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Antiproton-impact ionization of Ne, Ar, Kr, Xe, and H2O
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We calculate antiproton-impact total single ionization of Ne, Ar, Kr, Xe, and H2O using a time-dependent
convergent close-coupling approach. The Ne, Ar, Kr, and Xe atom wave functions are described in a model
of six p-shell electrons above a frozen Hartree-Fock core with only one-electron excitations from the outer
p shell allowed. For treating the water molecule we use a neonization method recently proposed by Montanari
and Miraglia [J. Phys. B: At. Mol. Opt. Phys. 47, 015201 (2014)], which describes the ten-electron water molecule
as a dressed Ne-like atom in a pseudospherical potential. In the present work the target states of noble gas atoms
and water are obtained using a Laguerre basis expansion. For the noble gas atoms there is reasonably good
agreement with the calculated single-ionization cross sections.
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I. INTRODUCTION

Ionization of atoms and molecules by fast charged particles
is of fundamental interest from practical and theoretical points
of view. With the development of sources of low-energy
antiprotons, scattering of these antiparticles from atoms and
molecules is attracting particular attention; see the review of
Kirchner and Knudsen [1]. The Extra Low Energy Antiproton
Ring (ELENA) [2] is a small ring at CERN Antiproton Decel-
erator [3] which will be extended to substantially increase
the number of usable (or trappable) antiprotons. The first
antiproton scattering experiments with ELENA are planned
for 2017. Potential applications of the processes, occurring
during antiproton collisions with atoms and molecules, to
radiotherapy and oncology (see, e.g., Refs. [1,4]) is another
reason for increased interest in antiproton scattering. In
addition, understanding of antiproton interactions with atoms
and molecules is important to the ALPHA Collaboration at
CERN that attempts to test the invariance with respect to
charge conjugation, parity transformation, and time reversal
(CPT invariance) by forming and trapping antihydrogen [5]
and study the gravitational behavior of antimatter at rest [6–8].
Also, the upcoming Facility for Antiproton and Ion Research
(FAIR) [9] at Gesellschaft für Schwerionenforschung (GSI)
requires the precise knowledge of the collision mechanism
between antiprotons and various atomic and molecular targets.

From the theoretical point of view, a number of methods
have been developed to model antiproton scattering on light
atoms (H and He) and the simplest molecules (H2

+ and H2)
[1]. More recently, two distinct flavors of the convergent close-
coupling (CCC) approach to collisions involving antiprotons
have been developed [10–14]. The first version of the CCC
approach is a fully quantum-mechanical time-independent
method based on the Schrödinger equation for the total
scattering wave function and leads to a system of integral
equations for transition amplitudes. This approach was applied
to antiproton collisions with the H and He atoms [10–12]
(and also to the puzzling C6+-He scattering problem [15]).
The second, semiclassical, time-dependent version of the
CCC approach is based on the Schrödinger equation for the
electronic part of the scattering wave function and leads to a
set of differential equations. This flavor of the CCC method

was applied to antiproton collisions with H2
+ and H2 [13,14].

The important feature of the application of the semiclassical
time-dependent CCC approach to the antiproton ionization
of H2

+ and H2 molecules is the ability to account for all
possible orientation of the molecular target. The approach
significantly improved the agreement between theory and
experiment in a wide range of energies of practical interest.
In particular, these calculations provided the first quantitative
confirmation of the experimentally observed phenomenon
of the target-structure-induced suppression of the ionization
cross section for low-energy antiproton–molecular hydrogen
collisions [16].

Cross sections for ionization of multielectron inert-gas
atoms by antiproton impact were measured by Andersen
et al. [17], Paludan et al. [18], and Knudsen et al. [19].
There have been a number of calculations performed to
study these processes [20–24]. As emphasized in Ref. [1] all
of the theoretical approaches are effectively single-electron
(hydrogen-atom-like) treatments.

