions and Coulomb continua ubiquitously
present. Numerically exact solutions have become available
only for small systems such as He [1–5] or H2 [6–12] as
the numerical effort grows factorially with particle number
N . Ground-state properties of large systems involving tens to
hundreds of particles can routinely be calculated employing
sophisticated methods developed in quantum chemistry and
solid-state physics such as configuration interaction methods,
coupled cluster methods, perturbative methods, and density
functional theory (DFT) (see, e.g., [13,14]). An analogous
development for time-dependent systems and systems far from
the ground state is still in its infancy. The time-dependent ex-
tension of DFT, the time-dependent density functional theory
(TDDFT) (for a review see [15]) features a favorable linear
scaling with N and allows the approximate treatment of large
and extended systems (see, e.g., [16–21]). However, accurate
exchange-correlation functionals beyond the adiabatic limit
containing memory effects are not yet known. Alternatively,
the so-called time-dependent current-density functional theory
has been proposed (for a review see [15]) for which, up to now,
however only few approximations for the exchange-correlation
vector potential have become available [22]. On a more
conceptual level, only physical observables that are explicit
functionals of the reduced one-particle density (or current
density) can be easily determined from TDDFT. Read-out
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functionals of two-particle observables are still largely missing
[23–25].

Extensions of the direct solution of the N -electron
Schrödinger equation beyond the two-electron problem em-
ploys the multiconfigurational time-dependent Hartree-Fock
method (MCTDHF) ([26–28]). In principle, the MCTDHF
method converges to the numerically exact solution if a suffi-
cient number of orbitals and configurations is used. However,
its numerical effort scales factorially with the number of
particles. A recently proposed variant, the time-dependent
complete active space self-consistent field (TD-CASSCF)
method [29] which, in analogy to its ground-state counterpart,
decomposes the state space into frozen, dynamically polariz-
able, and dynamically active orbitals can considerably reduce
the numerical effort yet eventually still leads to a factorial
scaling with the number of active electrons N� (N� < N ).

Our point of departure is the recent advance in the ground-
state description of larger electronic systems employing the
two-particle reduced density matrix (2-RDM). Going back to
the pioneering work in the 1950s [30,31], the 2-RDM method
has recently matured to accuracies that often outperform those
of coupled-cluster singles doubles with perturbative triples
at similar or smaller numerical cost (see, e.g., [32–36]).
Similar to DFT, this method bypasses the need for the N -
particle wave function but employs the 2-RDM rather than
the one-particle density as the fundamental quantity. Unlike
DFT, however, the energy and all two-particle observables
can be expressed exactly in terms of the 2-RDM without
invoking an approximate exchange-correlation functional or
read-out functional. Proposed methods for calculating the
2-RDM include variational minimization of the energy as
a functional of the 2-RDM, solution of the contracted
Schrödinger equation, and solution of the anti-Hermitian part
of the contracted Schrödinger equation (for a review see
[37]). A major challenge in applying the 2-RDM method
is to enforce N -representability conditions, i.e., to constrain
the trial 2-RDMs to those that represent reductions of either
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pure or ensembles of fermionic N -particle states [38–40].
Despite recent progress [41], a complete list of (pure state) N -
representability conditions is not known and one is limited to
few necessary but not sufficient N -representability conditions
in numerical implementations.

The present work aims at extending this theoretical
development to the time-dependent 2-RDM (TD-2RDM)
in the presence of external time-dependent potentials. A
prototypical case is an N -electron system driven by a
(moderately) strong laser field. The ultimate goal is to
propagate 2-RDMs without invoking wave functions. There
have been only few previous attempts along these lines for
nuclear [42–44], atomic [45], and condensed-matter systems
[46]. They all encountered instabilities due to the intrinsic
nonlinearity of the equation of motion for the 2-RDM
resulting in the violation of positive definiteness.

In the present paper we take two major steps towards an
accurate TD-2RDM method which scales polynomially with
particle number. We develop a reconstruction functional that
allows closure of the equation of motion for the 2-RDM
without introducing uncontrolled violations of norm, spin,
and energy conservation. Second, we impose two necessary
N -representability constraints “on the fly” during the time evo-
lution thereby controlling dynamical instabilities previously
observed [42–46]. As a prototypical test case we apply our
method to the electronic dynamics of a one-dimensional (1D)
model of LiH (a four-electron system) in strong laser fields.
We investigate both the linear as well as nonlinear response of
this system. For this system, numerically exact results can be
determined by the MCTDHF method against which we gauge
our results. This method also provides the initial state within
the TD-2RDM calculations for which we take the field-free
ground state. We compare with results from TDDFT and
time-dependent Hartree-Fock (TDHF) calculations.

The paper is structured as follows: In Sec. II we briefly re-
view the equation of motion for the 2-RDM being one element
of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy and its closure in terms of approximate general-
ized collision integrals. We introduce a new reconstruction
functional for these integrals in Sec. III. Preserving a stable
dynamical evolution requires enforcing N -representability
constraints (or “purification”) on the fly, implementation of
which is discussed in Sec. IV. Numerical results for typical
one-body observables such as the time-dependent dipole
moment and two-body observables (interaction energy) for
LiH are presented in Sec. V. Throughout this paper we use
atomic units (e = � = m = 1).

II. EQUATION OF MOTION FOR THE 2-RDM

A. Basic properties

The p-particle reduced density matrix (p-RDM)
D(x1 . . . xp; x ′

1 . . . x ′
p; t) of an N -particle system in a pure state

� is determined by tracing out the coordinates of the remaining
N − p particles from the bilinear form ��∗,

D(x1 . . . xp; x ′
1 . . . x ′

p; t)

= N !

(N − p)!

∫
�(x1 . . . xp,xp+1 . . . xN ,t)

× �∗(x ′
1 . . . x ′

p,xp+1 . . . xN ,t)dxp+1 . . . dxN, (1)

where xi = (zi,σi) comprises the space coordinate zi and the
spin coordinate σi ∈ {↑,↓}. The p-RDMs are Hermitian and
antisymmetric with respect to exchange of the x or x ′ variables.
We normalize the p-RDMs to N!

(N−p)! . Following [47], we use
for the 2-RDM [Eq. (1) with p = 2] the following shorthand
notation:

D12(t) = D(x1x2; x ′
1x

′
2; t). (2)

The equation of motion for D12 is given by the second member
of the BBGKY hierarchy as [47]

i∂tD12 = [H12,D12] + Tr3 [W13 + W23,D123]

= [H12,D12] + C12 [D123] , (3)

where D123 is the 3-RDM and H12 denotes the two-particle
Hamiltonian,

H12 = h1 + h2 + W12, (4)

with hi the one-particle part containing the kinetic energy and
the time-independent as well as time-dependent external fields,
and W12 the electron-electron interaction. For the specific
example of the Hamiltonian of the 1D LiH molecule see
Eq. (75) below.

Equation (3) is not closed but depends on the next higher-
order RDM through the three-body collision operator,

C12[D123] = Tr3 [W13 + W23,D123] , (5)

where the partial trace (Tr3) extends over the third particle.
Approximately solving Eq. (3) thus inevitably requires closure,
i.e., approximating D123 and the resulting collision operator
C12 by quantities already determined by evolution of the 2-
RDM, i.e., D1 and D12. The quantities

DR
123[D12] ≈ D123 (6)

and

CR
12[D12] = C12

[
DR

123[D12]
]

(7)

are referred to as the reconstruction functional for the 3-
RDM (DR

123) and the collision operator (CR
12), respectively.

Employing such a reconstruction the equation of motion for
the 2-RDM has the closed form

i∂tD12 = [H12,D12] + CR
12 [D12] . (8)

Equation (8) must conserve invariants of the N -particle sys-
tem. These include the norm (or particle number), the energy
(for time-independent Hamilton operators), and spin (for spin-
independent interactions). Some of these conservation laws
provide constraints on admissible reconstruction functionals.
Conservation of particle number follows immediately from

i∂tTr12D12 = Tr12 [H12,D12]

+ Tr123
[
W13 + W23,D

R
123

] = 0 (9)

using the permutation symmetry of traces and the antisymme-
try of the commutator. Equation (9) assures particle-number
conservation but does not provide any constraints on the
reconstructed 3-RDM DR

123.
Time evolution of the energy,

E(t) = 1
2 Tr12(H̃12D12) (10)
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with

H̃12 = h1 + h2

N − 1
+ W12, (11)

is described by the differential equation

i∂tE(t) = 1

2
Tr12[(i∂t H̃12)D12]

+ N − 2

2(N − 1)
Tr12

[
[W12,h1 + h2]

×
(

D12 − 1

N − 2
Tr3D

R
123

)]
. (12)

In the absence of time-dependent external fields (i.e., ∂t H̃12 =
0) energy should be conserved. This condition is fulfilled if

D12 = 1

N − 2
Tr3D

R
123. (13)

Equation (13) holds, by definition, for the exact D123. However,
it provides a constraint on the reconstructed 3-RDM, DR

123, that
has to be fulfilled at each time step.

