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Nonlinear dynamics of ionization stabilization of atoms in intense laser fields
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We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear
dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease
of the ionization probability as intensity is increased. We investigate the role of each part of the laser pulse
(ramp-up, plateau, ramp-down) in this process. We emphasize the role of the choice for the ionization criterion,
energy versus distance criterion.
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I. INTRODUCTION

“Stabilization” is the term used for the counterintuitive
behavior of atoms in which increasing the laser intensity does
not lead to increased ionization; on the contrary, it may lead to
decreased ionization in some regimes. Stabilization has been
the subject of so many publications that even a cursory review
is beyond the scope of our paper (for some early references,
see Refs. [1–8], or Refs. [9,10] for reviews).

The purpose of our paper is to provide insights into the
stabilization phenomenon gained by viewing it through the
unconventional point of view of nonlinear dynamics. The
basic mechanism for stabilization is classical in nature [11]
and quantum-classical correspondence is particularly close for
the one-dimensional smoothed potentials we have been using
here [12]. This is not to say that the use of classical mechanics
to examine stabilization is a novelty: A number of stimulating
studies were performed during the time frame mentioned
above (e.g., Ref. [6]). However, the intervening two decades
have seen the realization of lasers with intensities far beyond
what was expected at the time, and quite a few phenomena such
as recollisions [13–15] have been discovered, requiring the
inception of various theoretical models and techniques for un-
derstanding ionization (or the lack of it) in intense laser fields.

In the intervening decades laser pulses have become ultra-
short (down to about 100 attoseconds). The general idea is to go
down to the time scale of the electron to capture its dynamics.
Such ultrashort time scales were not part of stabilization
research at the time, which typically considered fairly long
pulses of several tens of laser cycles. Can any insights about
such a long-pulse phenomenon be relevant for understanding
the motion of the electron on its time scale? As we will show
below, no matter how long the pulse is, the fate of the electron,
and hence stabilization, is sealed quite early in the pulse, and
specifically during a few first few laser cycles. In that sense,
stabilization turns out to be a short-time-scale phenomenon.

In what follows we will be answering two questions: First,
what accounts for the lack of ionization in ultraintense laser
fields, and second, what causes ionization to decrease with
increasing intensity? It turns out that the answers to these ques-
tions, and the hidden short-time nature of the phenomenon,
are governed by the same underlying mechanism, namely the
periodic orbits of the atomic electron in the laser field and the
phase-space structures associated with these periodic orbits.

We will show that electron trajectories which can reach the
vicinity of the periodic orbit behave completely differently
from those trajectories that fail to do so, thereby accounting
for the observations connected with stabilization.

In the process of answering these questions we will also
address some highly practical aspects of stabilization, namely,

(1) How does one decide whether an atomic electron
has ionized in an intense laser field? More specifically,
are the so-called distance and energy criteria for ionization
interchangeable?

(2) What role do the ramp-up, plateau, and ramp-down of
the laser field play in stabilization?

In Sec. II we start by performing the numerical experiment
of Ref. [6] and assess the importance of the choice of the
ionization criterion. In Sec. III we provide an explanation for
the lack of complete ionization at high intensity and for the
decrease of the ionization probability as the laser intensity is
increased. This explanation is based on a periodic orbit analysis
of the electronic dynamics. We investigate the role of each part
of the laser pulse, namely the ramp-up, the plateau, and the
ramp-down, in the stabilization process.

II. IONIZATION STABILIZATION

We consider the following classical model for a one-
dimensional single active electron atom interacting with an
intense linearly polarized laser field in the dipole approxima-
tion:

H (x,p,t) = p2

2
− 1√

x2 + 1
− E0f (t)x sin ωt, (1)

where p is the momentum of the electron canonically
conjugate to the position x along the polarization axis, E0

is the amplitude of the electric field, f (t) is the pulse envelope
(schematically represented in Fig. 1), and ω is the frequency.
We have chosen a soft Coulomb potential [16,17] as the
interaction potential between the electron and its parent ion. In
Ref. [18], the impact of the choice of potential on stabilization
has been analyzed. In all the computations presented in this
article, the laser frequency is ω = 0.8 a.u. which corresponds
to a wavelength of 57 nm.