The most sophisticated nonperturbative calculations avail-
able for systems with more than two electrons were per-
formed using density-functional theory (DFT) [21,22]. These
works investigated single- and multiple-electron processes for
medium-energy antiproton collisions with noble gas targets in
a semiclassical, time-dependent, independent-particle model
(IPM). The model was constructed using the stationary
optimized potential method (OPM) of DFT, relying on an
accurate description of the target ground state. The OPM
method represented the exact exchange-only limit of the
exchange-correlation functional of DFT. It was shown that
a proper treatment of exchange effects in this model is crucial
for the prediction of accurate ionization cross sections. The
calculations for ionization of neon and argon targets by
antiprotons (and protons) were carried out with frozen target
potentials. The frozen target potentials accounted for elec-
tronic exchange effects. The single-particle, time-dependent
Schrödinger equations from the semiclassical approximation
to the collision problem were solved by the so-called basis
generator method (BGM). The IPM-BGM approach was
applied successfully to calculate integrated ionization cross
sections for all processes taking place in antiproton collisions
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with noble gases, including single and multiple excitation
and ionization of target electrons. In particular, the role of
dynamical screening effects was analyzed and a simple model
for their inclusion was proposed in the case of antiproton
scattering [21,22].

Montanari and Miraglia [23] employed a perturbation
continuum-distorted wave-eikonal-initial state (CDW-EIS)
approximation to obtain the single- and multiple-ionization
probabilities as a function of the impact parameter for
antiproton (and proton) impact on rare gas atoms in the energy
range from 25 keV to 10 MeV. They included postcollisional
electron emission effects believed to be important in the MeV
region; however the electron-electron correlations were totally
excluded. Despite this they obtained results which seem to
agree with the experiment for Ne and Ar better than the
IPM-BGM results. Moreover, for the heavier Kr and Xe atoms
the agreement appears to become even better.

Knudsen [25] emphasizes the fact that the accuracy with
which we are presently able to calculate the outcome of
seemingly simple dynamic atomic processes such as single
and multiple ionization of few-electron atoms and molecules
by charged particle impact is often not better than 10%, and
in several cases the uncertainty can even be a factor of two
or more. According to Knudsen [25], the reason is not that
the participating particles are not well known, nor that the
forces between them are in any doubt, but that the many-body
nature and especially the electron-electron interaction hinders
an accurate calculation for such systems.

The aim of this paper is to present the first multielectron
treatment of single ionization in antiproton collisions with no-
ble gas atoms. To this end we further develop the semiclassical,
time-dependent CCC method for multielectron targets. The
target structure is modeled as six p-electrons above an inert
Hartree-Fock core, in the same way as was done for positron
scattering [26]. Only one-electron excitations from the outer
p-shell are considered. The use of a Laguerre basis makes
it possible to take into account all excitation and ionization
channels in a systematic manner.

For H2O we use a neonization method recently proposed
by Montanari and Miraglia [24]. This method describes the
ten-electron water molecule as a dressed Ne-like atom in
a pseudospherical potential. A somewhat similarly effective
spherically symmetric potential model was introduced by
Lühr and Saenz [27] for the p̄ + H2 scattering problem.
The neonization method deals with molecules composed by
hydrides of the second row of the periodic table of elements:
CH4, NH3, H2O, and HF. The method has been tested by
calculating ionization cross sections (total, single, and double
differential), stopping power, energy-loss straggling, and mean
excitation energy. The authors used CDW-EIS, the first-order
Born, and the shellwise local plasma approximations. They
showed that the neonization model reproduces the various
empirical values with high reliability in the intermediate- to
high-energy region. In this work we further test the potential
of this idea when it is used in the close-coupling formalism.

In the next section we briefly outline the semiclassical
impact parameter approach in the context of the convergent
close-coupling formalism. Then we present the structure
model used to describe the noble gas atoms. Here we also
discuss the main ideas of the neonization of the water molecule

and provide details of the present implementation in terms of
the Laguerre functions. The final section provides details of
calculations and presents obtained results.

