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Magic radio-frequency dressing for trapped atomic microwave clocks
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It has been proposed to use magnetically trapped atomic ensembles to enhance the interrogation time in
microwave clocks. To mitigate the perturbing effects of the magnetic trap, near-magic-field configurations are
employed, where the involved clock transition becomes independent of the atom’s potential energy to first order.
Still, higher order effects are a dominating source for dephasing, limiting the performance of this approach.
Here we propose a simple method to cancel the energy dependence to both first and second order, using weak
radio-frequency dressing. We give values for dressing frequencies, amplitudes, and trapping fields for 87Rb atoms
and investigate quantitatively the robustness of these second-order-magic conditions to variations of the system
parameters. We conclude that radio-frequency dressing can suppress field-induced dephasing by at least one
order of magnitude for typical experimental parameters.
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I. INTRODUCTION

The performance of atomic clocks is closely linked to the
interrogation time of the quantum oscillator. In microwave
clocks, switching from thermal beams to atomic fountains
has increased the interrogation time by about two orders of
magnitude, significantly improving the short-term stability.
For example, the PTB CS2 primary beam standard with an
interrogation time of about 8 ms provides a short-term stability
of 3.6 × 10−12√τ/1 s [1]. At the same time, the Cs fountain
standard with an interrogation time of 0.8 s demonstrated a
short-term stability of 4 × 10−14√τ/1 s [2], almost 2 orders
of magnitude better.

In this spirit, it has been proposed to further enhance the
interrogation time by working with trapped thermal atomic
ensembles [3]. Especially magnetically trapped alkali atoms
on atom chips promise to combine long interrogation times
with fast and robust preparation and small system footprint
and power consumption [4].

In general, atomic microwave clocks rely on a measurement
of the phase evolution of a superposition of two atomic clock
states |1〉 and |2〉, usually implemented in the two hyperfine
ground states of alkali atoms such as cesium or rubidium.
Inhomogeneous external (trapping) fields lead to spatially
varying energy shifts for the states |1〉 and |2〉 and hence
to a position-dependent phase evolution. In a thermal atomic
ensemble, this leads to dephasing, degrading the clock signal
over time. This effect could be mitigated in magic traps, where
the energy shift for both states |1〉 and |2〉 is exactly identical,
independent of the atom’s position in the trap.

So far, it is only possible to build near-magic traps, where
the nonequivalence of the trapping potential experienced by
states |1〉 and |2〉 vanishes in the first order (in potential
energy), but remains in higher orders, introducing a residual
inhomogeneity into the system. An example is a static
(dc) magnetic trap, where the atoms are confined in space,
experiencing a local magnetic field �B with a magnitude B

close to a so-called “magic” value Bmagic. At this value, the
relative energy shift �E between the states |2〉 and |1〉 features
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a minimum; however its second derivative remains nonzero.
At finite temperature, atoms sample a distribution of fields B

different from Bmagic, introducing dephasing.
In atomic systems where the atomic interactions are

repulsive, such as in 87Rb, the trap-induced energy shift can
be partially compensated by the collisional shift, proportional
to the atomic density [3]. This method has been used in an
atom chip clock based on trapped 87Rb atoms, where coherent
interrogation over more than 2 s could be demonstrated [5].

Here we propose to add the technique of magnetic radio-
frequency (rf) dressing to selectively modify the potential
landscape experienced by the two clock states in a static
magnetic trap. Radio-frequency dressing is a well-established
method for the manipulation of ultracold atomic gases and
Bose-Einstein condensates [6,7], commonly used for the
generation of complex trapping geometries such a double
wells [8,9], two-dimensional systems [10], or ring topolo-
gies [11]. In Ref. [12] it has been pointed out that rf dressing
can be used to modify the curvature of magnetic traps for
87Rb in a (hyperfine) state-dependent way. In Ref. [13] it was
proposed to use rf dressing for the cancellation of first-order
magnetic variations of the clock shift in optical clocks based
on fermionic alkali-earth-like atoms. Microwave dressing was
used to reduce Rydberg atom susceptibility to varying dc
electric field in Ref. [14].

In the present paper, we demonstrate that weak rf dressing
can be used to elimination both the first and second derivative
of the relative energy shift between the states |1〉 and |2〉 with
respect to the magnitude B0 of the dc magnetic field in the trap.
We refer to this as second-order-magic conditions in contrast
to first-order-magic conditions, attainable in static magnetic
traps, where only the first derivative of the relative energy shift
vanishes. We identify and characterize these conditions for
87Rb atoms trapped in a rf-dressed Ioffe-Pritchard-type trap,
compare conventional dc first-order-magic Ioffe-Pritchard
traps with second-order-magic traps, and characterize the
robustness of this second-order-magic potential to deviations
of magnitude and polarization of the involved fields. Note that
also microwave dressing directly coupling atomic hyperfine
levels can be used for suppression of both first- and second-
order differential Zeeman shift in 87Rb, as demonstrated
recently in Ref. [15].

