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X-ray-photon scattering by an excited and ionized atom
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The scattering process of an x-ray photon by an excited and ionized many-electron atom with attosecond
photon-electron contact interaction is theoretically investigated. The results of the authors’ recent work [Hopersky
et al., Phys. Rev. A 88, 032704 (2013)] are generalized for the cases of (a) arbitrary energy of the photon that
prepares the scattering state and (b) the scattering of the photon by the continuous spectrum electron of the
ionization state of the atom. The atom of Ne is considered as the object of the study. Along with the effects
of normal Compton and elastic scattering, the existence of anomalous inelastic scattering is predicted. It may
be assumed that this effect will become a basis for an experimental method of increasing the energy of the
photons generated, for example, by a free-electron x-ray laser. It is determined that during the elastic scattering
of a photon by an electron of the continuous spectrum, along with the known contribution from the jl Bessel
function over the l = 0 harmonic (Thomson scattering), there is also a contribution from Bessel functions with
harmonics l ∈ [1; ∞). The experimental discovery and application of the anomalous Compton photon scattering
effect directly by the atomic electron of the continuous spectrum have their own practical interest.
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I. INTRODUCTION

Current experimental capabilities of the x-ray free-electron
laser ([1], and references therein) and of the inverse Compton
scattering of a photon by a high-energy beam of free electrons
([2], and references therein) open up the possibility of inves-
tigating fundamental nonlinear processes of the interaction
between a photon and a many-electron system with a high
degree of spectral resolution. One of these processes, in
particular, is the scattering of an x-ray photon �ω1 (� is
Planck’s constant, ω1 is the angular frequency of the photon)
by an excited and ionized atom with attosecond (1 as = 10−3 fs
= 10−18 s) duration of the photon-electron interaction.

We recently performed a theoretical investigation of the
double-differential cross section [d2σ/d(�ω2)d�2; �ω2 is
energy and �2 is the solid angle of flight of the scattered
photon] of this process [3] for the beryllium atom (Be: nuclear
charge is Z = 4, configuration and ground-state term are
[0] = 1s22s2[1S0]). We determined that with the duration of
interaction between the photons and the excited atom much
smaller than the lifetime of the 1s vacancy, the quantum effect
of anomalous (ω2 > ω1) inelastic scattering of the photon by
the previously excited many-electron system is realized. The
consideration was limited only to the 1s2s2np[1P1], n � 2
states of the discrete spectrum with energies fixed as the
energies of photoexcitation thresholds: �ω0 = I1snp. Here, �ω0

is the energy of the photon preparing the excited states as the
initial scattering states and I1snp is the energy of the threshold
of 1s → np photoexcitation. We also did not consider the
scattering processes of the �ω1 photon by the 1s2s2εp[1P1]
states of the continuous spectrum. The inclusion of the latter,
as will be shown, leads to the discovery of new quantum effects
in the processes of scattering of a photon by an excited and
ionized atom, which was not studied in [3].

In this work we relax the mentioned constraints of [3] and
construct a general nonrelativistic quantum theory of triple-
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differential scattering cross section [d3σ/d(�ω0) d(�ω2) d�2]
of a photon by an excited and ionized atom with attosecond
duration of the contact interaction between the photons and
the atom for arbitrary energy of the �ω0 photon. As an
example, we consider the atom of neon (Ne: Z = 10, [0] =
1s22s22p6[1S0]). In this case, the condition of applicability
of the type of quantum perturbation theory developed by us,
�|E0 + I1s |−1 � τ � τ1s [4], takes the form of 0.25 as �
τ � 2.44 fs. Here, E0 is the energy of the atomic ground state,
I1s is the energy of the ionization threshold of the 1s2 atomic
shell, τ is the duration of the contact interaction between
the photons and the atom, and τ1s = ��−1

1s is the lifetime
of the 1s vacancy. Quantities E0 = −3497.86 eV and I1s =
868.39 eV are obtained in this work. For the natural decay
linewidth of the 1s vacancy, �1s(1s → np) = 0.24 eV [5]
and �1s(1s → εp) = 0.27 eV [6] are taken. According to,
e.g., [7] (�ω1 = 10 keV, τ = 50 as) and [8] (�ω1 = 1.6 keV,
τ = 2.5 as) the above double inequality may be realized
experimentally. As a result, one can expect the experimental
discovery of the quantum effects predicted in [3] and in this
work when a photon is scattered by a previously excited and
ionized many-electron system.