We begin with revisiting a numerical experiment performed
in Ref. [6] by computing the ionization probability versus the
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FIG. 1. (Color online) Schematic representation of the pulse
envelope f (t) (left axis, bold line) and electric field E(t) =
−E0f (t) sin ωt (right axis, thin line) used in Hamiltonian (1). Since
the plateau is much longer that the ramp-up and the ramp-down, it
has not been fully depicted.

amplitude of the electric field E0. For the envelope (see Fig. 1),
we select a smooth turn-on consisting of a linear ramp-up of
duration Tu = 6T , a plateau of Tp = 44T , where T = 2π/ω

is the period of the laser, and an abrupt ramp-down, i.e., of
duration Td = 0. In all the ionization probability computations
we perform in this article, we consider a large ensemble of
trajectories which are initially bounded, i.e., whose energy,
defined as the sum of the kinetic energy plus the soft Coulomb
potential, is negative, and uniformly distributed in phase space
(x,p) for |x| � 10. Typically for a given E0 the number
of initial conditions we consider is on the order of several
millions in order to have good statistics. As a function of the
amplitude E0, we measure the ionization probability where
ionization is determined using the energy criterion as in
Ref. [6]. In Fig. 2, the ionization probability is represented
as a function of the amplitude of the electric field E0

[bold gray (red) curve]. Contrary to Ref. [6] we observe
a roughly monotonic increase of the ionization probability
with E0 as it could be naively guessed (the more intense the
laser field is, the more ionization there is). Now, instead of
using the energy criterion as ionization criterion, we use a
distance criterion. This distance criterion appears to be more
subjective since it depends on an arbitrarily chosen threshold.
Here the chosen threshold is 50 a.u.; we have checked that the
results are not changed qualitatively by changing this threshold
significantly. The resulting ionization curve is depicted in
Fig. 2 [thin gray (red) curve]. Using this distance criterion
we are able to reproduce, at least qualitatively, the surprising
results obtained in Ref. [6], namely the lack of complete
ionization at very high intensity and the global decrease of
the ionization probability as the intensity of the laser field is
increased (see Fig. 2). Here we first notice the importance of
the ionization criterion to observe the ionization stabilization
phenomenon. We performed a third numerical experiment by
including a ramp-down with Td = 6T and by using the energy
criterion. Contrary to the case with an abrupt ramp-down
(Td = 0), the energy criterion leads to stabilization (see Fig. 2,
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FIG. 2. (Color online) Ionization probabilities as functions of E0

(in atomic units) obtained for Hamiltonian (1) with a ramp-up of
duration Tu = 6T , a plateau of duration Tp = 44T . The bold (red)
curve is without a ramp-down (Td = 0) and using the energy criterion
for ionization. The thin gray (red) curve is without a ramp-down
(Td = 0), using a distance criterion with a threshold of 50 a.u. The
black curve is with a ramp-down of duration Td = 6T and using the
energy criterion.

black curve). From these numerical simulations, it appears
that the energy criterion can only be used in the presence of
a ramp-down, whereas the distance criterion always displays
the stabilization phenomenon. In what follows, we only use
the distance criterion unless specified otherwise. Below we
provide an explanation for the differences resulting from the
two choices of ionization criterion. This is a direct result of
the mechanism by which an electron remains trapped near the
parent ion at a very high intensity, a mechanism we unravel
using nonlinear dynamics.

III. ANALYSIS OF STABILIZATION FROM THE
NONLINEAR DYNAMICS PERSPECTIVE

A. Role of the plateau

We first elucidate the role of the plateau by providing the
scenario for the lack of complete ionization at high intensity.
Since the amplitude of the electric field is large, we consider
first the strong-field approximation (SFA) which consists of
neglecting the soft Coulomb interaction between the electron
and the parent ion. In SFA, Hamiltonian (1) during the plateau
becomes