1050-2947/2015/91(2)/023404(9) 023404-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.023404


G. A. KAZAKOV AND T. SCHUMM PHYSICAL REVIEW A 91, 023404 (2015)

FIG. 1. (Color online) (a) Schematic of a chip-based Ioffe-Pritchard trap with rf dressing. (b) Spatial dependence of the adiabatic potential
for different Zeeman states of the F = 1 and F = 2 ground state manifolds of 87Rb in the absence of rf dressing. The clock states |1〉 and |2〉
are indicated in bold. (c) Trapping potential Utrap = Vad(ρ) − Vad(0) and relative energy shift �E as a function of position for zero rf field and
3 different values of Ioffe field: BI = Bmagic (solid, black), BI = Bmagic + 0.03 G (dashed, red), BI = Bmagic − 0.03 G (dotted, blue).

II. PHYSICAL MODEL

A. Geometry and Hamiltonian

We consider the generic case of a magnetic Ioffe-Pritchard
trap for 87Rb atoms. Radio-frequency dressing can be conve-
niently implemented in atom chip setups using strong magnetic
near fields; see Fig. 1(a). However, rf field amplitudes required
for second-order-magic conditions are weak (order 10–100
mG) and can equally well be created by external coils [10].
For the sake of simplicity, we neglect gravity effects and a
possible spatial inhomogeneity of the rf field. The static (dc)
magnetic field �B0 can be expressed as

�B0 = �ezBI + G(�exx − �eyy). (1)

Near the trap axis z, the absolute value B0 of this dc field is
proportional to the square x2 + y2 = ρ2 of the displacement
from the axis, B0(ρ) ≈ BI + G2ρ2/(2BI ).

The dressing radio-frequency field �Brf is equal to

�Brf = Brf

2
[(�ex cos δ − i�ey sin δ)eiωt + c.c.], (2)

where δ is a parameter characterizing the polarization of the
rf field (δ = 0, ± π/4 corresponds to linear and σ± circular
polarization, respectively). Although the parametrization (2)
does not describe rf fields whose polarization ellipse axes are
turned in the (x,y) plane, it can describe any configuration of
the local field up to rotations.

In the limit of a slowly moving atom, where the Larmor
precession ωL = μBB/� of the magnetic moment is much
faster than the change of magnetic field in the rest frame of
the atom, an adiabatic approximation becomes applicable: the
atomic polarization follows the magnetic field adiabatically
and the atom moves in a potential determined by the local
characteristics of the magnetic fields only (see for example [16]
and references therein). The Hamiltonian governing the atomic
dynamics is

Ĥ i = �ωhf s

2
�̂J · �̂I + μB(gJ

�̂J + gI
�̂I ) · [ �B0 + �Brf(t)]. (3)

Here �̂J and �̂I are the electronic shell and nuclear magnetic
moments, respectively (for the ground state of 87Rb, J = 1/2,
I = 3/2), gJ = 2.00233113 and gI = −0.0009951414 [17]
are the corresponding gyromagnetic ratios, μB is the Bohr
magneton, ωhf s is the hyperfine splitting frequency, and the
index i refers to “initial.” In the absence of the rf-dressing field,
Hamiltonian (3) can be diagonalized analytically, yielding
the well-known Breit-Rabi formula for the hyperfine energy
spectrum [17]:

EBR
|F̃=I±J,m〉 = gIμBmB0 − �ωhf s

2(2I + 1)

±�ωhf s

2

√
1 + 4mX

2I + 1
+ X2, (4)

where

X = (gJ − gI )μBB0

�ωhf s

. (5)

Eigenstates |F̃ ,m〉 may be characterized by the projection m

of the total angular momentum �̂F on the magnetic field, and
by the asymptotic value F̃ of the total angular momentum F .
In the limit B0 → 0, F becomes a conserved quantity, and
the eigenstates |F̃ ,m〉 become states |F,m〉 with determined
values F of the total angular momentum. For B0 �= 0, all the
eigenstates |F̃ ,m〉 except |F̃ = 2,m = ±2〉 contain both |F =
1,m〉 and |F = 2,m〉 states, but, if the magnetic field is weak
(μBgJ B0 � �ωhf s), the contribution of the state |F �= F̃ ,m〉
into the eigenstate |F̃ ,m〉 occurs to be small.

We define the relative energy shift �E as the differ-
ence between the adiabatic potentials Vad for the clock
states |1〉 = |F̃ = 1,m̃F = −1〉 and |2〉 = |F̃ = 2,m̃F = 1〉
with subtracted zero-field hyperfine splitting: �E = Vad,|2〉 −
Vad,|1〉 − �ωhf s . In the purely static magnetic trap, this
shift experiences a minimum at B0 = Bmagic = 3.228917
G. The second derivative of �E around this minimum is
about ∂�E/∂B0 ≈ 863 Hz/G2. At first-order-magic condi-
tion BI = Bmagic, �E(ρ) − �E(0) is proportional to the
fourth power of the distance ρ from the trap axis, or to
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the second power of the atom’s local potential energy [see
Fig. 1(c)].