II. THEORY

The attempt to represent the process of “merging” of
�ω0 and �ω1 photons via the �ω0 + �ω1 + [0] → [0] + �ω2

channel is forbidden by the Landau-Yang theorem [9] of
quantum electrodynamics about the conservation of the total
spin of a two-photon system. In this case with the 1S0 term of
the atomic ground state s(ω0) ⊕ s(ω1) = 0 (or 2) �= s(ω2) =
1. Therefore let us consider the investigated here scattering of
the �ω1 photon by a previously excited and ionized atom as a
two-step process.

First step. The �ω0 photon excites and ionizes the atom into
states 1s2s22p6(n,ε)p,

�ω0 + [0] → 1s2s22p6(n,ε)p[1P1], (1)
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and thus prepares (creates) the initial scattering states. The
probability amplitude for the excitation and ionization of the
atom is determined by the matrix element of the radiative
transition operator:

R̂ = − e

mec

N∑
i=1

(p̂i · Âi). (2)

In Eq. (2) e is the electron charge, me is the electron
mass, c is the speed of light in vacuum, Âi ≡ Â(t ; 	ri) is
the electromagnetic field operator in the second-quantization
representation, t is the field propagation time, 	ri is the radius
vector, p̂i is the momentum operator of the ith atomic electron,
and N is the number of electrons in the atom.

Second step. The �ω1 photon is scattered by
1s2s22p6(n,ε)p states over the channels:

�ω1 + 1s2s22p6(n,ε)p → C + �ω2, (3)

where the structures of C configurations of the final scattering
states will be specified in Sec. III. The probability amplitude
of scattering is determined by the matrix element of the
contact interaction operator nonlinear with respect to the
electromagnetic field:

Q̂ = 1

2me

(
e

c

)2 N∑
i=1

(Âi · Âi). (4)

The notion of “contactness” of the Q̂ operator means that
operators of the electromagnetic field in Eq. (4) and the
single-electron transition wave functions are taken in the
same space-time point (see Fig. 2). The nonlinearity in
the Q̂ operator over the field, even in the first order of the
nonrelativistic perturbation theory, determines the existence
of quantum effects of both normal (ω2 � ω1), and anomalous
(ω2 > ω1) scattering. Of course, the R̂ operator also deter-
mines two-photon processes, but already in the second order
of the perturbation theory. Consideration of such processes
with the participation of the R̂ operator is the subject of future
research.

Then, the analytical structure of the total triple-differential
scattering cross section (d3σ/dω0 dω2 d�2 ≡ σ (3)) of the
ω1 photon by the excited and ionized atom reproduces the
statement of the well-known [10] theorem of total probability,
but in a generalized [integral, see Eq. (11)] form:

σ (3) =
∞∑

n>f

ρnσ
(3)
n + ρcσ

(3)
c . (5)

In Eq. (5) and below, the atomic system of units is used (e =
me = � = 1), and σ (3)

n (σ (3)
c ) are defined as the partial triple-

differential cross sections over the 1s2s22p6np (1s2s22p6εp)
states of the discrete (continuous) spectrum, f is the Fermi
level (set of quantum numbers of the atomic valence shell in the
ground state [0]). Indeed, from the point of view of interpreting
the total probability theorem in Eq. (5), a correspondence is
defined: σ (3) ∼ P (A) is the probability of event A (scattering
of the photon ω1); the probability of the first step as ρn,c ∼
P (Hn,c), the probability of hypothesis Hn,c [creation of the
1s2s22p6np (1s2s22p6εp) state]; and the probability of the

second step as σ (3)
n,c ∼ P (A/Hn,c), the conditional probability

of event A after the realization of hypothesis Hn,c.
According to this correspondence, probabilities ρn < 1 and

ρc < 1 (ρn → 0 and ρc → 1 as ω0 → ∞) are expressed via
the squares of the matrix elements of the R̂ operator:

ρn = σn/σ = Pn/D, (6)

ρc = σc/σ = η/D, (7)