II. TIME-DEPENDENT CONVERGENT
CLOSE-COUPLING METHOD IN IMPACT

PARAMETER REPRESENTATION

The time-dependent CCC method has been applied to
antiproton-impact ionization of molecular hydrogen [13,14].
Here we generalize it to multielectron targets.

Scattering equations

We consider first antiproton scattering from noble gases and
later generalize the method to the water molecule. We use the
semiclassical impact-parameter approach. However, the target
electrons are treated fully quantum mechanically. The incident
antiproton is assumed to be moving with velocity v along
a straight-line trajectory R(t) = b + vt , where the impact
parameter b points along the x axis in the laboratory frame
where the target is at rest. The time-dependent, nonrelativistic,
Schrödinger equation for the electronic part of the total
scattering wave function of a many-body system consisting
of the incident antiproton p̄ and multiple-electron target is

H�(t,r,R) = i
∂�(t,r,R)

∂t
, (1)

where R is the position vector of the antiproton relative to
the target and r collectively denotes the position vectors of all
N target electrons (r = {r1, . . . ,rN }). Since the inclusion of
all target electrons is not practically feasible, in what follows
only N = 6 outermost p-shell electrons of the target will be
considered. The total Hamiltonian of the antiproton and target
atom scattering system can be written as

H = V + Ht, (2)

where Ht is the target atom Hamiltonian. The latter can be
written in the standard form,

Ht =
N∑

i=1

Hi +
N∑

i<j

Vij , (3)

where Hi is the Hamiltonian of the inert-core+one-electron
system (see the next section) and Vij is the Coulomb potential
between the outermost p shell electrons. The projectile
interaction with the target is written as

V = V0 +
N∑

i=1

V0i , (4)

where V0 is the interaction of the projectile with the inert core
and V0i with the target electrons. The potential V0 is defined
as

V0(R) = −N

R
+ U0(R), (5)

where

U0(R) =
∑
ϕc

(
− 1

R
+

∫
d3r ′ |ϕc(r ′)|2

|r ′ − R|
)

, (6)
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where ϕc are inert core orbitals (see below). In the present work
we calculated integrated cross sections which do not depend
on V0. Therefore, in the following we ignore this interaction.
However, this potential will play an essential role when the
method is applied to calculate differential cross sections.

Following the ideas of the convergent close-coupling
method we expand the electronic scattering wave function in
terms of a certain set of target pseudostates �n according to

�(t,r,R = b + vt) =
∑

n

An(t,b) exp(−iεnt)�n(r), (7)

where εn is the energy of the target electronic state n.
The expansion coefficients An(t,b) define the probability for
transitions into electronic bound and continuum states.

With this representation of the total scattering wave function
the semiclassical Schrödinger equation can be transformed
into a set of coupled-channel differential equations for the
time-dependent coefficients An(t,b),

i
dAn(t,b)

dt
=

∑
m

Am(t,b)〈�n|V (t,r,b)|�m〉 exp[i(εn − εm)t].

(8)

Equation (8) is solved with the initial conditions An(t = −∞,

b) = δni , as the target is initially in the ground state �i .

III. TARGET STRUCTURE CALCULATIONS

A. Target structure calculations for Ne, Ar, Kr, and Xe

Full details of the target structure calculations for noble gas
atoms were given in Ref. [26]. Here we state the main ideas
and formulas in order to facilitate calculations of effective
potentials in the impact-parameter representation. These are
also used when we describe neonization of the water molecule
in the following subsection.

We describe wave functions for the noble gases of Ne,
Ar, Kr, and Xe by a model of six p-electrons above an inert
Hartree-Fock core. Excited states of noble gases are obtained
by allowing one-electron excitations from the p-shell. In what
follows we consider a more general case of one-electron
excitation from a closed-shell atom with the outer shell
electron occupying an orbital with angular momentum l0, with
l0 = 1 being the case for noble gases. This model is similar to
the frozen-core model of helium and can be obtained by setting
l0 = 0 in the present formulation. The helium frozen-core
model has been used successfully in CCC calculations of
electron [28], positron [29], and antiproton [12] scattering on
He. This give us confidence in the present approach.