The time evolution of the 1-RDM follows from Eq. (8) as

i∂tTr2D12 = Tr2[H12,D12] + Tr23
[
W13 + W23,D

R
123

]
= (N − 1)[h1,D1] + Tr2

[
W12,D12 + Tr3D

R
123

]
,

(14)

where we have used the interrelation between the 2-RDM and
the 1-RDM,

D1 = 1

N − 1
Tr2D12. (15)

Equation (14) reduces to the correct equation of motion for
D1,

i∂tD1 = [h1,D1] + Tr2 [W12,D12] , (16)

provided the constraint Eq. (13) is fulfilled. Additional
constraints on the 3-RDM follow from spin conservation (see
Sec. II C).

B. Orbital expansion

The expansion of the 2-RDM in terms of 2r orthogonal
spin orbitals facilitates the efficient numerical propagation of
the 2-RDM and the usage of quantum chemistry codes for
calculating the initial 2-RDM. Compared to wave-function
based methods which scale factorially with the number of
particles the computational cost of the TD-2RDM method is
independent of the particle number N and depends only on the
total number of basis functions. The most time consuming
operation within Eq. (8) is the evaluation of the collision
operator [Eq. (5)] where a partial trace over the interaction
potential and the 3-RDM has to be evaluated. This calculation
scales as O(r5) with the number of basis functions r if the
interaction potential is diagonal in the basis (as, e.g., in spatial
representation), or as O(r7) for the expansion in spin orbitals.

The expansion in terms of spin orbitals allows us to
conveniently impose constraints due to spin conservation.

Accordingly, we expand

D(x1x2; x ′
1x

′
2; t)

=
∑

i1,i2,j1,j2

D
i1i2
j1j2

(t)φi1 (x1,t)φi2 (x2,t)φ
∗
j1

(x ′
1,t)φ

∗
j2

(x ′
2,t),

(17)

with spin orbitals φiσ (x,t) = φi(z,t) ⊗ |σ 〉, where we merge
the spin σ ∈ {↑,↓} and orbital indices i ∈ {1 . . . r}. For
simplicity, we drop here and in the following the labels for
the p-RDM when using the spin-orbital representation, i.e.,
D

i1i2
j1j2

= [D12]i1i2
j1j2

,D
i1i2i3
j1j2j3

= [D123]i1i2i3
j1j2j3

, since the correspond-
ing order is already uniquely characterized by the orbital-index
set. Within second quantization these 2-RDM coefficients can
be expressed as matrix elements

D
i1i2
j1j2

= 〈�|â†
i1
â
†
i2
âj2 âj1 |�〉. (18)

Generalization of Eq. (18) to arbitrary p-RDMs is obvious. In
this representation the N -particle Hamiltonian is given by

Ĥ = 1

2

∑
i1,i2,j1,j2

(
h

j1
i1
δ

j2
i2

+ δ
j1
i1

h
j2
i2

N − 1
+ W

j1j2
i1i2

)
â
†
i1
â
†
i2
âj2 âj1 ,

(19)

where h
j1
i1

and W
j1j2
i1i2

are the one- and two-electron Hamilton
matrix elements in the spin-orbital basis

h
j1
i1

= 〈
φj1

∣∣h1

∣∣φi1

〉
, (20)

W
j1j2
i1i2

= 〈
φj1φj2

∣∣W12

∣∣φi1φi2

〉
. (21)

The time derivative of the 2-RDM expansion coefficients
contains two terms

i∂tD
i1i2
j1j2

= 〈�|[â†
i1
â
†
i2
âj2 âj1 ,Ĥ

]|�〉
+ 〈�|i∂t

(
â
†
i1
â
†
i2
âj2 âj1

)|�〉. (22)

The second term appears only for time-dependent basis sets
and can be removed if the equation of motion of the orbitals
satisfies

〈φi |∂t |φj 〉 = 0, (23)

as in the present case [see Eq. (28) below]. Using the anti-
commutation relation of creation and annihilation operators
one obtains the spin-orbital representation of the equation of
motion for the 2-RDM [Eq. (3)]

i∂tD
i1i2
j1j2

=
∑
k1,k2

(
H

k1k2
j1j2

D
i1i2
k1k2

− D
k1k2
j1j2

H
i1i2
k1k2

) + C
i1i2
j1j2

, (24)

with

H
i1i2
j1j2

= h
i1
j1
δ

i2
j2

+ δ
i1
j1
h

i2
j2

+ W
i1i2
j1j2

, (25)

C
i1i2
j1j2

= I
i1i2
j1j2

+ I
i2i1
j2j1

− (
I

j1j2
i1i2

+ I
j2j1
i2i1

)∗
, (26)

and

I
i1i2
j1j2

=
∑

k1,k2,k3

W
k2k3
j1k1

D
i1i2k1
k2j2k3

. (27)
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A spin-orbital basis is a convenient computational starting
point for the propagation. One choice, in the spirit of time-
dependent configuration interaction calculations, would be to
treat the orbitals to be time independent and propagate only the
expansion coefficients. However, time-independent orbitals
will, in general, require a large number of basis orbitals to
properly account for the dynamics of the system. This calls for
a self-consistent optimization of the orbitals as implemented
within the MCTDHF approach [27,28]. To this end we adopt
the orbital equations of motion from MCTDHF:

i∂tφi(z,t) = Q̂

(
h(z)φi(z,t) +

∑
u

�̂u(z,t)[D−1]ui

)
, (28)

where

Q̂ = 1 −
2r∑

i=1

|φi〉〈φi | (29)

is the orbital projection operator assuring that Eq. (23) is
fulfilled, [D−1]ui is the inverse of the 1-RDM in the orbital
representation, and

�̂u(z,t) =
∑
vwt

Dv w
u t φv(z,t)

∫
φw(z′,t)φ∗

t (z′,t)W12(z,z′)dz′

(30)

originates from electron-electron interactions. It is this term
which couples the time evolution of the orbitals to the time
evolution of the 2-RDM.

C. Spin conservation

Since the nonrelativistic Hamiltonian for atoms and
molecules is spin independent, i.e., [H12,S

2] = [H12,Sz] = 0,
with

Sz = 1

2

∑
i

(a†
i↑ai↑ − a

†
i↓ai↓), (31)

S2 = S2
z + Sz + S−S+, (32)

and

S+ =
∑

i

a
†
i↑ai↓ and S− =

∑
i

a
†
i↓ai↑, (33)

the ground state (initial state) of the system is an eigenstate
of both Sz and S2 and remains in this spin state during time
evolution of �(t) for spin-independent interactions, e.g., in
the present case of a laser field in dipole approximation. In
particular, for closed-shell systems with an equal number of
electrons in spin up N↑ = N/2 and spin down N↓ = N/2 the
wave function satisfies

Sz|�(t)〉 = 0, (34)

S+|�(t)〉 = 0, (35)

where Eq. (35) together with Eq. (34) is equivalent to
S2|�(t)〉 = 0. These spin symmetries enforce specific sym-
metries on the 2-RDM that must be conserved during time
propagation.

The most obvious symmetry originating from Eq. (34) is
that the 2-RDM contains only two independent nonvanishing

blocks given by

D
i1↑i2↑
j1↑j2↑ and D

i1↑i2↓
j1↑j2↓, (36)

with i,j ∈ {1 . . . r} for the spatial part and {↑,↓} for the spin
part of the spin orbitals. All other spin blocks either vanish if
the net spin of the upper indices and lower indices differs, e.g.,

D
i1↑i2↑
j1↑j2↓ = 0, (37)

or can be reconstructed from other blocks using the antisym-
metry of the 2-RDM and the spin-flip symmetry (↑) ↔ (↓),
e.g.,

D
i2↓i1↑
j1↑j2↓ = −D

i1↑i2↓
j1↑j2↓, D

i1↓i2↓
j1↓j2↓ = D

i1↑i2↑
j1↑j2↑. (38)

Further symmetries based on Eq. (34) pose constraints on the
contractions of the 2-RDM spin blocks. The vanishing norm
of the vector Sz|�〉 gives

0 = 〈�|SzSz|�〉

= 1

2

∑
i,m

(
D

i↑m↑
i↑m↑ − D

i↑m↓
i↑m↓

) + 1

2

∑
i

D
i↑
i↑

= N2

4
−

∑
i,m

D
i↑m↓
i↑m↓, (39)

where we have used the interrelation between the 2-RDM and
the 1-RDM [Eq. (15)]∑

m

(
D

i↑m↑
j↑m↑ + D

i↑m↓
j↑m↓

) = (N − 1)Di↑
j↑, (40)

and ∑
i

D
i↑
i↑ = N

2
. (41)

Similarly, Sz|�〉 = 0 implies

0 = 〈�|â†
i↑âj↑Sz|�〉

= N

2
D

i↑
j↑ −

∑
m

D
i↑m↓
j↑m↓. (42)

We note that Eq. (42) reduces to Eq. (39) by tracing out the
noncontracted indices. While for the N -particle state �(t)
the conditions 〈�|ŜzŜz|�〉 = 0 and Ŝz|�〉 = 0 are equivalent,
this is not the case for the (in general, non-N -representable)
2-RDM within a truncated BBGKY hierarchy. For the latter,
Eq. (42) imposes additional constraints not implied by Eq. (39).