Often it is reasonable to choose BI slightly below Bmagic. It
allows to obtain a more uniform distribution of �E over the
thermal atomic cloud; see Fig. 1(c). For the sake of clarity, we
will compare different potentials with zero derivatives of the
relative energy shift on the trap axis in this work.

Our aim is to state-selectively modify the trapping potential
using an additional weak rf-dressing field. Such dressing
allows us to design a trap where not only the first but also the
second derivative of �E with respect to the adiabatic potential
(directly proportional to B0 in purely static or weakly dressed
traps) becomes zero (vanishing fourth-order dependence in
distance ρ from the trap axis). In such dressed potentials, the
trap-induced dephasing can be significantly reduced compared
to static dc field Ioffe-Pritchard traps.

In the presence of an oscillating rf field, it is possible either
to apply the Floquet formalism [18] to the Hamiltonian (3) with
static and rf magnetic fields given by (1) and (2) directly, or to
transform the Hamiltonian to the rotating frame using a weak-
field limit for �Brf . Under the assumption that the rf field can be
treated as classical, the Floquet formalism is equivalent to the
fully quantized dressed-atom approach [18,19] and it allows
us to perform high-precision calculations of the rf-dressed
levels for a wide range of parameters. The transformation to
the rotating frame in the weak-rf-field limit allows us either
to use the rotating wave approximation (RWA) or to apply the
Floquet formalism to the transformed Hamiltonian.

B. Weak-rf-field limit and transformation to the rotating frame

We start from the Hamiltonian (3) and express it as

Ĥ i = ĤBR + μB(gJ
�̂J + gI

�̂I ) · �Brf(t), (6)

where ĤBR = ( �̂J · �̂I )� ωhf s/2 + μB(gJ
�̂J + gI

�̂I ) · �B0 is
time-independent and can be diagonalized. Eigenenergies of
ĤBR are given by the Breit-Rabi formula (4). We suppose
that ω � ωhf s and Brf � B0 � �ωhf s/μB . This allows us
to neglect far off-resonant couplings of different hyperfine
manifolds by the rf field, and to replace the exact matrix

elements 〈F̃ ,m| �̂J · �Brf|F̃ ,m′〉, 〈F̃ ,m| �̂I · �Brf|F̃ ,m′〉 by their

approximate values 〈F,m| �̂J · �Brf|F,m′〉, 〈F,m| �̂I · �Brf|F,m′〉.
We can then represent the Hamiltonian (6) as a sum of two
Hamiltonians Ĥ i

1 and Ĥ i
2 operating in the subspaces V1 and

V2 spanned by the sets of states |F̃ = 1,m〉 and |F̃ = 2,m〉,
respectively:

Ĥ i = Ĥ i
1 + Ĥ i

2, (7)

Ĥ i

F̃
=

∑
m

|F̃m〉EBR
|F̃ ,m〉〈F̃ ,m| + μB

�Brf

·
∑
m,m′

|F̃ ,m〉gF=F̃ 〈F,m| �̂F |F,m′〉〈F̃ ,m′|, (8)

where F̃ = F , and

gF =gJ

F (F + 1) − I (I + 1) + J (J + 1)

2F (F + 1)

+ gI

F (F + 1) + I (I + 1) − J (J + 1)

2F (F + 1)
. (9)

Now we express the dc magnetic trapping field (1) as

�B0 = �ezBI + √
χ [�ex cos(α) + �ey sin(α)], (10)

where x = ρ cos α, y = −ρ sin α, and χ = G2ρ2 is the square
of the transverse (x,y-plane) component of the dc field. Near
the trap axis, the trapping potential is proportional to χ ; see
Fig. 1(b). To describe the local field, we change the coordinate
system: let the new axis z′ be parallel to �B0, let the new axis x ′

lie in the plane (�ez, �B0), and the new axis y ′ shall be orthogonal
to x ′,z′. Then, after some algebra, we express the rf field (2)
as

�Brf = eiωt

2
[�ex ′Bx ′ − i�ey ′By ′ + �ez′Bz′] + c.c., (11)

where �ex ′ , �ey ′ , and �ez′ are the basis vectors of the new axes,

Bx ′ = Brf (cos α cos θ cos δ − i sin α cos θ sin δ) ,

By ′ = Brf (cos α sin δ − i sin α cos δ) , (12)

Bz′ = Brf (cos α sin θ cos δ − i sin α sin θ sin δ) ,

and θ is an angle between the trap axis z and the direction of
the dc field �B0.