In order to implement this structure model (taking Ne as an
example) we conduct calculations in a number of steps. First,
we perform self-consistent Hartree-Fock calculations for the
Ne+ ion and obtain a set of orbitals: 1s,2s,2p. We refer to
1s and 2s orbitals as inert core orbitals and to the 2p orbital
as the frozen-core orbital. We then produce a set of Sturmian
(Laguerre) functions [30],

ξkl(r) =
(

2λl(k − 1)!

(2l + 1 + k)!

)
(2λlr)l+1 exp(−λlr)L2l+2

k−1 (2λlr),

(9)

where L2l+2
k−1 (2λlr) are the associated Laguerre polynomials

with λl being the fall-off parameter, l is orbital angular
momentum, and index k ranges from 1 to Nl , the maximum
number of Laguerre functions. This set is used to diagonalize
the quasi-one-electron Hamiltonian of the Ne5+ ion,

Hi = Ki + V HF
i . (10)

Here Ki is the kinetic energy operator and V HF is a nonlocal
Hartree-Fock potential that is constructed using inert core
orbitals ϕc (1s and 2s for Ne) according to

V HFϕ(r) = −N

r
ϕ(r) +

∑
ϕc

( ∫
d3r ′ |ϕc(r ′)|2

|r ′ − r| − 1

r

)
ϕ(r)

−
∑
ϕc

∫
d3r ′ ϕc(r ′)ϕ(r ′)

|r ′ − r| ϕc(r). (11)

The result is a set {ϕα} of one-electron functions that satisfy

〈ϕα|Hi |ϕβ〉 = εαδα,β, (12)

where δα,β is Kronecker δ symbol and εα is the one-electron
energy.

The 2p orbital in the {ϕα} basis differs substantially from the
Hartree-Fock 2p orbital. In order to build a one-electron basis
suitable for the description of a neutral Ne atom we replace
the former orbital with the Hartree-Fock one. The basis is then
orthogonalized by the Gram-Schmidt procedure. The resulting
orthonormal basis is denoted {φα} and satisfies

〈φα|Hi |φβ〉 = eα,β . (13)

The coefficients eα,β can be trivially obtained from the
one-electron energies εα and overlap coefficients between the
Hartree-Fock 2p orbital and the {ϕα} basis.

The target states {�n} of Ne are described via the
configuration-interaction (CI) expansion

�n =
∑

α

Cn
α �̃α. (14)

The set of configurations {�̃α} is built by angular momentum
coupling of the wave function of 2p5 electrons and one-
electron functions from the {φα} basis. We refer to the former
wave function as the frozen-core wave function ψc(l4l+1

0 ) and
to the latter one as the active electron wave function. The
frozen-core wave function has angular momentum l0 and
spin 1/2, and when coupled with the active electron wave
function φα leads to a configuration with spin s = 0,1, orbital
angular momentum l (|lα − l0| � l � lα + l0), and parity
π = (−1)l0+lα

|�̃α〉 = A
∣∣lN−1

0 : l0
1
2 ; lα : lsπ

〉
, (15)

where we used the fact that N − 1 = 4l0 + 1. The antisym-
metrization operator A is given by

A = 1√
N

(
1 −

N−1∑
i=1

PiN

)
, (16)

where Pij is a permutation operator.
The coefficients Cn

α in the CI expansion Eq. (14) are
obtained by diagonalization of the Hamiltonian (3) in the basis
of configurations (15). The target orbital angular momentum l,
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spin s, and parity π are conserved quantum numbers and diag-
onalization of the target Hamiltonian is performed separately
for each target symmetry {l,s,π}. The resulting set of target
states satisfies

〈�n|Ht |�m〉 = δn,mεn, (17)

where εn is the target-state energy. For antiproton scattering
from the ground state (s = 0) of a noble gas atom only
target states with s = 0 can be excited. The size of the
calculations can be increased by simply increasing the number
of Laguerre functions (Nl). Low-lying states will converge to
bound states of the target, while the remaining (pseudo)states
will provide an increasingly accurate representation of the
target-atom high-lying bound states and an increasingly dense
square-integrable representation of the target continuum.