σ =
∞∑

n>f

σn + σc , (8)

D =
∞∑

m>f

Pm + η. (9)

In Eqs. (6)–(9) the following quantities are defined:

Pn = M2
nLn, (10)

η = (1/ω0)
∫ ∞

0
(x + I1s)M

2(x)L(x) dx, (11)

Mn = 〈1s|r̂|np〉, (12)

M(x) = 〈1s|r̂|xp〉, (13)

Ln = (γ1s/π )
[
(ω0 − I1snp)2 + γ 2

1s

]−1
, (14)

L(x) = (γ1s/π )
[
(ω0 − I1s − x)2 + γ 2

1s

]−1
. (15)

In Eqs. (6)–(15) σn (σc) is the cross section of the single
1s → np (1s → εp) excitation (ionization) of the 1s2 atomic
shell [11], Mn [M(x)] is radial part of the probability amplitude
(in Dirac’s notation [4]) of the 1s → np (1s → εp) transition
in the dipole approximation for the R̂ operator, Ln and L(x)
are Cauchy-Lorentz spectral functions (spectral densities of
states), and γ1s = �1s/2. Let us note that the use of the dipole
approximation for the R̂ operator is justified by the satisfaction
of the inequality λ  rnl . Here, λ is the wavelength of the
absorbed ω0 photon, and rnl is the average radius of the nl

atomic shell that determines the radiative transition integral.
In our case for ω0 from 850 to 900 eV (λ from 14.6 to 13.8 Å)
we have λ  r1s(Ne) = 0.08 Å. As expected, for arbitrary
energy of the ω0 photon, the condition of completeness of the
hypothesis set [10] is satisfied:

∞∑
n>f

ρn + ρc = 1. (16)

Functions ρn and ρc for the Ne atom are shown in Fig. 1.
Violation of equality (16) in the region of energies ω0 � I1s is
due to the fact that we limited the number of photoexcitation
states to those with n � 10 out of the full set of n ∈ [3; ∞).
In Figs. 3–5 the violation of equality (16) leads to the loss of
scattering intensity in the region of energies ω0 � I1s . In our
other work [12] it is shown that for the Ne atom, a similar
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FIG. 1. Hypothesis probability functions for the Ne atom. (a)
Top solid curve: sum of functions ρn, �1s = 0.24 eV [5]; (b) �1s =
0.27 eV [6]. I1s = 868.39 eV (calculation of this work). ω0 is energy
of the photon preparing the 1s2s22p6(n,ε)p initial scattering states.

nonphysical loss of photoexcitation intensity (in our case,
the loss of creation probability of hypotheses Hn) practically
disappears for n ∈ [3; 50].

The analytical structures of σ (3)
n and σ (3)

c scattering cross
sections are expressed via the matrix elements of the Q̂

operator and are defined by the methods in [13]. They will
be specified in Sec. III.

Let us conclude Sec. II on the following note. The
appearance of a vacancy in the atomic core is accompanied
by the radial relaxation effect of ground and excited electronic
states [11]. Indeed, the appearance of a deep vacancy leads
to the fact that, first of all, the outer shells of the atomic
residue react to the destruction of the “screen” between
them and the atomic nucleus, significantly reducing their
average radius. The displacement towards the nucleus of
the atomic residue electron density shells is accompanied
by further delocalization of the photoelectron wave function.
Estimating the electrostatic interaction time in the hydrogen-
like approximation for an average radius 〈rnl〉 of the valence
electron [14] has the form

τee = 〈rnl〉
c

, 〈rnl〉 =
(

a0

2Z

)
[3n2 − l(l + 1)], (17)

where the Bohr radius is a0 = 5.29 × 10−11 m. For the Ne
atom (n = 2, l = 1) we have τee

∼= 0.10 as � τ � τ1s . Thus,
the effect of radial relaxation has enough time to occur given
the attosecond contact interaction between the photons and
the atom (τ ∼ 25 as) studied here. As a result, the probability
amplitudes for both radiative and contact transitions are
modified. For example, the creation of a 1s vacancy in
the Ne atom leads to the following transformation of the
probability amplitude (12):

Mn = N1s

(
〈1s0|r̂|np+〉 − 〈1s0|r̂|2p+〉 〈2p0|np+〉

〈2p0|2p+〉
)

, (18)

N1s = 〈1s0|1s+〉〈2s0|2s+〉2〈2p0|2p+〉6. (19)

Here the radial parts of the wave functions of the l0 states
are obtained by solving the nonlinear integral-differential
self-consistent-field Hartree-Fock equations for configurations
of the atomic ground state; the radial parts of the wave
functions of the l+ states are obtained by solving Hartree-Fock
equations for 1s+2s2

+2p6
+np+[1P1] configurations (in the field

of 1s vacancy) of the excited atom.