As a next step we apply a unitary transformation ÛR =
exp[i(P̂1̃ − P̂2̃)F̂z′ωt] to transform the Hamiltonian into the
frame rotating with angular velocity ω around the local
direction of the static magnetic field [7]. Here P̂F̃ is a projector
onto the subspaces VF̃ . This yields the new Hamiltonian

Ĥ = Û+
R Ĥ iÛR − i�Û+

R

(
∂ÛR

∂t

)
= Ĥ1 + Ĥ2, (13)

where Hamiltonians ĤF̃ (F̃ = 1,2), in turn, may be repre-
sented as

ĤF̃ =
2∑

n=−2

Ĥ
(n)
F̃

exp(inωt). (14)

The Fourier components of these Hamiltonians are equal to

Ĥ
(0)
F̃

=
∑
m

|F̃ ,m〉(EBR
|F̃ ,m〉 ± �ωmF

)〈F̃ ,m|

+ μBgF

4
[F̂±(Bx ′ ∓ By ′) + F̂∓(B∗

x ′ ∓ B∗
y ′ )], (15)

Ĥ
(1)
F̃

= μBgF

2
Bz′ F̂z′ , Ĥ

(2)
F̃

= μBgF

4
F̂∓(Bx ′ ∓ By ′ ),

Ĥ
(−1)
F̃

= Ĥ
(1)+
F̃

, Ĥ
(−2)
F̃

= Ĥ
(2)+
F̃

. (16)

Here the upper signs correspond to F̃ = 1, the lower ones
correspond to F̃ = 2, and F̂± = F̂x ′ ± iF̂y ′ .

Within the rotating wave approximation, one retains only
Ĥ

(0)
F̃

. Also, it is possible to construct a Floquet Hamiltonian
using rapidly oscillating terms. Such a combined weak-field
Floquet approximation (WFFA) is more precise than the pure
RWA. Also, the WFFA allows us to classify the quasienergy
spectrum in a more convenient way than is possible in a
straightforward Floquet analysis based on the Hamiltonian (6);
see Appendix for details. The WFFA representation further-
more simplifies the numerical algorithms to search for the
second-order-magic conditions.
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III. SECOND-ORDER-MAGIC CONDITIONS

If the rf field is absent or weak and far from resonances
(referring to �ω = |gF |μBBI ≈ μBBI/2), the trapping poten-
tial in the Ioffe-Pritchard trap is proportional to the dc-field

magnitude B0. Near the trap axis z, B0 =
√

B2
I + χ  BI +

χ/(2BI ); i.e., the trapping potential is proportional to χ [see
Fig. 1(c)]. The relative energy shift �E depends on χ as

�E(χ ) = A0 + A1χ + A2χ
2 + A3χ

3 + · · · (17)

(the coefficients Ai can have an angular dependence, if the
rf-field polarization is not perfectly circular; see Sec. IV B for
details). In a purely static first-order-magic trap, A1 vanishes
for BI = Bmagic. Other coefficients are

A0 ≈ −4497.4 Hz,

A2 = 1

2

1

4B2
magic

∂2�E

∂B2

∣∣∣∣
B=Bmagic

≈ 10.34 Hz/G4,

A3 ≈ −0.49 Hz/G6.

Under second-order-magic conditions, both A1 and A2 vanish,
and the potential close to the trap axis can be characterized by
the coefficients A0 (indicating the absolute shift at the trap
center) and A3 (relevant for a remaining position-dependent
dephasing).

A. Qualitative considerations

To understand how rf dressing can mitigate the position-
dependent dephasing in an Ioffe-Pritchard trap, we consider the
following simplified model. We limit our considerations to the
rotating wave approximation, where the system is described
by the Hamiltonian (15), and suppose that the atom is kept
in the vicinity of the trap axis, where Gρ � BI . The angle θ

between the trap axis and the dc-field direction is close to 0,
so we set θ = 0,α = 0 in (12).

Consider the energy shift �E as a function of B0. Without
rf dressing, it exhibits a minimum of �E ≈ −4497.37 Hz
at B0 = Bmagic [see Fig. 1(c)]. This function is convex; the
second derivative ∂2�E/∂B2

0 ≈ 863 Hz/G2. In consequence,
a static Ioffe-Pritchard trap with BI < Bmagic provides a
slightly higher confinement (higher trap frequency) to the state
|1〉 compared to state |2〉.

Adding an rf-dressing field with a frequency below reso-
nance (low-frequency case; �ω < |gF |μBBI ≈ μBBI/2), as
shown in Fig. 2, adds a second convex contribution (with a
minimum at resonance) to the energy shift of the weak-field-
seeking states |1〉 and |2〉. The curvature of this contribution
depends on the state and the polarization of the rf-dressing
field. In Fig. 2, the rf-dressing field is linearly polarized
(δ = 0). One can see that the contributions to both levels |1〉
and |2〉 are essentially the same.

By applying elliptically polarized rf fields, we can add more
or less of this convex contribution to the energy of |1〉 compared
to the energy of |2〉, implementing state-dependent dressing.
If the rf field is left-handed polarized (δ = −π/4), as shown in
Fig. 1(a), only the F̃ = 1 manifold will be dressed, as follows
from (12) and (15). Figure 3 illustrates the modification of
�E in this case: the minimum of �E moves left (to lower

FIG. 2. (Color online) Zeeman shifts of the upper (top) and
lower (bottom) dressed manifolds of the ground state of 87Rb as
given by Hamiltonian (15) (zero-field hyperfine interaction terms
are subtracted). Solid: dressed potentials, ω/(2π ) = 2.23 MHz,
Brf = 0.05 G, δ = 0. Dashed: bare states. The clock states |1〉 and |2〉
are indicated in bold.