HSFA(x,p,t) = p2

2
− E0x sin(ωt + φ), (2)

where we have included a laser phase to take into account the
ramp-up; i.e., we consider that the plateau starts at t = 0. This
Hamiltonian is integrable and the trajectories can be explicitly
provided:

p(t) = p0 − E0

ω
[cos(ωt + φ) − cos φ],

x(t) = x0 +
(

p0 + E0

ω
cos φ

)
t − E0

ω2
[sin(ωt + φ) − sin φ] ,
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where x0 and p0 are the initial position and initial momentum
(at t = 0, i.e., at the beginning of the plateau). We notice a
linear drift with velocity vd = p0 + (E0/ω) cos φ. If this drift
velocity is nonzero, the electron will eventually move far away
from the parent ion, provided that the plateau is sufficiently
long. We notice a very special set of initial conditions for
which the drift velocity vanishes. This set in phase space is
composed of an infinite family of (parabolic) periodic orbits
with the same period as the laser field, related to each other by
translation along the x axis due to the continuous symmetry of
Hamiltonian (2). More specifically, these periodic orbits have
the equations

p(t) = −E0

ω
cos(ωt + φ), (3a)

x(t) = x1 − E0

ω2
sin(ωt + φ), (3b)

where x1 is an arbitrary position, the position of the center of
the periodic orbit. If the electron is on one of these orbits at
the beginning of the plateau, it will stay on it for an infinite
amount of time. These invariant structures are the keystone to
understand the lack of complete ionization at high intensity.

Even though this set of periodic orbits is of measure zero
and therefore it could be argued that it does not contribute
significantly to the ionization probability, the nonlinearity
introduced by the soft Coulomb interaction provides the
reasons for the importance of this set of periodic orbits in
the stabilization process, as we show next.

The question is, what happens to the rather simple SFA
picture of the dynamics when the Coulomb field is taken into
account? As the effect of the soft Coulomb potential increases,
e.g., by increasing an effective charge up to 1, most of the
periodic orbits (3) are broken, except a finite number of them.
Three periodic orbits are of particular interest and organize
the dynamics. All three periodic orbits have the same period,
the period of the laser field. One of them is symmetric with
respect to the x = 0 axis, centered at (x,p) = (0,0) and weakly
hyperbolic. This periodic orbit is denoted by O. The other two
periodic orbits of interest are elliptic and symmetric with each
other, centered approximately at (x,p) = (±E0/ω

2,0). These
orbits are denoted O±. The property of a periodic orbit to be
hyperbolic, parabolic, or elliptic refers to the linear stability
analysis (see Ref. [19] for more detail). In general, an elliptic
periodic orbit is stable and the motion around it is similar
to the motion around a stable equilibrium point of a simple
pendulum, whereas a hyperbolic orbit is (linearly) unstable, in
the sense that almost all small perturbation around it will drive
the motion away from it (along its unstable manifold). The
chaotic behavior of the system originates in the neighborhood
of hyperbolic periodic orbits.

Figure 3 displays the three periodic orbits of Hamilto-
nian (1) with f (t) = 1 and for E0 = 5. At the high values
of the intensity we consider in this paper, O is very close to
the periodic orbit given by Eqs. (3) for x1 = 0 [see Fig. 3
where it is difficult to distinguish the orbit (3) from the orbit
O]. In Fig. 4 we represent the maximum eigenvalue of the
monodromy matrix associated with O as a function of E0 (see
Ref. [19] for more details). We notice that for E0 small, O is
elliptic and, as E0 is increased, undergoes a bifurcation around
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FIG. 3. (Color online) Projection of the three periodic orbits O
and O± of Hamiltonian (1) with f (t) = 1 and E0 = 5. The light
gray orbit is O+, the darker gray orbit is O−, and O is represented
in black. The gray (red) parts of the orbits are where the energy
(defined as the sum of the kinetic energy and soft Coulomb potential)
is negative. The thin line corresponds to the periodic orbit in the SFA
approximation given by Eqs. (3), almost indistinguishable from O.
The plotted quantities are in atomic units.

E0 = 1.34. The orbit O turns hyperbolic and two asymmetric
and elliptic periodic orbits are created, these being O±. The
basic structure of the phase space is a horizontal-8 shape with
two symmetric elliptic islands with the orbits O± in their
centers and the orbit O at the crossing. A Poincaré section
of selected trajectories consisting of a stroboscopic plot of
period T is represented in Fig. 5 for E0 = 1.5, i.e., close to
the bifurcation. This picture persists at higher value of E0,
although complicated by the creation of a dense chaotic tangle
around these orbits. A Poincaré section of the region close to
the weakly periodic orbit is depicted in Fig. 6 for E0 = 5. The
dense chaotic region is clearly observed, extending to high
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FIG. 4. (Color online) Largest eigenvalue of the periodic orbit O
(represented in Fig. 3) of Hamiltonian (1) as a function of E0. The
plotted quantities are in atomic units.
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FIG. 5. (Color online) Poincaré section (stroboscopic plot with
period T ) of trajectories of Hamiltonian (1) for E0 = 1.5. The
positions of the periodic orbits are indicated by a cross for O and
by circles for the elliptic periodic orbits O±. The plotted quantities
are in atomic units.