III. RESULTS AND DISCUSSION

The main physical results of this work are presented in
Secs. III C and III D. The results of calculations of normal
Compton [15] (Sec. III A) and Thomson [16] (Sec. III B)
cross sections are presented with the aim of completeness of
theoretical description, as well as demonstrating the orders of
magnitudes and the forms of triple-differential cross sections
for various types of scattering processes. As such, we do not
account for the Ne 2p6 shell spin-orbit splitting effect because
the theoretical value [17] of the constant for such splitting is
δSO(2p3/2,1/2) = 0.094 eV < �beam = 1 eV (see Fig. 3). Let us
next specify the C configurations in Eq. (3) and the analytical
structures of the corresponding partial σ (3)

n - and σ (3)
c -scattering

cross sections in Eq. (5).

A. Normal Compton scattering

Consider the final states of the contact 2s → xl and 2p →
x(l,l + 1) transitions of the form

C → Cn1l1l =
{

1s 2s 2p6 np xl, n1l1 = 2s,

1s 2s2 2p5 np x(l,l + 1), n1l1 = 2p.
(20)

In Eq. (20) and below, x is the energy of the continuum
electron. The probability amplitudes of processes (3) for
configurations (20) in the Feynman diagram representation
of nonrelativistic many-body quantum theory are given in
Figs. 2(a) and 2(b).

With our methods from Ref. [13] for the σ (3)
n -scattering

cross section we obtain

σ
(3)
n,⊥ = r2

0 βLn

∑
n1l1�f

∞∑
l=0

∫ ∞

0
Hn1l1l G

(n)
n1l1l

dx, (21)

H2sl = (4l + 2)R2
l (2s,xl), (22)

H2pl = 6(l + 1)
[
R2

l (2p,x(l + 1)) + R2
l+1(2p,xl)

]
, (23)
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FIG. 2. Probability amplitudes for processes [Eq. (3)] in the
Feynman diagram representation: (a) C2sl , (b) C2pl , (c) C2pn, (d) C1sy .
Arrow left, vacancy (�f ); arrow right, electron (>f ); open circle
is the vertex of the contact interaction over the Q̂ operator. Lower
straight lines (unbound parts of the diagrams) are interpreted as the
“spectators” of the process. Time direction: left to right (t1 < t2).

Rl(a,b) = 〈a|jl(qr)|b〉, (24)

q = (ω1/c)(1 + β2 − 2β cos θ )1/2, (25)

G
(n)
n1l1l

= 1

γb

√
π

exp

{
−

(
ω1 − ω2 + I

(n)
n1l1

γb

)2}
, (26)

I
(n)
n1l1

= E(1s2s22p6np) − E
(
Cn1l1l

)
< 0. (27)

In Eqs. (21)–(27), r0 is the classical electron radius, β =
ω2/ω1, jl is the lth-order spherical Bessel function of the
first kind, θ is the scattering angle as the angle between
wave vectors of the incident (	k1) and scattered (	k2) photon,
q = |	k1 − 	k2| is the momentum transferred to the excited
and ionized atom, G is the Gauss spectral function, γb =
�beam/(2

√
ln 2), �beam is the spectral resolution width of the

experiment, and E are full Hartree-Fock state energies.
The symbol ⊥ in Eq. (21) and below corresponds to

choosing the following scheme for the proposed experiment of
scattering a linearly polarized x-ray photon: 	e1||	e2, 	e1,2 ⊥ P ,
where 	e1 (	e2) is the polarization vector of the incident
(scattered) photon, P is the scattering plane, containing vectors
	k1 and 	k2.