Further spin symmetries of the 2-RDM can be derived from
Ŝ+|�〉 = 0. The vanishing norm of the vector Ŝ+|�〉 implies

0 = 〈�|S−S+|�〉 =
∑

i

D
i↑
i↑ −

∑
i,m

D
m↑i↓
i↑m↓

= N

2
−

∑
i,m

D
m↑i↓
i↑m↓, (43)

and the stronger condition

0 = 〈�|â†
i↓âj↑S+|�〉 = D

i↑
j↑ −

∑
m

D
m↑i↓
j↑m↓. (44)
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We, furthermore, derive an interrelation between blocks of the
2-RDM. Projecting the vector Ŝ+|�〉 onto two-particle-two-
hole excitations we find

0 = 〈�|â†
i1↑â

†
i2↓âj2↑âj1↑S+|�〉

=
∑

k

〈�|â†
i1↑â

†
i2↓âj2↑â

†
k↑âk↓âj1↑|�〉 − D

i1↑i2↓
j2↑j1↓

=
∑

k

〈�|â†
i1↑â

†
i2↓â

†
k↑âk↓âj2↑âj1↑|�〉 − D

i1↑i2↓
j2↑j1↓ + D

i1↑i2↓
j1↑j2↓

= 〈�|Ŝ+â
†
i1↑â

†
i2↓âj2↑âj1↑|�〉

−D
i1↑i2↑
j1↑j2↑ + D

i1↑i2↓
j1↑j2↓ − D

i1↑i2↓
j2↑j1↓

= −D
i1↑i2↑
j1↑j2↑ + D

i1↑i2↓
j1↑j2↓ − D

i1↑i2↓
j2↑j1↓. (45)

Consequently, we arrive at the important interrelation

D
i1↑i2↑
j1↑j2↑ = D

i1↑i2↓
j1↑j2↓ − D

i1↑i2↓
j2↑j1↓, (46)

which has been derived previously employing the Wigner-
Eckhard theorem [48]. Equation (46) has a simple interpreta-
tion: Since D

i1↑i2↓
j1↑j2↓ − D

i1↑i2↓
j2↑j1↓ is antisymmetric with respect to

the spatial indices it belongs to the spin triplet state of a pair
in spin state |SMs〉 = |10〉. In terms of the spatial orbitals it
has exactly the same eigenvectors and eigenvalues as D

i1↑i2↑
j1↑j2↑

which belongs to the spin state |SMs〉 = |11〉. Equation (46) is,
therefore, also important for the numerical efficiency. Since the
2-RDM can be reconstructed completely from the (↑↓) block,
it is sufficient to propagate only the (↑↓) block according to
[see Eq. (24)]

i∂tD
i1↑i2↓
j1↑j2↓ =

∑
k1,k2

(
H

k1k2
j1j2

D
i1↑i2↓
k1↑k2↓ − D

k1↑k2↓
j1↑j2↓H

i1i2
k1k2

)

+C
i1↑i2↓
j1↑j2↓, (47)

instead of the entire 2-RDM. H
k1k2
j1j2

are the matrix elements of
the Hamiltonian [Eq. (4)] in the spatial orbitals. Equation (47)
significantly reduces the numerical effort because the (↑↓)
block of the collision operator can be written solely in terms
of the (↑↑↓) block of the 3-RDM,

C
i1↑i2↓
j1↑j2↓ = I

i1↑i2↓
j1↑j2↓ + I

i2↑i1↓
j2↑j1↓ − (

I
j1↑j2↓
i1↑i2↓ + I

j2↑j1↓
i2↑i1↓

)∗
, (48)

and

I
i1↑i2↓
j1↑j2↓ =

∑
k1,k2,k3

W
k2k3
j1k1

(
D

i1↑k1↑i2↓
k2↑k3↑j2↓ + D

i2↑k1↑i1↓
j2↑k3↑k2↓

)
, (49)

where we have used the spin-flip symmetry between (↑) and
(↓). Propagating only the (↑↓) block, the evaluation of the
collision operator scales like (r)7 instead of (2r)7 with the
number of spatial orbitals r .

Since the equation of motion for the 2-RDM involves the
3-RDM we inquire now into constraints that spin conservation
imposes on the 3-RDM. Starting with Eq. (46) and taking the
time derivative, we find that the 3-RDM must fulfill

0 = D
i1↑i2↑i3↑
j1↑j2↑j3↑ + D

i1↑i2↑i3↓
j1↑j2↑j3↓ − D

i1↑i3↑i2↓
j3↑j2↑j1↓

−D
i1↑i3↑i2↓
j1↑j3↑j2↓ − D

i2↑i3↑i1↓
j3↑j1↑j2↓ − D

i2↑i3↑i1↓
j2↑j3↑j1↓, (50)

which is a consequence of

0 = 〈�|â†
i1↑â

†
i2↑â

†
i3↓âj3↑âj2↑âj1↑S+|�〉

+ 〈�|â†
i1↓â

†
i2↓â

†
i3↑âj3↓âj2↑âj1↑S+|�〉. (51)

We focus in the following on the (↑↑↓) block of the 3-RDM.
This block has four independent onefold contractions. From
the time derivative of Eq. (42) we obtain conditions for two of
these, ∑

m

D
i1↑m↑i2↓
j1↑m↑j2↓ =

(
N

2
− 1

)
D

i1↑i2↓
j1↑j2↓, (52)

∑
m

D
i1↑i2↑m↓
j1↑j2↑m↓ = N

2
D

i1↑i2↑
j1↑j2↑, (53)

and by taking the time derivative of Eq. (44) the two remaining
ones ∑

m

D
i1↑m↑i2↓
j1↑j2↑m↓ = D

i1↑i2↑
j1↑j2↑, (54)

∑
m

D
i1↑i2↑m↓
j1↑m↑j2↓ = D

i1↑i2↑
j1↑j2↑. (55)

In analogy to energy conservation, we find that conservation
of spin requires that a properly reconstructed 3-RDM correctly
contracts in all diagonal and off-diagonal partial traces to the
2-RDM. These are important constraints on the reconstruction
functionals of the 3-RDM, DR

123[D12], unfortunately not
fulfilled by reconstruction functionals previously discussed in
the literature.

III. CONTRACTION-CONSISTENT RECONSTRUCTION
OF THE 3-RDM

The approximate reconstruction of higher-order RDMs in
terms of lower order RDMs has been successfully developed in
the last few decades to remove the indeterminacy of the time-
independent contracted Schrödinger equation which depends
on both the 3-RDM and the 4-RDM (see, e.g., [49–52]). In
a pioneering work exploiting particle-hole duality [49], the
following reconstruction functional for the 3-RDM referred to
as the Valdemoro (V) reconstruction functional,

DV
123[D12] = 9D12 ∧ D1 − 12D3

1, (56)

has been derived, where the wedge product is defined as the
antisymmetrized tensor product

D1...p ∧ D1...q

= 1

(p + q)!2

∑
π,τ

sgn(π )sgn(τ )D
iπ(1)...iπ(p)

jτ (1)...jτ (p)
D

iπ(p+1)...iπ(p+q)

jτ (p+1)...jτ (p+q)
,

(57)

and the sum runs over the permutations π and τ . The error in
the reconstruction

�123 = D123 − DV
123[D12] (58)

is the three-particle cumulant �123 as has been pointed out
in [53]. It describes the part of the 3-RDM that cannot
be constructed from D12 and D1. Physically, neglecting the
three-particle cumulant amounts to neglecting all processes
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that cannot be viewed as a sequence of independent two- and
one-particle excitations. In the following we will show that the
assumption of a vanishing three-particle cumulant underlying
DV

123, leads to the violation of spin and energy conservation.
It is thus essential to include parts of the cumulant in the
reconstruction in order to preserve these conservation laws.

Remarkably, the Valdemoro reconstruction functional con-
serves the weaker conditions Eqs. (39) and (43) as well as
Eq. (46) but violates the stronger conditions Eqs. (42) and (44),
since D

V↑↑↓
123 does not contract correctly into the two-particle

subspace according to Eqs. (52)–(55). In other words the
failure of the Valdemoro reconstruction D

V↑↑↓
123 originates from

the fact that the three-particle cumulant �↑↑↓
123 has nonvanishing

contractions, e.g.,∑
m

�
i1↑i2↑m↓
j1↑j2↑m↓ = N

2
D

i1↑i2↑
j1↑j2↑ −

∑
m

[DV]i1↑i2↑m↓
j1↑j2↑m↓ 
= 0. (59)

The information on the cumulant stored in the 2-RDM can be
used to develop a new contraction-consistent reconstruction
functional that satisfies Eqs. (52)–(55) and, therefore, ensures
spin and energy conservation. For this purpose we decompose
the three-particle cumulant

�
↑↑↓
123 = �

↑↑↓
123;⊥[D12] + �

↑↑↓
123;K (60)

into the contraction-free component, the kernel of the con-
traction, �

↑↑↓
123;K and the corresponding orthogonal component

�
↑↑↓
123;⊥ using the unitary decomposition for three-particle ma-

trices described in Appendix A. By definition, the contraction-
free component vanishes upon all diagonal and off-diagonal
contractions denoted by L3,

L3(�↑↑↓
123;K) = 0, (61)

and is thus an element of the kernel of L3. The key ingredient
for the contraction-consistent reconstruction is the fact that the
orthogonal component of the cumulant �

↑↑↓
123;⊥[D12] is exactly

given as a functional of the 2-RDM. Using �
↑↑↓
123;⊥, we obtain

the new contraction-consistent reconstruction

D
C↑↑↓
123 [D12] = D

V↑↑↓
123 [D12] + �

↑↑↓
123;⊥[D12], (62)

which satisfies Eqs. (52)–(55). It differs from the exact
3-RDM only by the contraction-free component �

↑↑↓
123;K.