values of the position of the electron. Trajectories starting
in the white region ionize very quickly, contrary to the
trajectories started in the blue region which can be potentially
trapped for an arbitrary long time. The two symmetric elliptic
islands are present at this very high value of the intensity
(see Fig. 7), demonstrating the stabilization effect caused
by the absence of drift velocity in the SFA approximation.
In this chaotic region, there are many other periodic orbits
and some of them might even be elliptic (depending on E0)
forming islands of stability (trapping trajectories at all times).
It should be noted that the two periodic orbits O± remain
elliptic for all values of E0, becoming closer and closer to
parabolic as E0 is increased. In Fig. 8, we represent Greene’s
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FIG. 6. (Color online) Poincaré section of trajectories of Hamil-
tonian (1) for E0 = 5 in the region close to p0 = −E0/ω (indicated
by a continuous horizontal line). The position of the periodic orbit
O is indicated by a cross. The box represents the inset where the
Poincaré section is depicted in Fig. 7. The plotted quantities are in
atomic units.
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FIG. 7. (Color online) Inset of Fig. 6. The plotted quantities are
in atomic units.

residue [20,21] of O± as a function of E0. We recall that that
if the residue is between 0 and 1, the periodic orbit is elliptic.
This property is very interesting since the excited states around
O± (which extend up to the quiver radius; see Fig. 3) are stable
states.

In a nutshell, the effect of the soft Coulomb interaction is
to create a chaotic layer which strongly affects the transport
properties of the system, trapping trajectories for a sufficiently
long time compared to the duration of the plateau. These
trajectories will not ionize, in the sense that they will not
significantly depart from a region close to the core, contrary
to the trajectories experiencing a drift velocity. This chaotic
region explains the lack of complete ionization, even at
very high values of the laser intensity. Now, concerning the
results obtained using the energy criterion, we notice that by
looking at the energy of the nonionizing trajectories (where
the nonionizing feature has been determined using a distance
criterion), given the values of the momentum which extend
up to E0/ω, most of these trajectories have positive energy.
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FIG. 8. (Color online) Greene’s residue R of O+ (or equivalently
O−) as a function of E0. The plotted quantities are in atomic units.
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FIG. 9. (Color online) Ionization probabilities as functions of E0

(in atomic units) for different durations of the plateau. From black to
lighter gray (red), the total duration of the pulse is 50, 100, and 200
laser cycles, with a 6 laser cycle ramp-up and no ramp-down.

For instance, we have displayed in red in Fig. 3 the points
of the orbits O and O± which have negative energy (and
would be considered as nonionizing using an energy criterion).
Therefore, according to an energy criterion, most of the trapped
trajectories are considered as ionizing even though they are
of a very different nature than the ones experiencing a drift
velocity.

Globally the effect of the plateau is to discriminate between
the trajectories with a drift velocity with the ones trapped in
the chaotic tangle. The longer the pulse is, the more trapped
trajectories leave the chaotic tangle, and eventually these will
be considered as ionized (even using a distance criterion). In
Fig. 9, we represent the ionization probabilities as functions of
E0 for different values of the plateau duration. It confirms that
the ionization probability increases with the plateau duration.
However it should be noticed that due to the presence of elliptic
islands, the ionization will never be complete for most values
of the laser intensity, since the trajectories in these regions
are trapped for all times, preventing the ionization probability
from reaching 1 regardless of the length of the plateau. It
should be noticed that the finer structures of the ionization
curve, like the oscillations, are qualitatively similar (located
at approximately the same values of E0), regardless of the
duration of the plateau.