For the σ (3)
c -scattering cross section with the substitute of

the np electron of the discrete spectrum by the εp electron of
the continuous spectrum in Eq. (20) and in Figs. 2(a) and 2(b)
similarly to Eq. (21) we obtain

FIG. 3. Triple-differential cross section of the normal Compton
scattering of a linearly polarized (perpendicular to the scattering
plane, ⊥) x-ray ω1 photon by the excited and ionized atom of Ne
with attosecond duration of the contact photon-electron interaction.
ω1 = 1000 eV, I1s = 868.39 eV, �1s(1s → np) = 0.24 eV, �1s(1s →
εp) = 0.27 eV, θ = 90◦, �beam = 1.0 eV. ω2 is energy of the
scattered photon. Scattering of the ω1 photon by the εp electron
of the continuous spectrum is not taken into account.

σ
(3)
c,⊥ = r2

0 βS(ω0)
∑

n1l1�f

∞∑
l=0

∫ ∞

0
Hn1l1l Gn1l1 dx, (28)

S(ω0) = 1

2πγ1s

[
1

2
+ 1

π
arctan

(
�s

γ1s

)
+ �sL(0)

]
, (29)

Gn1l1 = 1

γb

√
π

exp

{
−

(
ω1 − ω2 + �n1l1 − x

γb

)2}
, (30)

where S(ω0) is the spectral function that is
transmissive into the region of energies ω0 � I1s , �s =
ω0 − I1s , �n1l1 = E(1s2s22p6) − [E(1s2s2p6),n1l1 = 2s;
E(1s2s22p5), n1l1 = 2p], �n1l1 < 0, L(0), see Eq. (15) with
x = 0.

Calculation results for the full scattering cross section (5)
in the case of normal (ω2 < ω1) Compton scattering with the
attosecond duration of the contact photon-electron interaction
while accounting for Eqs. (21) and (28) are presented in Fig. 3.
The calculated values of I1snp from Eq. (14) are given in
Table I.

B. Thomson scattering

In this case, C = 1s2s22p6(n,ε)p. Then, for the σ (3)
n - and

σ (3)
c -scattering cross sections we get, respectively,

(i) 1s → np excitation:

σ
(3)
n,⊥ = r2

0 βLnF
2
n G12, (31)

Fn =
∑

n1l1�np

N1R0(n1l1,n1l1), (32)
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TABLE I. Energy thresholds of the 1s → np photoexcita-
tion (I1snp) and intershell 1s2s22p6np → 1s22s22p5np transitions
[�(n)

sp = E(1s2s22p6np) − E(1s22s22p5np)] for the atom of Ne
(calculation of this work).

n I1snp (eV) �(n)
sp (eV)

3 865.410 848.468
4 867.020 848.519
5 867.602 848.533
6 867.878 848.539
7 868.031 848.541
8 868.124 848.542
9 868.185 848.543
10 868.227 848.544

G12 = 1

γb

√
π

exp

{
−

(
ω1 − ω2

γb

)2}
. (33)

(ii)1s → εp ionization:

σ
(3)
c,⊥ = r2

0 βS(ω0)F 2G12. (34)

In Eq. (31) Fn is the form factor (structure function) of the
excited atom, N1 is the filling number of the n1l1 shell.
In Eq. (34) F is the form factor of the atomic ion with
the configuration of 1s2s22p6[2S1/2], where the summation
over the n1l1 shells is bound by the condition n1l1 � f .
Calculation results for the full scattering cross section (5) for
the case of Thomson scattering with attosecond duration of the
photon-electron interaction while taking into account Eqs. (31)
and (34) are presented in Fig. 4.

C. Anomalous inelastic scattering

In this case let us only consider the configuration C2pn =
1s22s22p5np. States [0] (return to the atomic ground state)
and 1s22s2p6(n,ε)p as the final scattering states were not
taken into account, as their sum contribution to the total
anomalous inelastic cross section is ∼5% of the contribution
of 1s22s22p5(n,ε)p configurations. The probability amplitude

FIG. 4. Same as Fig. 3, but for Thomson scattering.