B. Pseudospherical approximation to the water
molecule structure

The structure of the water molecule is treated using a
neonization idea proposed by Montanari and Miraglia [24].
According to the idea, the water molecule is described as
a dressed pseudospherical atom. Following Ref. [24] the
multicenter nuclei Coulomb potential of H2O is approximated
with the following spherical potential:

VH2O = −8

r
− 2(1 − ε)�(RH − r)

RH

− 2(1 − εe1−r/RH )�(RH − r)

r
, (18)

where RH is the distance between the oxygen atom and
either of two hydrogen atoms, � is the Heaviside step
function, and ε is introduced to account for the deviation
of the target potential from spherical symmetry. With a
multicenter problem now reduced to a central one we can
apply the technique described in the previous section to find
energy levels and wave functions. This requires replacing
the electron-nuclei term N/r in Eq. (10) with the potential
(18). In addition, the 1s, 2s, and 2p core wave functions
for the Ne atom are replaced by corresponding core wave
functions for the water molecule. The latter are taken from
the Slater basis representation presented in Ref. [24]. Finally,
the parameter ε of the potential (18) is varied to match the

experimentally measured value for the ground-state energy
of the target. As a result the spectrum of the H2O molecule
is represented by the same model as we have used for Ne:
six p-electrons above the inert Hartree-Fock core with only
one-electron excitations allowed from the closed p shell.

IV. CALCULATION OF THE EFFECTIVE POTENTIALS

Having defined the target structure we can now proceed
with the solution of coupled-channel differential equations.
The solution strategy is based on the propagation of time-
dependent coefficients An(t,b) starting from t = −∞, where
the target is in the ground state, to t = +∞, where, as a result
of projectile impact, all changes in the target structure have
been established and the projectile no longer feels the Coulomb
field of the target center. The time-dependent interaction of the
incident projectile with the target is described by the effective
matrix elements 〈�n|V (t,r,b)|�m〉. As mentioned before, for
calculations of integrated cross sections, which is the main
focus of this paper, it is sufficient to consider the interaction
of the projectile with the target electrons only. As the first step
we use the CI expansion (14) to express these matrix elements
via matrix elements for configurations {�̃α},

〈�̃n|V (t,r,b)|�̃m〉 =
∑
αβ

Cn
αCm

β 〈�̃α|V (t,r,b)|�̃β〉. (19)

In order to perform the angular integration in Eq. (19)
analytically we use the following multipole expansion of the
potential

V =
N∑

i=1

∑
λμ

vλ(R,ri)Y
∗
λμ(R)Yλμ(r), (20)

where

vλμ(R,ri) = − min(R,ri)λ

max(R,ri)λ+1
. (21)

With this and also using the properties of antisymmetric
configurations, Eq. (15), the final expression for the effective
matrix elements for configurations {�α} can be written as

〈�α|V (t,r,b)|�β〉 =
∑

λ

(−1)lm
1√

2lm + 1
Yλμ(R)∗Clnmn

lmmmλμ(I1(α,β,λ,R) + I2(α,β,λ,R)), (22)

where

I1(α,β,λ,R) = (−1)λ+l0+lα+lm
√

(2lβ + 1)(2lm + 1)Clα0
lβ0λ0C

lnmn

lmmmλμ

{
lβ l0 lm
ln λ lα

} ∫ ∞

0
drcr

2
c ϕc(rc)ϕc(rc)

×
∫ ∞

0
drar

2
aφα(ra)Vλ(ra,R)φβ(ra) (23)

and

I2(α,β,λ,R) = δlαlβ δmαmβ
(−1)λ+lα+ln+1

√
(2l0 + 1)(2lm + 1)Cl00

l00λ0C
lnmn

lmmmλμ

{
l0 lα lm
ln λ l0

} ∫ ∞

0
drar

2
aφα(ra)φβ(ra)

×
∫ ∞

0
drcr

2
c ϕc(rc)Vλ(rc,R)ϕc(rc) (24)
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with R, ra , and rc being the position vectors of the incoming
antiproton and the active and core electrons, respectively.