B0), and the second derivative ∂2�E/∂B2
0 at the position of

the minimum decreases. At second-order-magic conditions,
�E shows a saddle point (dotted green line in Fig. 3). Note
also that the local field configuration in the Ioffe-Pritchard trap
dressed by the circularly polarized rf field remains invariant
with respect to rotations around the trap axis; the trapping
potential remains axially symmetric.

FIG. 3. (Color online) Dependencies of the relative energy shift
on the magnitude B0 of the dc field for different magnitudes Brf of
left-hand circularly polarized (δ = −π/4) rf field. Here ω = 2π · 2
MHz, diamonds denote the points where ∂�E/∂B0 = 0, open circle
denotes the point where both ∂�E/∂B0 = 0 and ∂2�E/∂B2

0 = 0.
Calculations were performed in RWA.
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TABLE I. Second-order-magic magnitudes of rf-dressing field
and Ioffe field, calculated according RWA and combined weak-field
Floquet approach (WFFA).

RWA Floquet

ω

2π
(MHz) Bm

I (G) Bm
rf (G) Bm

I (G) Bm
rf (G)

0.5 2.530 0.0813 2.614 0.1053
0.6 2.556 0.0758 2.629 0.0931
0.7 2.585 0.0704 2.646 0.0828
0.8 2.615 0.0648 2.665 0.0739
0.9 2.647 0.0593 2.678 0.0661
1.0 2.681 0.0539 2.712 0.0585
1.1 2.717 0.0484 2.745 0.0517
1.2 2.755 0.0430 2.777 0.0453
1.3 2.794 0.0377 2.810 0.0393
1.4 2.834 0.0326 2.846 0.0336
1.5 2.876 0.0275 2.885 0.0282
1.6 2.920 0.0227 2.925 0.0231
1.7 2.964 0.0181 2.967 0.0183
1.8 3.009 0.0137 3.011 0.0138
1.9 3.055 0.00971 3.056 0.00976
2.0 3.102 0.00613 3.102 0.00615
2.1 3.149 0.00310 3.149 0.00310
2.2 3.195 0.000816 3.195 0.000816

Similar considerations may be performed for the high-
frequency case, when the rf frequency is above resonance
(�ω > |gF |μBBI , to the right side of Bmagic in Fig. 2). Then the
weak-field-seeking states lie on the lowest and second-lowest
branches of the F̃ = 1 and F̃ = 2 manifolds, respectively;
the dressing leads to a decreasing concave contribution to the
energy shift. To decrease the second derivative ∂2�E/∂B2

0 ,
one must use a right-hand (δ = π/4) circularly polarized rf
field. However, these states become high-field seekers for
atoms that are far from the trap axis, where the dc field B0

becomes higher than the resonance value, and the trap becomes
unstable (this situation resembles evaporative cooling in static
magnetic traps). In this work we hence restrict our study to the
low-frequency case.

B. Results of numerical optimization

Strictly speaking, the angle θ between the axis z of the Ioffe-
Pritchard trap and the direction of the dc field �B0 is equal to zero
only on the axis z. Therefore, a simultaneous elimination of the
derivatives ∂�E/∂B0 and ∂2�E/∂B2

0 of the energy shift �E

with respect to the dc-field magnitude B0 at θ = 0 considered
in Sec. II A is not exactly equivalent to the second-order-magic
conditions, i.e., simultaneous elimination of the derivatives
∂�E/∂χ and ∂2�E/∂χ2, although the qualitative analysis
remains similar.

In this section we present values for Ioffe-field Bm
I and rf-

field amplitudes Bm
rf corresponding to the second-order-magic

conditions for different frequencies of the rf-dressing field,
calculated both in RWA based on the Hamiltonian (15), and in
WFFA based on the Hamiltonian (14); see Figs. 4(a) and 4(b)
and Table I.

In the WFFA, the infinite Floquet Hamiltonian was trun-
cated to 21 × 21 matrix blocks. Pairs of (Bm

I ,Bm
rf ) obtained

FIG. 4. (Color online) Second-order-magic magnitudes of rf-
dressing field (a) and Ioffe field (b) corresponding to different
rf frequencies ω, calculated in RWA (black solid curves), and
WFFA with 21 manifolds (red circles). The dashed lines in plot (b)
correspond to the two- and single-photon resonant conditions. Panels
(c) and (d) show the coefficients A0 and A3 in the expansion (17) for
the second-order-magic conditions calculated in WFFA.

in the WFFA were tested using a straightforward Floquet
analysis based on the Hamiltonian (6), and both ∂�E/∂χ and
∂2�E/∂χ2 remain zero up to the level of about 0.1 Hz/G2

and below a few Hz/G4, respectively, which corresponds to
a relative error in the determination of Bm

I and Bm
rf of about

0.1%. Note the appearance of a “kink” in the plot of Bm
I near

ω = 2π × 0.9 MHz caused by a distortion of the energy levels
near a two-photon resonance, (when |gF |μBBm

I approaches
2�ω). In Figs. 4(c) and 4(d) we present the coefficients A0 and
A3 of the expansion (17) for second-order-magic conditions
corresponding to different rf frequencies.