Next we look at the size of the chaotic/trapping region
as a function of E0. In order to do this, we launch a high
number of trajectories in a window around the periodic orbit
in the Poincaré section. The window we consider is (x,p) ∈
[−20,20] × [−E0/ω − 3/2,−E0/ω + 3/2], where we recall
that the periodic orbitO is locate approximately at (0,−E0/ω).
We look at trajectories which have left this window after 20
and 50 laser cycles. In Fig. 10, we represent the probability
of a trajectory to leave the window of interest. We compare
this probability with the ionization probability of Fig. 2 with
a ramp-up of duration Tu = 6T and no ramp-down. The
probability to leave the window exhibits the main features
of the ionization probability. First it is decreasing (meaning
that the size of the chaotic region increases with E0), therefore
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FIG. 10. (Color online) Probability of a trajectory of Hamilto-
nian (1) with no ramp-up and no ramp-down to leave the window
(x,p) ∈ [−20,20] × [−E0/ω − 3/2, −E0/ω + 3/2] after 20 [light
gray (red)] and 50 (dark gray) laser cycles as a function of E0 (in
atomic units). For comparison, we depict the ionization curve of Fig. 2
obtained with a ramp-up of duration Tu = 6T and no ramp-down
(black curve).

displaying the stabilization process. In addition, we notice that
this curve displays the same finer structures (the oscillations
as function of E0). Therefore the structure of the ionization
curves of Fig. 2 is a nonlinear effect caused by the presence
of both the soft Coulomb potential and the laser field. As
expected the ionization probability is smaller due to the fact
that the average intensity felt by the electron is smaller when
there is a ramp-up. The ramp-up has also another impact on
the ionization probability and this will be analyzed below. The
global decrease of the ionization curves is due to the fact that,
as E0 is increased, the system becomes closer to integrable
as shown in Figs. 4 and 8 where the periodic orbits becomes
closer to parabolic.

It should be noted that the same periodic orbits O and
O± which control the stabilization process also control the
recollision process by allowing an electron far away from
the parent ion to come back to it and recollide. These
periodic orbits were coined recolliding periodic orbits (RPO)
in Refs. [22,23].

B. Role of the ramp-up

The role of the ramp-up is important in setting up the
right conditions for some of the trajectories to be put inside
the chaotic/trapping region at the beginning of the plateau
(see Fig. 11). In order to illustrate this argument, we first
consider the SFA approximation, by considering the following
Hamiltonian:

Hu(x,p,t) = p2

2
− E0x

t

Tu
sin(ωt + φ),

where here the phase φ is used to take into account the transient
time when the SFA approximation is not valid. The momentum
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FIG. 11. (Color online) Ionization probabilities as functions of
E0 (in atomic units) for different durations of the ramp-up. From
black to lighter gray (red), the duration of the ramp-up is T/10, T/2,
T , and 6T with a 44 laser cycle plateau and no ramp-down.

and the position at the end of the ramp-up are

pu = p0 − E0

ω

[
cos(ωTu + φ) − sin(ωTu + φ) − sin φ

ωTu

]
,

xu = x0 − E0

ω2
[sin(ωTu + φ) + sin φ

+ 2
cos(ωTu + φ) − cos φ

ωTu

]
.

If the duration of the ramp-down is an integer multiple of the
laser period then it reduces to

pu = p0 − E0

ω
cos φ, xu = x0 − 2

E0

ω2
sin φ,

which is a point on a periodic orbit given by Eqs. (3) with
x1 = x0 − (E0/ω

2) sin φ, provided that p0 = 0. If the initial
distribution at the beginning of the ramp-up is close to zero
then the role of the ramp-up (at least in the SFA approximation)
is to promote these initial conditions to a region where periodic
orbits organize the dynamics and prevent ionization.

Taking into account the soft Coulomb potential, the role
of the ramp-up is to promote some of the trajectories to
the chaotic/trapping region organized by the three periodic
orbits O and O±. In order to demonstrate this effect of the
ramp-up, we depict the position of an ensemble of electrons in
phase space at different stages in the ramp-up. Initially these
trajectories are bounded, in the sense that their energy (sum
of kinetic energy and soft Coulomb potential) is negative. In
Fig. 12, four stages are represented: at t = 0, t = 2T , t = 4T ,
and t = 6T . We notice that initially none of the trajectories
are on the periodic orbit. However, as early as half of the
ramp-up, some of the trajectories are already on the periodic
orbit or nearby. If the ramp-up is not sufficient to promote the
trajectories to the chaotic/trapping region, for instance, if it is
too short (shorter than half a laser cycle for instance), then all
the trajectories will experience a significant drift velocity and
will be all ionized (see Fig. 11). Therefore the ramp-up does