This is to be compared with the Valdemoro reconstruction
functional [Eq. (56)] that neglects the cumulant altogether.
We note that despite this improvement, the contraction-
consistent reconstruction functional is not sufficient to ensure
N -representability of the 2-RDM during time evolution.

IV. N-REPRESENTABILITY AND DYNAMICAL
PURIFICATION

Each N -particle density matrix that is (i) Hermitian,
(ii) normalized, (iii) antisymmetric under particle permutation,
and (iv) positive semidefinite describes a possible state of a
N -particle system. The conditions for the p-RDM to describe
a p-particle subsystem of the original N -particle system are
much more complex. Subsidiary conditions have to be imposed
to ensure that the RDM belongs to an actual wave function.
These conditions are called N -representability conditions [38].

The search for a complete set of conditions for the 2-RDM
is an ongoing effort for over half a century [34,38–40,54].
A systematic classification of N -representability conditions
has been developed [41] for ensemble representable RDMs,
i.e., matrices that are derivable from a mixed quantum state.
The actual form of a complete set of conditions for pure
states remains undetermined. Moreover, numerical calcula-
tions allow us to implement only few N -representability
conditions. There exist several explicit necessary conditions
for N -representability in the form of positivity conditions.
The two most important positivity conditions for the 2-RDM
are called the D- and Q-positivity conditions [37,39]. They
guarantee that the 2-RDM

D
i1i2
j1j2

= 〈�|â†
i1
â
†
i2
âj2 âj1 |�〉 (63)

and the two-hole reduced density matrix (2-HRDM)

Q
i1i2
j1j2

= 〈�|âj1 âj2 â
†
i2
â
†
i1
|�〉 (64)

are positive semidefinite (i.e., have non-negative eigenvalues).
The 2-HRDM describes the pair distribution of holes rather
than of particles. The positive semidefiniteness of these matri-
ces represents independent conditions although the matrices
are interconvertible by a rearrangement of the creation and
annihilation operators

Q12 = 2I 2 − 4I ∧ D1 + D12, (65)

where I is the identity. These two-positivity conditions imply
that the occupation numbers of particle pairs or hole pairs
in any two-particle state are always non-negative. A third
two-positivity condition, the G condition, guarantees that the
occupation of particle-hole pairs is non-negative [37]. For
the calculations presented here, the G condition turned out to
be much less important than the D and Q conditions. In fact,
the G condition was found to be well satisfied whenever the D

and Q conditions were fulfilled. The two-positivity conditions
are conveniently implemented since they can be formulated
solely in terms of the 2-RDM.

Even when the 2-RDM associated with the initial state
satisfies the D- and the Q-positivity conditions the N -
representability conditions may be violated during time evo-
lution calculated according to Eq. (8) due to the residual
errors in the reconstruction functional. The 2-RDM D12(t)
will, in general, depart from the subspace of N -representable
2-RDMs after propagation for the time step �t . Therefore,
projecting back the evolved D̃12(t + �t) onto the subspace of
N -representable 2-RDMs,

D12(t + �t) = P̂12D̃12(t + �t)P̂12, (66)

where the projector P̂12 enforces a set of preselected rep-
resentability conditions is essential (Fig. 1). This process
is referred to in the following as dynamical purification.
Several types of purifications have been discussed in the
literature and are used primarily for the iterative solution of
the second-order contracted Schrödinger equation to find a
self-consistent N -representable solution for the ground state
of molecules [55,56].

A purification scheme which accounts for the D condition
and the Q condition and employs the unitary decomposition
[see Eq. (A1) in Appendix A] [55] serves as the starting point
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FIG. 1. (Color online) Dynamical purification applied after each
time step to project the propagated D̃12(t + �t) onto the set of
2-RDMs that satisfy the D condition and the Q condition,
schematically.

of our purification process for the time-dependent 2-RDM.
Briefly, we add to both D̃12(t) and Q̃12(t) a correction term

D12(t) = D̃12(t) + Dcor
12 (t), (67)

Q12(t) = Q̃12(t) + Dcor
12 (t) (68)

with

Dcor
12 (t) =

∑
i

(
αiA

i
12;K + βiB

i
12;K

)
. (69)

In Eq. (69) the Ai
12;K and Bi

12;K are the contraction free
components [see Eq. (A1)] of the projections onto the geminals
(i.e., the eigenvectors) of the 2-RDM D̃12(t), Ai

12 = |gi〉〈gi |,
and of the 2-HRDM Q̃12(t), Bi

12 = |g′
i〉〈g′

i |, with negative
eigenvalues. In order to preserve the D- and Q-positivity
conditions the negative eigenvalues are reduced by solving
the system of linear equations for the coefficients αi and βi ,

Tr12
(
Ai

12D12
) = 0, (70)

Tr12
(
Bi

12Q12
) = 0. (71)

Correcting the 2-RDM via Eq. (67) creates a new D12 with
preserved 1-RDM, and whose negative eigenvalues are smaller
than those of D̃12. Repeating this process iteratively yields the
purified D12(t). We note that this iterative procedure converges
only if the underlying 1-RDM is N -representable, i.e., has
eigenvalues between 0 and 1. We find that the time-dependent
1-RDM remains N -representable during the evolution when
the D condition and the Q condition on D12 and Q12 are
enforced.

The purification process outlined above requires modifica-
tion when spin symmetries are to be conserved simultaneously.
We first note that it is sufficient to only purify the (↑↓) block
because in the singlet spin state this block contains all the
information of the full 2-RDM and has the same eigenvalues
(except for a factor of 2) as the full 2-RDM. The D condition
and the Q condition are then equivalent to the positivity of the
(↑↓) block of the 2-RDM and the 2-HRDM. We separate the
(↑↓) block further into the symmetric and the antisymmetric
part with respect to the spatial orbital indices,

D
↑↓
12 = Â[D↑↓

12 ] + Ŝ[D↑↓
12 ], (72)

Q
↑↓
12 = Â[Q↑↓

12 ] + Ŝ[Q↑↓
12 ], (73)

where Â is the antisymmetrization operator and Ŝ is the sym-
metrization operator. While for the antisymmetric part we can

directly apply the purification described above, the purification
of the symmetric part employs the unitary decomposition
for symmetric matrices [see Eq. (A5) in Appendix A]. This
purification does not alter the one-particle traces of the (↑↓)
block such that the conditions Eqs. (39), (42), (43), and (44)
remain conserved. The convergence is strongly dependent on
the positive semidefiniteness of the one-particle traces of the
symmetric and antisymmetric components:

Tr2Â[D↑↓
12 ] � 0, Tr2Â[Q↑↓

12 ] � 0,
(74)

Tr2Ŝ[D↑↓
12 ] � 0, Tr2Ŝ[Q↑↓

12 ] � 0.

If conditions Eqs. (42) and (44) are met these matrices are
proportional to the 1-RDM and, therefore, positive semidefi-
nite.1 In the following we show that the dynamical purification
process is key to achieve a stable propagation of the 2-RDM.

V. BENCHMARK: LIH IN A FEW-CYCLE LASER FIELD

In this section we present a first application of our
TD-2RDM method to a four-electron model system, the
one-dimensional LiH molecule in an ultrashort few-cycle
laser field. One-dimensional atoms and molecules serve as a
numerically efficient testing ground for full three-dimensional
calculations and have been used in the past to study various
atomic properties such as the double ionization of He [57] and
H2 [58] and the response of LiH in strong laser fields [29,59].
We have chosen this system since it displays already a complex
and rich multielectron dynamics, including multiple ioniza-
tion, while it still can be numerically exactly solved employing
the MCTDHF method allowing us to accurately benchmark
the TD-2RDM method. For the numerical implementation,
we solve the orbital equations of motion [Eq. (28)] on an
equidistant grid with 2000 points and grid spacing �z = 0.1
for the laser intensity I = 1014 W/cm2 and 3000 points and
grid spacing �z = 0.4 for the higher laser intensity I =
8 × 1014 W/cm2. The second derivative of the kinetic-energy
operator is evaluated within the eighth-order finite difference
representation. An absorbing boundary is implemented by the
mask function of cos1/4 shape. We employ the Runge-Kutta
propagator of fourth order to propagation in real and imaginary
time, the latter for the determination of the ground state.