V. CALCULATIONS AND RESULTS

A. Details of calculations

We have performed calculations of antiproton scattering
from Ne, Ar, Kr, Xe, and H2O. Generally, more complex
targets (i.e., those with more electrons) require inclusion of
higher orbital quantum numbers to get converged results.
Specifically, for Ne and Ar the maximum orbital quantum
number lmax included were 3 and 5, respectively, while
for Kr and Xe lmax = 9 was required. This resulted in the
number of nl-states being 177, 226, and 377, respectively.
Including magnetic quantum numbers the sizes of coupled
differential equations for different targets are 803, 1276, and
3475, respectively. For H2O we use the basis set that was
generated for Ne, except that the states of the basis are obtained
by diagonalization of the target Hamiltonian containing the
Hartree-Fock potential representing the water molecule as a
dressed pseudospherical atom.

One measure of the accuracy of the structure model we use
in the CCC calculations is the comparison of calculated and
observed ionization energies. With aforementioned frozen-
core expansions for Ne, Ar, Kr, and Xe we obtain the ionization
energies of 20.57, 14.95, 13.38, and 11.73 eV, which agree
reasonably with the measured data of 21.56, 16.76, 14.00, and
12.13 eV, respectively. For H2O, the 2p-subshell ionization
energy in our calculations is the same as the experimentally
measured value of 12.6 eV since in our model this energy was
used as the empirical parameter to generate the target structure.

Another measure of the target model accuracy is the
calculated values for the static dipole polarizability of the tar-
get. These values proved to be somewhat larger than the
experimentally observed values. This can potentially lead to an
overestimation of the calculated cross sections. A simple way
to deal with this problem is to introduce a model polarization
potential that modifies the dipole term of the electron-electron
and antiproton-electron Coulomb potentials. We refer to
Ref. [26] for a more detailed discussion and note only that
introduction of the model polarization potential allows us to
fit calculated polarizability values to the experimental values.

B. Results

The study of ionization cross sections provides a strict test
of the theory as it requires an accurate representation of all
reaction channels and coupling between them. In Figs. 1–5 we
present our calculated total single-ionization cross sections
(TSICS) as a function of projectile energy ranging from 5 keV
to 2 MeV.

The CCC cross sections for antiproton-impact single
ionization of Ne are presented in Fig. 1 in comparison with the
experiment and other calculations. As one can see, the present
CCC results are in excellent agreement with the experiment
at all energies where measurements are available. In this and
the following figures we also show our first Born results to
indicate the importance of the interchannel coupling. For all
considered targets we obtain the expected agreement between
the Born results and the experiment at higher projectile
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FIG. 1. (Color online) Integrated single-ionization cross section
for p̄-Ne collisions. The present CCC and Born results are com-
pared with the experimental measurements of Paludan et al. [18],
independent-particle calculations of Kirchner et al. [21,22] with
“response” (IPM-BGM 1) and with “no response” (IPM-BGM 2),
and CDW-EIS calculations of Montanari and Miraglia [23].

energies. Two types of independent particle model calculations
of Kirchner et al. [21] and CDW-EIS calculations of Montanari
and Miraglia [23] yield similar results, which are slightly
higher than the experiment. The disagreement systematically
increases as the projectile energy decreases. The calculations
of Kirchner et al. [21], where the time-dependent target
screening was included, slightly reduced the cross sections,
bringing them closer to the experimental data.