FIG. 12. (Color online) Positions of an ensemble of trajectories
of Hamiltonian (1) for E0 = 5 a.u. at different stages of the ramp-up,
t = 0 (upper left panel), t = 2T (upper right panel), t = 4T (lower
left panel), and at the end of the ramp-up t = 6T (lower right panel).
The periodic orbit O is depicted in gray (red online). The plotted
quantities are in atomic units.

not play a role in the stabilization mechanism but allows part
of the initial conditions to undergo this stabilization.

C. Role of the ramp-down

Using the energy criterion, the presence of the ramp-down
seems essential for the stabilization. However we have shown
above that the mechanism for stabilization has nothing to do
with the ramp-down. In this section we analyze the effect
of the ramp-down, showing that it only plays a minor role
in the dynamics. However it is essential if one wants to use
the energy criterion for ionization. In order to illustrate this,
we consider the effect of the ramp-down on the prototypical
trapped trajectory in the SFA approximation, namely the
periodic orbit given by Eqs. (3). We shift the origin of time,
so that the ramp-down starts at t = 0 (and we assume that
the ramp-up and plateau are integer multiples of the laser
period). The duration of the ramp-down is Td. We consider the
following Hamiltonian in the SFA approximation during the
linear ramp-down:

Hd(x,p,t) = p2

2
− E0x

Td − t

Td
sin(ωt + φ).

At t = 0 (i.e., at the end of the plateau), we assume that the
trajectory is on the periodic orbit; i.e., the initial condition is
x0 = −(E0/ω

2) sin φ and p0 = −(E0/ω) cos φ at the begin-
ning of the ramp-down. At the end of the ramp-down, the final
momentum is

pf = E0

ω

sin φ − sin(ωTd + φ)

ωTd
.

If the duration of the ramp-up is an integer multiple of T ,
then the final momentum vanishes. Regardless of the distance
of the electron to the parent ion, its energy is then negative.
Therefore the electron located on the SFA periodic orbit at
the end of the plateau is considered ionized at the end of the
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FIG. 13. (Color online) Ionization probabilities as functions of
E0 (in atomic units) obtained from Hamiltonian (1) for different
durations of the ramp-down. From black to lighter gray (red), the
duration of the ramp-down is Td = T/5 (black curve), Td = T [dark
gray (maroon)], and Td = 3T [light gray (red)], with a 6 laser cycle
ramp-up and a 44 laser cycle plateau. The energy criterion is used to
determine ionization.

ramp-down according to the energy criterion. However if the
duration of the ramp-down is not an integer multiple of T , the
final momentum can be large (up to E0/ω) and consequently
can be considered as ionizing according to the energy criterion.
It should be noted that using the distance criterion, the effect of
the ramp-down can be neglected; all the ionization probability
curves are nearly identical.

In Fig. 13 we represent the ionization probabilities obtained
with an energy criterion for different durations of the ramp-
down, one of them being not an integer multiple of the laser
period. Provided that the duration of the ramp-up is an integer

multiple of the laser period, the two curves at Td = T and
Td = 3T demonstrate little effect of the ramp-down, even using
the energy criterion as ionizing criterion.

IV. CONCLUSION

We have shown that the main mechanism for stabilization
of atoms in a strong laser field is driven by a set of periodic
orbits. The counterintuitive nature of this phenomenon can
be explained by the fact that the orbits mostly lie outside the
bounded region. We have elucidated the role of each phase in
the laser pulse in the stabilization process. During the turn-on
of the laser field, when the Coulomb and laser fields are of
comparable strength, an electron is pushed towards a dense
chaotic tangle in the neighborhood of these periodic orbits,
trapping some trajectories for an arbitrarily long time (even for
infinite time depending on the initial conditions). The role of
the plateau is to seal the fate of the electron by discriminating
the ones that are nonionizing from the ionizing trajectories.
We have shown that the role of the ramp-down is rather minor,
allowing the use of the energy criterion, whereas in the absence
a ramp-down a distance criterion has to be used to detect the
stabilization phenomenon.
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