A. The LiH ground state

The electronic Hamiltonian [Eq. (4)] of the one-
dimensional model consists of the Li nucleus (charge ZLi = 3)
and the proton (charge ZH = 1) at fixed positions RLi and RH,
and four electrons in the laser field F (t) included within the
dipole approximation in length gauge:

H =
4∑

i=1

hi +
4∑

i<j

Wij , (75)

1In the propagation with DV
123 these conditions are violated causing

convergence problems of the spin adapted purification. For test
calculations with DV

123 we, therefore, use the purification of the whole
2-RDM [Eq. (67)] rather than the purification of the (↑↓) block.
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FIG. 2. (Color online) Electron density of the 1D LiH molecule.
The equilibrium bond length a = 2.3 between the Li nucleus and the
proton is depicted. The electron cloud is predominantly located near
the Li core.

with

hi = −1

2

∂2

∂z2
i

+ Vi + ziF (t), (76)

and the electron-electron interaction in one dimension with
softening parameter d,

W12 = 1√
(z1 − z2)2 + d

. (77)

The one-electron molecular potential in Eq. (76) is given in
one dimension by

Vi = − ZLi√
(zi − RLi)2 + c

− ZH√
(zi − RH)2 + c

. (78)

The softening parameters are chosen c = 0.5 and d = 1 with
an equilibrium distance a = |RLi − RH| = 2.3 (RLi = −1.15
and RH = 1.15) [29]. The ground state which serves as the
initial state for the TD-2RDM method is calculated using
imaginary time propagation within MCTDHF. The electron
density expressed in terms of diagonal elements of the
1-RDM,

ρ(z,t) = D(z ↑; z ↑; t) + D1(z ↓; z ↓; t), (79)

of the ground state displays a distinct maximum near the Li
atom (see Fig. 2) which originates from the deeply bound
doubly occupied core orbital of Li. The outer two electrons
occupy the valence orbital which is responsible for the chem-
ical bond. Note that this single configuration picture serves
only for qualitative illustration while the numerical simulation
includes configuration interaction. From the electron density
one obtains one-electron observables such as the dipole
moment

d(t) = d0 −
∫

zρ(z,t)dz, (80)

which consists of the static nuclear dipole moment d0 = −2.3,
and the time-dependent electronic contribution. Properties
beyond those derivable from the electron density can be
calculated via the pair density ρ(z1,z2,t) derived from the
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FIG. 3. (Color online) (a) The pair-density distribution ρ(z1,z2)
in coordinate space for the ground state of the LiH molecule. The
density distribution shows distinct peaks for interatomic pairs with
one electron close to the Li core while the other one is close to the
proton (marked by arrows). (b) The imaginary diagonal elements
of the exact collision operator C12. The positive contribution for
pairs with positive total momentum shows that the particle interaction
creates pairs moving collectively toward the proton while pairs with
negative momentum moving towards the Li core are destroyed.

2-RDM,

ρ(z1,z2,t) = D(z1 ↑ z2 ↑; z1 ↑ z2 ↑; t)

+ D(z1 ↑ z2 ↓; z1 ↑ z2 ↓; t)

+ D(z1 ↓ z2 ↑; z1 ↓ z2 ↑; t)

+ D(z1 ↓ z2 ↓; z1 ↓ z2 ↓; t). (81)

The pair density ρ(z1,z2,t) contains information on two-
particle correlations [see Fig. 3(a)]. In the LiH molecule the
electron pairs are predominantly distributed such that one
electron is located near the Li core and the other near the
H core. This configuration minimizes the Coulomb repulsion.
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With the pair density ρ(z1,z2,t) the exact interaction energy

Eint(t) =
∫

ρ(z1,z2,t)√
(z1 − z2)2 + d

dz1dz2 (82)

including the full correlation energy can be calculated.
A crucial quantity of the 2-RDM propagation is the collision

operator C12 [Eq. (5)]. The collision operator is an anti-
Hermitian operator that describes the scattering between pairs
under the influence of surrounding particles. More precisely,
the diagonal element 〈φ12|C12|φ12〉 determines the number
of pairs per unit time that enter minus those that leave the
two-particle state |φ12〉 due to the Coulomb interaction in the
presence of the (N − 2) electron environment. The diagonal
elements in momentum space C(k1k2; k1k2) can be directly
interpreted as a Boltzmann-like collision integral. Since the
wave function of a nondegenerate ground state is real the
collision operator in momentum space is antisymmetric under
point reflection at the origin [see Fig. 3(b)],

C(k1k2; k′
1k

′
2) = C∗(−k1,−k2; −k′

1,−k′
2)

= −C(−k′
1,−k′

2; −k1,−k2). (83)

If the system features in addition reflection symmetry in
real space (e.g., the beryllium atom), the collision operator
must be also invariant under the transformation (k1,k2) →
(−k1,−k2). This implies that the diagonal elements of the
collision operator in momentum representation C(k1k2; k1k2)
must vanish for the ground state of such systems. The fact that
C(k1k2; k1k2) does not vanish for LiH is a direct consequence
of the broken parity symmetry of the LiH molecule. We note
that in coordinate space the diagonal elements of the collision
operator always vanish, i.e., C(x1x2; x1x2) = 0.

The ground-state properties of the collision operator in
momentum space can be understood intuitively by consid-
ering the equation of motion for the 2-RDM in momentum
representation:

i∂tD(k1k2; k′
1k

′
2; t) = [H12,D12](k1k2; k′

1k
′
2; t) (84)

+C(k1k2; k′
1k

′
2; t). (85)

The stationarity of the 2-RDM in the ground state imposes the
two-particle Brillouin condition [60]

[H12,D12](k1k2; k′
1k

′
2; t) + C(k1k2; k′

1k
′
2; t) = 0. (86)

Equation (86) is equivalent to the anti-Hermitian contracted
stationary Schrödinger equation for the 2-RDM used to
calculate the ground state of molecules (see, e.g., [36]).
The momentum-space representation offers a straightforward
interpretation in terms of a balance equation. The commutator
[H12,D12] describes the change in the momentum distribution
of electron pairs in the Coulomb field of the nuclei without
the influence of the residual particles. The electron pairs
are attracted collectively towards the Li core. This motion
is compensated for by C(k1k2; k1k2) which accounts for the
collisions of the pairs with the surrounding particles which
most prominently occur at the enhanced electron density near
the Li core driving the pairs toward the H core. This effect is
visible as a maximum for positive total momenta and minimum
for negative total momenta [see Fig. 3(b)]. In the stationary
state these two competing processes are in equilibrium, i.e.,

for every pair that leaves the momentum configuration (k1,k2)
due to the interaction with the environment the core potential
creates another pair of this kind.

B. The 2-RDM for LiH in an intense laser field

For the ultrashort few-cycle laser pulse we choose

F (t) = F0 sin(ωt) sin2

(
ω

2Nc

t

)
, 0 � t � Nc

2π

ω
, (87)

where F0 is the amplitude of the electric field, ω is the mean
angular frequency, and Nc is the number of cycles. We use from
now on the scaled time τ = t 2π

ω
with 0 � τ � Nc, counting the

number of cycles that have passed. We investigate two different
laser intensities: I = 1014 W/cm2 (F0 = 0.053), for which the
response of the dipole moment is close to linear, and I =
8 × 1014 W/cm2 (F0 = 0.151) where a strongly nonlinear
response is expected including substantial ionization. The
Keldysh parameter

γ = ω

√
2Ip

F0
, (88)

with the first ionization potential Ip = 0.675 (see [29]) is γ =
1.32 and γ = 0.467, respectively. For all numerical results
presented in this section the 2-RDM as well as the MCTDHF
wave function �MCTDHF(t), with which we compare, are
expanded in terms of ten time-dependent spin orbitals [see
Eq. (17)]. The latter has been shown to be sufficient to reach
convergence for the observables deduced from the MCTDHF
wave function which we refer to as “exact” results in the
following [29].

We illustrate and assess now the accuracy of the present
time-dependent 2-RDM theory by involving successively
different levels of approximation to the collision operator C12

and to the equation of motion for the 2-RDM whose exact
form is given by Eq. (3) while the approximate form involving
the reconstruction functional is given by Eq. (8). As a figure of
merit for the comparison with the exact calculation as well
as other approximate methods we use the time-dependent
dipole moment d(t), a one-particle observable for which an
explicit functional in terms of the time-dependent density
ρ(z,t) exists [Eq. (80)] and which can thus be determined
from effective mean-field theories such as TDDFT or TDHF
without invoking any only approximately known read-out
functional. For other observables, the construction of the
approximate read-out functional from the propagated density
ρ(z,t) remains a challenge [23,24,61]. The point of departure
is the parallel propagation of the 2-RDM according to Eq. (8)
and the MCTDHF wave function �MCTDHF(t) from which the
time-dependent p-RDMs for each time step can be exactly
determined. Because of the expansion of the p-RDMs in
time-dependent spin orbitals, the coupling of the evolution
of the orbitals [Eq. (28)] to that of the 2-RDM must also be
accounted for when the hierarchy of approximations to the
collision integral is explored.