We see that the closer the rf frequency approaches the
single-photon resonance condition, the weaker the rf field (am-
plitude) that should be applied to attain second-order-magic
conditions, and the rotating wave approximation becomes
more precise. However, the coefficient A3 also increases
with rf frequency, and hence the residual position-dependent
decoherence rate will also increase. Optimal parameters will
depend on the density and temperature of the atomic ensemble.

To illustrate how the rf dressing improves the trap, we
compare profiles of the relative energy shift �E − �E(0) as a
function of the trapping potential Utrap(χ ) = Vad(χ ) − Vad(0)
for an undressed first-order-magic trap and for second-order-
magic traps corresponding to different rf-field frequencies in
Fig. 5.

One can see that for atomic ensembles cooled to tempera-
ture of the order of 1 μK (about 20 kHz in frequency units), the
variation of �E over the dressed trap can be reduced by almost
2 orders of magnitude compared to the dc-undressed magic
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FIG. 5. (Color online) Relative energy shift for dc first-order-
magic trap (black solid curve), and for rf-dressed second-order-magic
trap (colored noncontinuous curves) as a function of Utrap = Vad(ρ) −
Vad(0). Frequencies of the rf-dressing fields are given in the legend;
the corresponding values of Bm

rf and Bm
I can be found in Table I.

trap. Further cooling will lead to an even stronger suppression
of the position-dependent decoherence rate, because at such
low energies, the relative energy shift is determined by the
lowest-order term of the Taylor expansion, proportional to
U 3

trap for the dressed trap and to U 2
trap for the undressed trap.

Finally, we consider the question of validity of the adiabatic
approximation near the resonance ω = μBBmagic|gF |/�. The
adiabatic approximation is applicable when the rate of change
of the splitting E of energy levels remains much less than
the splitting itself: dE

dρ

dρ

dt
� E2

�
. Taking E = μB |g1|B0 − �ω

and estimating dρ/dt as vT = √
2kBT /mRb, we obtain that

the adiabatic approximation is valid when (μB |gF |Bm
I −

�ω)2 � 2 kBT �ωxy. Here we express G via the transversal
oscillation frequency ωxy of the trap and estimate ρ as√

2kBT /(mRbω2
xy). Near the resonance, (μB |gF |Bm

I − �ω) ≈
0.67(μB |gF |Bmagic − �ω); see Fig. 4(b). The validity condition
for the adiabatic approximation can hence be written as

(μB |gF |Bmagic/� − ω)2 � 3 kBT ωxy/�,

where μB |gF |Bmagic/� ≈ 2.26 MHz. As an example, we
consider 87Rb atoms cooled down to 1 μK and confined
in a trap with ωxy = 2π × 2 kHz. Then

√
3kBT ωxy/� ≈

2π × 11 kHz, and the adiabatic approximation is valid, if
2.26 MHz − 2πω � 11 kHz. Less tight traps (relevant for
atomic clocks because of a lower atomic number density and
collisional shift) and colder atomic ensembles allow us to
approach even closer the resonance without losing the validity
of the adiabatic approximation.

IV. ROBUSTNESS

In any physical implementation of the dressed trap, magni-
tudes and polarizations of the involved fields can be controlled
up to a certain accuracy only. These uncertainties must be
taken into account for the proper development of the trap.
Note that the pure dc first-order-magic trap has a significant
advantage, because at BI = Bmagic, the deviation of the relative
energy shift �E is proportional to the squared deviation δBI of
the Ioffe field BI , namely �E(Bmagic + δBI ) − �E(Bmagic) =

FIG. 6. (Color online) Parameters αI
0 and αrf

0 (a), αI
1 and αrf

1 (b),
αI

2 (c), and αrf
2 (d), characterizing the robustness of the relative energy

shift �E with respect to variations of the magnitude of the Ioffe field
and the rf-dressing field; see expansion (18).

CδB2
I , where C = 431 Hz/G2. The deviation of �E vanishes

in the first order in δBI .
In the following section we study the sensitivity of �E to

deviations of BI and Brf from their second-order-magic values,
and to a deviation of the rf-field polarization from the perfect
left-hand circular one.