In Fig. 2 we present our results for antiproton-impact single
ionization of Ar. At energies above 100 keV and below 1 MeV
current results are slightly higher than the experiment and
are in good agreement with CDW-EIS calculations of Mon-
tanari and Miraglia [23]. Below 50 keV they underestimate
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FIG. 2. (Color online) Integrated single-ionization cross section
for p̄-Ar collisions. Present CCC and Born results are compared with
the experimental measurements of Paludan et al. [18] and Knudsen
et al. [19]. Independent-particle calculations of Kirchner et al.
[21,22] with “response” (IPM-BGM 1) and CDW-EIS calculations
of Montanari and Miraglia [23] are also shown.
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FIG. 3. (Color online) Integrated single-ionization cross section
for p̄-Kr collisions. Present CCC and Born results are compared with
the experimental measurements of Paludan et al. [18] and CDW-EIS
calculations of Montanari and Miraglia [23].

the experimental data of Paludan et al. [18] and Knudsen
et al. [19]. The measurements for low-impact energies [19]
match well with the previous ones by Paludan et al. [18] at
higher energies. Independent particle model calculations of
Kirchner et al. [21] where the time-dependent target screening
is included better describe the experiment at all energies
considered.

The results for ionization of heavier elements by antiproton
impact are shown in Figs. 3 and 4. Our calculations for
both Kr and Xe yield in general an agreement with the
experiment of Paludan et al. [18] that is similar to Ar: At
high energies calculated curves merge with the measured
data; at intermediate energis from 90 to 600 keV they are
slightly higher; below 60 keV calculated cross sections fall
more rapidly as the impact energy decreases. The CDW-EIS
calculations of Montanari and Miraglia [23] describe the
experiment very well at all energies. Somewhat unexpectedly,
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FIG. 4. (Color online) Integrated single-ionization cross section
for p̄-Xe collisions. Present CCC and Born results are compared with
the experimental measurements of Paludan et al. [18] and CDW-EIS
calculations of Montanari and Miraglia [23].
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FIG. 5. (Color online) Integrated single-ionization cross section
for p̄-H2O collisions. The present CCC and Born results are shown.

for Kr and Xe the agreement between the CDW-EIS results
and the experiment is better than for Ne and Ar while the target
structure is more complicated.

Finally, the present calculations for single ionization of H2O
by antiproton-impact are shown in Fig. 5. At this stage there
are no experimental measurements available for antiproton
scattering on the water molecule. However, as we mentioned
earlier such experiments are planned for the near future.
We expect that since the current results were obtained using
the nonperturbative, close-coupling approach they should be
reliable at energies down to 1 keV. This should provide
guidance to future experiments.

VI. CONCLUSIONS

We have presented antiproton-impact single-ionization of
Ne, Ar, Kr, Xe, and H2O using a time-dependent convergent
close-coupling approach. For the description of Ne, Ar, Kr,
and Xe atom wave functions, we used a model of six
p-shell electrons above an inert Hartree-Fock core with
only one-electron excitations from the outer p-shell allowed.
The water molecule is treated using a neonization model
recently proposed by Montanari and Miraglia [24]. This model
describes the ten-electron water molecule as a dressed atom in
a pseudospherical potential like Ne. For all targets considered
in the present work the expansion basis is obtained using the
orthogonal Laguerre functions. Calculated single-ionization
cross sections for Ne, Ar, Kr, and Xe are in good agreement
with the experimental measurements. A common feature of
the CCC cross sections for the noble gas targets is that
they underestimate the experimental data below 100 keV and
slightly overestimate them above this energy. Since we use the
frozen-core approximation for the target structure, this is to
be expected. Our previous calculations of antiproton-impact
ionization of He [12] where the target structure was treated
using both frozen-core and multiconfiguration approximations
showed that the total ionization cross sections obtained in
the multiconfiguration treatment were substantially higher
at the lower energies (below 100 keV) than the frozen-
core ones and slightly higher at the higher energies. This
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suggests that for a better agreement with experiment a proper
multiconfigurational treatment of the many-electron target is
required. Finally, the agreement between our present results for
the heavier noble-gas targets and experiment is slightly worse
than for the lighter targets. Apart from the frozen-core ap-
proximation, heavier targets like Xe may require a relativistic
treatment.
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