1. Test of the reconstruction functional

The exact collision operator C12 depends on the exact
3-RDM [Eq. (5)]. As the latter quantity is not available within
the 2-RDM propagation, reconstruction by a functional DR

123

023412-9



FABIAN LACKNER et al. PHYSICAL REVIEW A 91, 023412 (2015)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 0.5 1 1.5 2 2.5 3

el
ec

tr
ic

fie
ld

(a
.u

.)

time (optical cycle)

1

2

3

4

FIG. 4. (Color online) The laser pulse [Eq. (87)] with I =
1014 W/cm2 (F0 = 0.053), λ = 750 nm, Nc = 3. Distinct points in
time are marked by numbers for later reference.

depending on D12 is required. We first test the performance
of the reconstruction functionals DR

123, specifically the Valde-
moro functional DV

123 [Eq. (56)] and the contraction-consistent
functional DC

123 introduced in Sec. III. In the first step, we
employ as input to these functionals the exact Dexact

12 generated
from the simultaneous propagation of �MCTDHF(t). Using the
resulting DV

123[Dexact
12 ] and DC

123[Dexact
12 ] in the propagation of

D12 allows the assessment of the accuracy of the functionals
decoupled from the error in D12 accumulated during the
propagation. We find excellent agreement for the dipole
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FIG. 5. (Color online) Dipole moment of LiH subject to the laser
pulse as depicted in Fig. 4 with I = 1014 W/cm2 using the recon-
struction functionals DV

123[Dexact
12 ] and DC

123[Dexact
12 ] with the exact

2-RDM Dexact
12 as input at each time step obtained from a concurrent

MCTDHF calculation. The high-frequency oscillations near τ = 3
originate from superpositions between the ground state and excited
states (see right inset). Both DV

123 and DC
123 can markedly reproduce

the MCTDHF result. A close up shows that DC
123 performs better than

DV
123.
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FIG. 6. (Color online) (a) Dipole moment of LiH subject to the
laser pulse (Fig. 4) with I = 1014 W/cm2 employing the reconstruc-
tion functionals DV

123[D12] and DC
123[D12] with D12 propagated by

Eq. (24) while the orbitals are calculated via Eq. (28) using Dexact
12 from

a parallel MCTDHF calculation. The violation of N -representability
leads to divergence of the dipole moment. The point of divergence
is marked by vertical lines for each reconstruction. Note that con-
traction consistency postpones but does not prevent the divergence.
(b) The smallest and largest eigenvalue of the 2-RDM. The violation
of N -representability clearly visible from eigenvalues outside the
allowed range 0 � gi � 4 (marked by dashed horizontal lines) occurs
in close temporal proximity to the divergence of the dipole moment.

moment when the collision operator C12 in Eq. (5) is calculated
from the reconstructed DV

123[Dexact
12 ] and DC

123[Dexact
12 ] (Fig. 5).

For the latter the agreement is even better. The error in the
reconstructed collision operator CR

12 as determined by the basis
independent measure

ε2 = Tr12
[(

C12 − CR
12

)2]
(89)

is more than nine times smaller for DC
123 than for DV

123 (not
shown). Despite the good agreement for the dipole moment
we observe that N -representability is not conserved during
propagation: at τ ≈ 0.1 the lowest eigenvalue (i.e., geminal
occupation number) of the 2-RDM drops to gmin ≈ −0.02
for DC

123 and to gmin ≈ −0.05 for DV
123 before it starts to

oscillate keeping the eigenvalues bounded from below. These
oscillations can be found in other two-positivity conditions as
well. The appearance of a lower bound for gmin allows for a
stable propagation of D12 as shown in Fig. 5 despite the slight
violation of positive definiteness.
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FIG. 7. (Color online) (a) Dipole moment for the same param-
eters as in Fig. 6 but with dynamical purification. (b) The smallest
eigenvalue of the 2-RDM for the propagation employing DC

123 without
purification [green line, compare Fig. 6(b)] and with purification.
For the latter the smallest eigenvalue is shown before and after
each dynamical purification step [Eq. (66)]. The negative occupation
number after purification with ten iterations is in general smaller than
10−9 indicating rapid convergence.

2. Sensitivity of the reconstruction functional to errors in D12

Successively approaching a realistic simulation scenario,
we now test the sensitivity of reconstruction functionals
DR

123[D12] to errors in D12 when the exact 2-RDM is not
available. On this level of approximation the collision operator
CR

12[D12] induces a highly nonlinear feedback loop that tends
to rapidly magnify the errors of D12 accumulated during the
evolution. At this stage, we still employ the exact Dexact

12 in
the propagation of the orbitals [Eq. (28)] in order to decouple
the error accumulation through the nonlinear orbital equation
of motion from that of the nonlinear equation of motion
for D12 [Eq. (24)]. Focusing for the moment only on the
latter, this nonlinear feedback loop ultimately produces severe
instabilities such that the two-positivity conditions of the
2-RDM are strongly violated causing, in turn, the divergence in
physical observables such as the dipole moment (see Fig. 6).
This instability is present when using either DV

123 or DC
123.

However, the onset of the divergence is delayed for the
latter [see Fig. 6(a)] providing an additional indication that
an accurate reconstruction functional is key for the reliable
propagation over finite times. The excursion of the eigenvalues
outside of the allowed range, 0 � gi � N , shows that due to
the nonlinear error magnification the N -representability will
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FIG. 8. (Color online) Dipole moment of LiH subject to the laser
pulse (Fig. 4) with (a) I = 1014 W/cm2 and (b) I = 8 × 1014 W/cm2

employing the reconstruction functionals DV
123[D12] and DC

123[D12]
within a fully self-consistent propagation of the TD-2RDM compared
with the exact (MCTDHF) reference.

not be preserved during propagation unless purification after
each time step is enforced.

3. Test of dynamical purification

To preserve N -representability and to achieve a stable
propagation of D12, implementation of dynamical purification
is essential. For each time step, Eqs. (67)–(71) adapted to
spin symmetry are iteratively solved. Convergence is typically
reached after ten iterations where the magnitude of the lowest
eigenvalue of the 2-RDM and the 2-HRDM is reduced to values
below 10−9 [see Fig. 7(b)]. Repeating the above calculation but
including now the dynamical purification we find reasonable
agreement for the time evolution of the dipole moment with
DV

123 and perfect agreement with DC
123 relative to the MCTDHF

reference [see Fig. 7(a)]. The small amplitude oscillations
after the conclusion of the pulse signifying the superposition
of the ground state and excited states are reproduced with
high accuracy while they are overestimated by DV

123 [see
Fig. 7(a)]. The correction of the error accumulation in D12

by the purification thus dramatically improves the stability
and accuracy of the propagation.

4. Self-consistent propagation

A fully self-consistent propagation requires one additional
step: the use of the approximate D12 as input also for the orbital
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FIG. 9. (Color online) Dipole moment of LiH subject to the laser
pulse (Fig. 4) with (a) I = 1014 W/cm2 and (b) I = 8 × 1014 W/cm2

for a fully self-consistent propagation of the TD-2RDM method
compared with the exact (MCTDHF) reference, the TDHF, and the
TDDFT calculations.

equations of motion [Eq. (28)]. Up to this point we have used
Dexact

12 in Eq. (28) in order to disentangle the error occurring
in the propagation of D12 from that of the single-particle
orbitals. Since the latter is also a system of nonlinear equations
containing both D12 and the inverse of D1 error magnification
is to be expected here as well. This (up to exponential)
error magnification imposes an additional constraint on the
required accuracy of the reconstruction as well as purification.
Indeed, within a fully self-consistent propagation the simple
reconstruction DV

123 is not able to accurately reproduce the
time evolution of the dipole moment (see Fig. 8). Strong
deviations from the exact result occur due to the violation of
the spin symmetries discussed in Sec. II B. It turns out that the
conservation of these symmetries by DC

123 is essential to obtain
results that are in agreement with the MCTDHF calculation
(see Fig. 8).