A. Robustness to variations of field magnitudes

Under second-order-magic conditions, the coefficients A1

and A2 in the expansion (17) are equal to zero. If BI or Brf

deviate from their magic values Bm
I and Bm

rf by δBI and δBrf ,
respectively, this causes a change of all coefficients Ai . We
expand these coefficients near the point (Bm

rf ,B
m
I ) as

Ai(BI ,Brf) = Ai + α
(I )
i

δBI

BI

+ α
(rf )
i

δBrf

Brf
+ · · · , (18)

where δBI = BI − Bm
I , δBrf = Brf − Bm

rf , and
Ai = Ai(Bm

I ,Bm
rf ). Such a representation is convenient,

as in many physical implementations the fields can be
controlled to a known relative precision. The sensitivity to
field fluctuations is expressed by the coefficients α0, α1, and
α2; they are calculated in WFFA and represented in Fig. 6.

B. Robustness to variations of the rf-field polarization

We parametrize the polarization of the rf field by the angle δ;
see expression (2). δ = −π/4 corresponds to perfect left-hand
polarization, but in a physical implementation, δ may deviate
from this value by an offset ε = δ + π/4.

The local dc field can be characterized by a pair of angles
(θ,α), or equivalently by a pair (χ,α); see Sec. II A for details.
If the rf-field polarization deviates from the perfectly circular
one, energies of atomic states and hence �E experience an
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FIG. 7. (Color online) Coefficients β1 (a) and β2 (b) in the
expansion (19), characterizing the robustness of the relative energy
shift �E with respect to variations of the rf-field polarization.

α-dependent contribution. For reasons of symmetry, �E(α) =
�E(−α) = �E(π + α), and for small ε, the lowest-order
harmonic, proportional to cos(2α) gives the main contribution
to the α-dependent part. Also, an additional α-independent
contribution quadratic in ε appears. As in the previous section,
it is convenient to consider the expansion (17), and, in turn,
expand coefficients Ai as

Ai(ε,α) = Ai + βi cos(2α)ε + γiε
2 + · · · , (19)

where, again, Ai = Ai(Bm
I ,Bm

rf ,δ = −π/4). It is easy to see
that the coefficient β0 = 0. The coefficients β1 and β2 are
represented in Fig. 7, and coefficients γ0, γ1, and γ2 are
represented in Fig. 8.

C. Discussion

We find that the behavior of the coefficients α
(I )
i , α

(rf)
i , βi ,

and γi characterizing the response to fluctuations as well as
the coefficient A3 [see Fig. 4(d)] show a qualitatively different
dependence on the rf-field frequency ω. For example, the
values of α

(I )
0 and α

(rf)
0 go to zero when ω approaches the

single-photon resonance, rendering the system more robust
against fluctuations. However, at the same time, A3, describing
the remaining energy inhomogeneity of the dressed trapping
potential, grows. The optimal choice of the specific rf-field
frequency hence depends on the given instrumental stabilities
of Ioffe and radio-frequency fields, on the deviation of the
rf-field polarization from the perfect left-hand circular one,
and on the temperature of the atomic cloud.

FIG. 9. (Color online) Relative energy shift including field and
polarization deviations as described in the text for a dc first-order-
magic trap (black solid curve), and for rf-dressed second-order-
magic traps (colored noncontinuous curves) as a function of Utrap =
Vad(ρ) − Vad(0). Frequencies of rf-dressing fields Bm

rf are given in the
legend.

As an example, we consider an atom chip setup with field
deviations δBI /BI = 2.5 × 10−4 and δBrf/Brf = 5 × 10−4;
the deviation of the rf-field polarization from the perfect
circular one can be estimated to ε = 0.2◦. Such parameters
were recently realized in Ref. [20]. Figure 9 shows the value
�E − �E(0) + δE as a function of the trapping potential
Utrap(χ ) in the same manner as in Fig. 5. Here we included a
position-dependent mean-square variation δE of the relative
energy shift:

δE =
√(

∂�E

∂BI

δBI

)2

+
(

∂�E

∂Brf
δBI

)2

+
(

∂�E

∂ε
ε

)2

.

Comparing Fig. 9 with Fig. 5, one can see that the
fluctuations only weakly affect the undressed trap (black solid
lines), but become more important for dressed second-order-
magic traps. For an atomic ensemble of a temperature of 1 μK
(corresponding to Utrap  20 kHz), the optimal rf frequency
for second-order-magic dressing lies between 1.8 MHz and
2.2 MHz. It still allows us to increase the quality of the
dressed potential by about one order of magnitude compared
to the first-order-magic condition. Further improvement may
be possible when combining a static near-magic configuration
similar to one presented in Fig. 1(c), blue dotted line, with rf
dressing and taking into account the effect of atom interactions.

FIG. 8. (Color online) Parameters γ0 (a), γ1 (b), and γ2 (c) in the expansion (19), characterizing the robustness of the relative energy shift
�E with respect to variations of the rf-field polarization.
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A detailed optimization is beyond the scope of the present
paper.