We also compare the present results for d(t) with the
prediction by the TDHF method and TDDFT within the
adiabatic local-density approximation (LDA) (for details
see Appendix B). Within TDDFT and TDHF we use the
corresponding DFT and HF ground states as the initial states
which leads to the discrepancy at t = 0 in the dipole moment.
While for the lower intensity, this discrepancy is only moder-
ately increased during the evolution, for the higher intensity
dramatic enhancement of these deviations is observed. By
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FIG. 10. (Color online) Time-dependent electron-electron inter-
action energy Eint(t) of LiH subject to the laser pulse (Fig. 4)
with I = 1014 W/cm2 (a) and I = 8 × 1014 W/cm2 (b) for a fully
self-consistent propagation of the TD-2RDM method compared
with the exact (MCTDHF) reference, the TDHF, and the TDDFT
calculations.

contrast, the present TD-2RDM method performs consistently
better than the TDHF and the TDDFT calculations over the
entire time interval for both intensities [see Figs. 9(a) and
9(b)]. The large error in TDDFT accumulating during the
second half of the pulse in Fig. 9(b) is caused by the presence
of ionization. The reason for this failure of TDDFT is the
inability of LDA to correctly account for the Rydberg series
and for ionization. The close agreement for the asymptotic
dipole moment of TDHF with the exact (MCTDHF) result
for the intensity I = 8 × 1014 W/cm2 [Fig. 9(b)] is, most
likely, a coincidence. Other observables, e.g., the energy
(Fig. 10), are not well reproduced by TDHF and for other laser
intensities, e.g., I = 4 × 1014 W/cm2 the good agreement
for the dipole moment within MCTDHF and TDHF during
the end of the pulse is absent (see [29]). We note that
the TDHF calculation can be viewed as a special case
of the self-consistent propagation of the 2-RDM when the
number of spin orbitals equals the number of electrons.
In this case the reconstruction is exact and purification is
not necessary since the resulting 2-RDM is N -representable
at all times. While the TDHF and the TDDFT methods
feature stability, they do not achieve accuracy [see Figs. 9(a)
and 9(b)].
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FIG. 11. (Color online) Pair density ρ(z1,z2,t) of the LiH
molecule in the strong laser pulse with I = 8 × 1014 W/cm2 left
column exact (MCTDHF); middle column self-consistent propaga-
tion of the 2-RDM using the reconstruction functional DC

123[D12];
right column difference �ρ(z1,z2,t) = ρexact(z1,z2,t) − ρ(z1,z2,t)
between the exact (MCTDHF) and the TD-2RDM pair density.
The pair density is shown at four times depicted in Fig. 4 [rows
(1)–(4)]. The stretched-out arms in the pair density are signatures of
single-particle ionization. The approximate distributions are in very
good agreement with the exact result. Small differences appear at
times (3) and (4).

5. Two-particle observables

More stringent benchmarks for the accuracy of the TD-
2RDM method are two-particle observables. Unlike one-
particle observables such as the dipole moment, calculation
of these represents a major challenge as, in general, unknown
or poorly known extraction functionals for mean-field descrip-
tions have to be invoked to determine two-particle expectation
values from the time-evolved density ρ(z,t).

As an example we consider the two-particle interaction
energy [Eq. (82)]. The present calculation for LiH [Figs. 9(a)
and 9(b)] shows that the self-consistent TD-2RDM with
DC

123 yields excellent agreement with the exact result and
thus accounts for almost 100% of the interaction energy
unlike TDDFT or the TDHF method. The time evolution
of the interaction energy of LiH for high laser intensity
I = 8 × 1014 W/cm2 shows clear signatures of ionization

[Fig. 9(b)]. The regions with steep reductions in Eint(t)
correspond to time intervals where the electron emission from
the molecule preferably occurs. This leads to decrease of
electron density and of interaction energy. At the plateaus
the field reverses its sign and the electron density stays
nearly constant before ionization occurs into the opposite
direction. The small increase in interaction energy around
τ ≈ 1.5 indicates that the ionized electron is rescattered at
the molecule.

The spatiotemporal variation of the ionization process
becomes directly visible in the pair density ρ(z1,z2,t). The
snapshots (Fig. 11) at different times (marked in Fig. 4) display
the pair density initially weakly perturbed (1), near the field
maximum (2), at the time of rescattering (3), and near the con-
clusion of the pulse (4). Overall, the agreement between the
exact pair density and the one calculated by the TD-2RDM
is excellent and differences are hardly visible. Slightly larger
deviations highlighted in the difference plot (right column of
Fig. 11) appear after the rescattering of electrons near τ ≈ 1.5
close to time (3). At this time the electron-electron scattering
rate is slightly underestimated since the approximation of at
most two simultaneously interacting particles underlying the
TD-2RDM description is less accurate. The approximated pair
distribution is again in almost perfect agreement with the exact
MCTDHF calculation after τ ≈ 1.5. The fact that ionization
happens almost exclusively along the coordinate axes with
z1 ≈ 0 or z2 ≈ 0 shows that single ionization is the dominant
contribution and double ionization which would show up along
the diagonals |z1| = |z2| is comparatively weak at this field
strength.

VI. CONCLUSIONS AND OUTLOOK

We have presented a promising time-dependent many-body
theory with polynomial scaling in the particle number. The
theory is based on the propagation of the time-dependent two-
particle reduced density matrix (TD-2RDM) without invoking
the N -particle wave function. One key ingredient is the
reconstruction of the 3-RDM via the 2-RDM, a prerequisite for
closing the equation of motion. We have presented a re-
construction functional for the three-particle reduced density
matrix (3-RDM) which guarantees conservation of norm,
energy, and spin during time propagation. In the reconstruction
functional we have included those parts of the three-particle
cumulant that can be reconstructed from the 2-RDM. For
achieving stable propagation, a second key ingredient is
crucial: due to the nonlinearity of the equation of motion, small
errors rapidly (up to exponentially) magnify destroying the N -
representability. We have therefore devised a dynamical purifi-
cation protocol that iteratively restores N -representability after
each time step by enforcing the positivity of the 2-RDM and the
two-hole reduced density matrix (2-HRDM). As a benchmark
calculation we have applied the TD-2RDM method to the
dynamics of electrons in the one-dimensional LiH molecule
in strong laser fields and have compared the results to that
of the time-dependent Hartree-Fock (TDHF) method, the full
multiconfigurational time-dependent Hartree-Fock method
(MCTDHF), and time-dependent density functional theory
(TDDFT). We observe that the TD-2RDM method shows
very good agreement with the MCTDHF results. The latter
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have been carefully checked for convergence and can serve
as representative of the numerically exact four-electron wave
function of this problem. As test observables we have used the
dipole moment as a bona fide one-particle observable of great
importance for the (non)linear response to strong laser fields,
and the electron-electron interaction energy and pair density as
generic two-particle observables. The 2-RDM method features
the decisive advantage over effective one-particle descriptions
such as TDDFT that two-particle observables are directly
accessible without invoking any read-out functionals.

We anticipate that the present TD-2RDM theory should
provide a tool to accurately describe a wide variety of many-
body systems as long as the dynamics is given by a sequence of
two-particle interactions. Genuine three-particle correlations
are neglected in our theory. Applications to other systems and
larger numbers of degrees of freedom are envisioned.
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APPENDIX A: THE UNITARY DECOMPOSITION
OF HERMITIAN THREE-PARTICLE MATRICES

WITH ARBITRARY SYMMETRY

The unitary decomposition of p-particle matrices [62–65] is
the generalization of the unitary decomposition of two-particle
matrices which has been developed for Hermitian antisymmet-
ric two-particle matrices2 (for a review see, e.g., [37]). Briefly,
any Hermitian antisymmetric two-particle matrix M12 can be
decomposed into

M12 = M12;⊥ + M12;K, (A1)

where M12;K is the contraction-free component lying in the
kernel of the contraction operator

Tr2(M12;K) = 0, (A2)

and

M12;⊥ = 4

r − 2
M1 ∧ I − 4Tr1(M1)

(r − 1)(r − 2)
I ∧ I, (A3)

is an element of the orthogonal complement with M1 =
Tr2M12,I is the identity, and r is the number of orbitals.
The component M12;⊥ is orthogonal to the contraction-free

2As a side remark we note that the unitary decomposition of two-
particle matrices is equivalent to the Ricci decomposition of general
relativity which is used to define the trace-free part of the Riemann
curvature tensor known as the Weyl tensor [66].

component M12;K with respect to the Frobenius inner product
for matrices [67],

Tr12(M12;⊥M12;K) = 0. (A4)

Similar to Eq. (A3), the unitary decomposition for Hermitian
symmetric two-particle matrices reads [68]

M12;⊥ = 4

r + 2
M1 � I − 4Tr1(M1)

(r + 1)(r + 2)
I � I, (A5)

where the symmetric product � is defined in analogy to the
antisymmetric wedge product ∧ [Eq. (57)]. Note that the
orthogonal component M12;⊥ defined in Eqs. (A3) and (A5)
depends only on the contraction of the two-particle matrix
M1 = Tr2M12. For the unitary decomposition of Hermitian
two-particle matrices with arbitrary symmetry [69] the or-
thogonal component M12;⊥ is uniquely determined from all
diagonal and off-diagonal contractions of the two-particle
matrix M12.