V. CONCLUSION

In conclusion, we propose rf dressing as a simple and
flexible technique to suppress position-dependent dephasing of
atomic clock superposition states in a magnetic Ioffe-Pritchard
trap. For 87Rb, we have identified second-order-magic condi-
tions, where not only the first but also the second derivative
of the relative energy shift with respect to the trapping
potential vanishes. We have studied the robustness of these
second-order-magic conditions to deviations of the involved
static and oscillating fields and find that for parameters realized
in current atom chip experiments, the dressing can improve the
quality of the trapping potential by about 1 order of magnitude
compared to static first-order-magic traps.
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APPENDIX

Here we briefly review the Floquet theory following
Ref. [18] and discuss the classification of the quasienergy
spectrum within the weak-field Floquet approach.

First, Hamiltonians (14) are Hermitian matrices of periodic
functions of t with period T = 2π/ω. According the Floquet
theorem, for a periodic Hamiltonian Ĥ (T ), the Schrödinger
equation

i�
∂�(t)

∂t
= Ĥ (t)�(t) (A1)

has a fundamental matrix

F̂(t) = (�1(t),�2(t), . . . ) (A2)

which can be expressed in the form

F̂(t) = �̂(t) exp(−iQ̂t), (A3)

where �̂(t + T ) = �̂(t) is a periodic matrix, and

Q̂ =
⎛
⎝q1 0 . . .

0 q2 . . .

. . . . . . . . .

⎞
⎠ (A4)

is a constant diagonal matrix. Values �qi are called quasiener-
gies. Note that these quasienergies are defined up to a shift by
n�ω corresponding to a change by n in the number of photons
describing the field responsible for the time-dependent terms
in the Hamiltonian.

The matrix elements of F̂(t) can be written as

Fαβ(t) =
∑

n

F
(n)
αβ exp[i(nω − qβ)t], (A5)

and the Hamiltonian Ĥ can also be expanded into the Fourier
series:

Ĥ (t) =
∑

n

Ĥ (n) exp[inωt], or

Hαβ(t) =
∑

n

H
(n)
αβ exp[inωt]. (A6)

The equation for the fundamental matrix

i�
∂F̂(t)

∂t
= Ĥ (t)F̂(t) (A7)

can be rewritten using (A5) and (A6) as

∑
γ,m

(
H (k−m)

αγ

�
+ kωδαγ δkm

)
F

(m)
γβ = qβF

(k)
αβ, (A8)

where δij is a Kronecker delta. Equation (A8) can be written
as infinite block matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . .

. . .
Ĥ (0)

�
− 2ωÎ Ĥ (−1)

�

Ĥ (−2)

�
. . . . . . . . .

. . .
Ĥ (1)

�

Ĥ (0)

�
− ωÎ Ĥ (−1)

�

Ĥ (−2)

�
. . . . . .

. . .
Ĥ (2)

�

Ĥ (1)

�

Ĥ (0)

�

Ĥ (−1)

�

Ĥ (−2)

�
. . .

. . . . . .
Ĥ (2)

�

Ĥ (1)

�

Ĥ (0)

�
+ ωÎ Ĥ (−1)

�
. . .

. . . . . . . . .
Ĥ (2)

�

Ĥ (1)

�

Ĥ (0)

�
+ 2ωÎ . . .

. . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

F
(−2)
β

F
(−1)
β

F
(0)
β

F
(1)
β

F
(2)
β

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= qβ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

F
(−2)
β

F
(−1)
β

F
(0)
β

F
(1)
β

F
(2)
β

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A9)

where Î is the identity matrix, and F
(n)
β is βth column of the

matrix F̂
(n)

.
For practical calculations, ones truncates Eq. (A9) to some

finite number of Floquet blocks; in our simulation we used

21 × 21 blocks. Note also that within our weak-field Floquet
approach, the main Fourier component Ĥ (0) (15) of the
Hamiltonian (14) is much larger than the nonzero frequency
Fourier components Ĥ (−2), Ĥ (−1), Ĥ (1), and Ĥ (2); see (16).
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The rotating wave approximation consists in neglecting all of
the nonzero frequency components, and Eq. (A9) becomes a
set of noncoupled matrix equations describing the atom-field
system (up to a constant energy shift) in the semiclassical
limit. In WFFA, these nonzero frequency terms are kept and
responsible for couplings between different Floquet blocks,
but they remain small. Therefore, for every ω in the range of
interest (except the multiphoton resonances), eigenvectors of
the Floquet Hamiltonian on the left side of Eq. (A9) will have
only small components everywhere except in some specific
Floquet block. This allows us to attribute the corresponding
eigenvalue qβ of the Floquet Hamiltonian to this Floquet block.

If the set of equations (A9) is infinite, the quasienergy
spectrum is periodic with period �ω (which corresponds
to different numbers of photons), but in a truncated set of
equations used in practical calculations, this periodicity is
not exact. Let us call “true quasienergies” the quasienergies
�qβ which converge to the eigenvalues of the Hamiltonian
Ĥ (0) in the zero limit of all the Ĥ (n) with n �= 0. It is
easy to see that these true quasienergies correspond to the
central Floquet block. This classification method breaks down
near the multiphoton resonances with level anticrossings, but
everywhere else it can be applied and used for a numerical
search for the second-order-magic condition.
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