We extend now this unitary decomposition to Hermitian
three-particle matrices M123 with arbitrary symmetry,

M123 = M123;⊥ + M123;K. (A6)

In this decomposition M123;K is the contraction-free compo-
nent in the kernel of the contraction operator

L3(M123;K) = 0, (A7)

where L3 denotes all diagonal and off-diagonal contractions.
As we show below the orthogonal component M123;⊥ can be
written as a functional of the nine onefold contractions

1M
i1i2
j1j2

=
∑

k

M
i1i2k
j1j2k

, 2M
i1i2
j1j2

=
∑

k

M
i1i2k
j1kj2

,

3M
i1i2
j1j2

=
∑

k

M
i1i2k
kj1j2

, 4M
i1i2
j1j2

=
∑

k

M
i1ki2
j1j2k

,

5M
i1i2
j1j2

=
∑

k

M
i1ki2
j1kj2

, 6M
i1i2
j1j2

=
∑

k

M
i1ki2
kj1j2

, (A8)

7M
i1i2
j1j2

=
∑

k

M
ki1i2
j1j2k

, 8M
i1i2
j1j2

=
∑

k

M
ki1i2
j1kj2

,

9M
i1i2
j1j2

=
∑

k

M
ki1i2
kj1j2

,

the 18 twofold contractions
1Mi

j =
∑
k1k2

M
ik1k2
jk1k2

, 2Mi
j =

∑
k1k2

M
ik1k2
k1jk2

,

3Mi
j =

∑
k1k2

M
ik1k2
k1k2j

, 4Mi
j =

∑
k1k2

M
ik1k2
jk2k1

,

5Mi
j =

∑
k1k2

M
ik1k2
k2jk1

, 6Mi
j =

∑
k1k2

M
ik1k2
k2k1j

,

7Mi
j =

∑
k1k2

M
k1ik2
jk1k2

, 8Mi
j =

∑
k1k2

M
k1ik2
k1jk2

,

9Mi
j =

∑
k1k2

M
k1ik2
k1k2j

, 10Mi
j =

∑
k1k2

M
k1ik2
jk2k1

,

11Mi
j =

∑
k1k2

M
k1ik2
k2jk1

, 12Mi
j =

∑
k1k2

M
k1ik2
k2k1j

,
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13Mi
j =

∑
k1k2

M
k1k2i
jk1k2

, 14Mi
j =

∑
k1k2

M
k1k2i
k1jk2

,

15Mi
j =

∑
k1k2

M
k1k2i
k1k2j

, 16Mi
j =

∑
k1k2

M
k1k2i
jk2k1

,

17Mi
j =

∑
k1k2

M
k1k2i
k2jk1

, 18Mi
j =

∑
k1k2

M
k1k2i
k2k1j

, (A9)

and the six threefold contractions

1M =
∑
k1k2k3

M
k1k2k3
k1k2k3

, 2M =
∑
k1k2k3

M
k1k2k3
k1k3k2

,

3M =
∑
k1k2k3

M
k1k2k3
k2k1k3

, 4M =
∑
k1k2k3

M
k1k2k3
k2k3k1

, (A10)

5M =
∑
k1k2k3

M
k1k2k3
k3k1k2

, 6M =
∑
k1k2k3

M
k1k2k3
k3k2k1

.

Generalizing the linear expansion for two-particle matrices
[69] we expand the orthogonal component of the three-particle
matrix in terms of these contractions

[M⊥]i1i2i3
j1j2j3

=
6∑

k=1

∑
τ∈S3

ak
τ δ

i1
jτ (1)

δ
i2
jτ (2)

δ
i3
jτ (3)

kM

+
18∑

k=1

∑
σ,τ ∈ S3

σ (1) < σ (2)

bk
τ,σ δ

iσ (1)

jτ (1)
δ

iσ (2)

jτ (2)

kM
iσ (3)

jτ (3)

+
9∑

k=1

∑
σ,τ∈S3

ck
τ,σ δ

iσ (1)

jτ (1)

kM
iσ (2)iσ (3)

jτ (2)jτ (3)
, (A11)

where S3 denotes the permutation group of three elements.
The restriction σ (1) < σ (2) in the second term is necessary
since the Kronecker deltas (δ) can be commuted without
creating a new coefficient. In this expansion there are 6 × 3!
coefficients ak

τ ,18 × 3! × 3!/2 coefficients bk
τ,σ and 9 × 3! ×

3! coefficients ck
τ,σ for which we will use the shorthand

notation �a, �b, and �c. To determine the coefficients we insert the
expansion [Eq. (A11)] into Eqs. (A8). Note that Eqs. (A9) and
(A10) do not give an additional set of conditions since they
are implied by Eqs. (A8). In general the result of a onefold
contraction of the expansion Eq. (A11) has the following form
(n ∈ {1 . . . 9}):

nM
i1i2
j1j2

=
6∑

k=1

∑
μ,ν ∈ S2

μ(1) < μ(2)

f n,k
μ,ν
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δ
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jν(1)
δ
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jν(2)

kM

+
18∑
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μ,ν(�b,�c) δ
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kM
iμ(2)
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+
9∑
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∑
μ,ν∈S2
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μ,ν(�c) kM

iμ(1)iμ(2)

jν(1)jν(2)
, (A12)

where f n,k
μ,ν (�a,�b), hn,k

μ,ν(�b,�c), and wn,k
μ,ν(�c) are linear functions of

the coefficients, and μ,ν are permutations in the permutation
group S2. In order for Eq. (A12) to be an identity all terms on
the right-hand side containing either kM or kMi

j must vanish

and only the term containing nM
i1i2
j1j2

appearing on the left-hand
side must remain. Consequently,

f n,k
μ,ν (�a,�b) = 0, (A13)

hn,k
μ,ν(�b,�c) = 0, (A14)

and

wn,k
μ,ν(�c) = 0, for μ,ν 
= id,

w
n,k
id,id(�c) = δk

n, (A15)

where id is the identity permutation. The 9 × 3! × 3! coef-
ficients �c are uniquely determined by the 9 × 9 × 2! × 2!
conditions given by Eq. (A15). Once the coefficients �c are
determined the 18 × 3! × 3!/2 coefficients �b can be calculated
from the 9 × 18 × 2! × 2! conditions of Eq. (A14) and
similarly the 6 × 3! coefficients �a can be calculated from the
9 × 6 × 2! × 2!/2 conditions contained in Eq. (A13). Note
that for the coefficients �a, �b there are more equations than
variables so it is not a priori guaranteed that a solution
exists. However, it turns out that the set of coupled equations
(A13), (A14), and (A15) has a unique solution for all
orbital dimensions r > 4. This shows that M123;⊥ is a unique
functional of the onefold contractions. The solution for the
coefficients depends solely on the number of orbitals r since
the only parameter that enters the equations is the trace of
the Kronecker δ given by the orbital dimension

∑
i δ

i
i = r .

We solve the equations for the coefficients using symbolic
computation performed with Mathematica. We find that all
coefficients can be written in the following form:

X = A1

r − 4
+ A2

r + 4
+ B1

r − 3
+ B2

r + 3

+ C1

r − 2
+ C2

r + 2
+ D1

r − 1
+ D2

r + 1
+ E1

r
+ E2

r2

(A16)

with rational coefficients A1, . . . ,E2. Obviously the coeffi-
cients are well defined only for r > 4. A similar result holds
also for the unitary decomposition of the 2-RDM for which
r > 2 has to be fulfilled.

Contrary to the case of arbitrary symmetry our application
to the propagation of the 2-RDM requires the unitary decom-
position of the (↑↑↓) block of the three-particle cumulant
�

↑↑↓
123 which is antisymmetric in the first two indices. This

significantly reduces the numerical effort to calculate the
orthogonal part since in this case there are only four onefold
contractions, five twofold contractions, and two threefold con-
tractions, and all other contractions can be expressed by these
basic contractions. To explicitly evaluate �

↑↑↓
123;⊥ we calculate

the basic contractions using �
↑↑↓
123 = D

↑↑↓
123 − D

V↑↑↓
123 and insert

them into Eq. (A11) with the determined coefficients �a,�b,�c.

APPENDIX B: TDDFT CALCULATIONS
IN ONE DIMENSION

While in three dimensions TDDFT is a well established
theory to describe the dynamics of atomic, molecular,
and solid-state systems with a large number of electrons,

023412-15
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one-dimensional TDDFT has been studied only very recently
[70,71]. The principal difference between one and three
dimensions is that the Coulomb interaction ∼1/|z − z′| leads
to diverging interaction energies in one dimension. This can
be avoided by introducing the softened Coulomb interaction
[Eq. (77)]. The equations of motion in one dimension of the
time-dependent Kohn-Sham orbitals are [15]

i∂tφ
KS
i (z,t) =

(
−1

2

∂2

∂z2
+ Veff[ρ(z,t)]

)
φKS

i (z,t), (B1)

with

Veff[ρ(z,t)] = VH[ρ(z,t)] + Vx[ρ(z,t)] + Vc[ρ(z,t)], (B2)

where VH[ρ] denotes the Hartree potential

VH[ρ(z,t)] =
∫

ρ(z′,t)√
(z − z′)2 + d

dz′, (B3)

Vx[ρ(z,t)] and Vc[ρ(z,t)] denote the exchange and correlation
potential, respectively. Within the local-density approximation
(LDA) the exchange and correlation potential are calculated
from the uniform electron gas with the 1-RDM denoted by
Dunif(z; z′). The exchange potential Vx[ρ] for the 1D electron
gas with softened Coulomb interaction can be evaluated
analytically yielding a Meijer G-function [71]

Vx[ρ] = −1

4

δ

δρ

∫ |Dunif(z; z′)|2√
(z − z′)2 + d

dzdz′

= −ρ

4
G

2,1
1,3

(
1
2

0,0, − 1
2

∣∣∣∣ dk2
F

)
, (B4)

where d is the Coulomb softening parameter and kF = πρ

2 .
The correlation potential Vc[ρ] within LDA can be derived by
quantum Monte Carlo calculations for the uniform 1D electron
gas with soft Coulomb potential as discussed in [70].
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