FIG. 5. Same as Fig. 3, but for anomalous inelastic scattering.

of process (3) for configuration C2pn in the Feynman diagram
representation is given in Fig. 2(c). For the σ (3)

n -scattering cross
section we obtain

σ
(3)
n,⊥ = 6r2

0 βLnR
2
1(1s,2p)G(n)

sp , (35)

G(n)
sp = 1

γb

√
π

exp

{
−

(
ω1 + �(n)

sp − ω2

γb

)2}
, (36)

�(n)
sp = E(1s2s22p6np) − E(1s22s22p5np) > 0. (37)

For the σ
(3)
c,⊥-scattering cross section with the substitution of

the discrete spectrum np electron by the continuous spectrum
εp electron in the C2pn configuration and in Fig. 2(c) similar
to Eq. (35) we obtain

σ
(3)
c,⊥ = 6r2

0 βS(ω0)R2
1(1s,2p)Gsp, (38)

Gsp = 1

γb

√
π

exp

{
−

(
ω1 + �sp − ω2

γb

)2}
, (39)

�sp = E(1s2s22p6) − E(1s22s22p5) > 0. (40)

Results (35) and (38) generalize those of [3] for the case
of constructing a triple-differential scattering cross section
and give a description of the quantum effect of anomalous
inelastic scattering of the ω1 photon by an excited and
ionized atom: given the attosecond duration of the contact
photon-electron interaction, the energy of 1s2s22p6(n,ε)p →
1s22s22p5(n,ε)p transition is transferred to the ω1 photon, and
does not leave the atomic system via, for example, creation of
the ω3 photon of Kα emission in the radiative decay channel
1s → 2p5 + ω3.

The calculation results of the full triple-differential scat-
tering cross section (5) in the case of anomalous inelastic
scattering, and taking into account Eqs. (35) and (38), are
presented in Fig. 5. The values of Eq. (37) are shown in Table I.
Local maxima of the scattering cross section on the energy
axis of the ω2 photon correspond to the zero values of the
exponents in Eqs. (36) and (39). Locations of the resonant and
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continuous scattering cross-section structures on the energy
axis of the ω0 photon are determined by the values of I1snp

and ω0 � I1s , respectively. Of course, a decreasing �beam in
Eqs. (36) and (39) can significantly increase (see, for example,
σ

(3)
⊥ → 104 σ

(3)
⊥ with �beam = 1 eV → 10−4 eV [18]) the

probability of the experimental observation of the anomalous
inelastic scattering effect via intershell transitions in the atomic
residue.

D. Scattering from a continuous spectrum electron

Finally, let us consider the process of scattering of the ω1

photon by an electron of the continuous spectrum of the initial
scattering state, not taken into account in Secs. III A, III B,
and III C:

ω1 + 1s2s22p6xp → C1sy + ω2, (41)

where C1sy = 1s2s22p6y(l,l + 1). The probability amplitude
of process (41) in the Feynman diagram representation is given
in Fig. 2(d). In this case, the 1s vacancy is left as a “spectator”
of the scattering process, and we limit ourselves by taking into
account contact transitions into single-electron states of only
the continuous (y � 0) spectrum. For the σ

(3)
c,⊥-scattering cross

section we obtain

σ
(3)
c,⊥ = r2

0 β

∫ ∞

0
dy

∫ ∞

0
L(x) P (x,y) Gxy dx, (42)

P (x,y) =
∞∑
l=0

(l + 1)
[
R2

l (xp,y(l + 1)) + R2
l+1(xp,yl)

]
, (43)

Gxy = 1

γb

√
π

exp

{
−

(
ω1 − ω2 + x − y

γb

)2}
. (44)

The convergence of the Rl improper integrals of the first
kind of the two radial continuous spectrum wave functions
in sum (43) is guaranteed by the oscillating character of the
Bessel functions and the fast decay of their magnitudes [19]:
|jl(z)| ∼ z−1 when z → ∞.

In this work we limit ourselves to the investigation of the
limiting form of scattering cross section (42) when γ1s → 0,
γb → 0. Then, L(x) → δ(ω0 − I1s − x) and Gxy → δ(ω1 −
ω2 + x − y), and instead of Eq. (42) we obtain

σ
(3)
c,⊥ = r2

0 βP (x0,y0), (45)

x0 = ω0 − I1s � 0, (46)

y0 = ω1 − ω2 + ω0 − I1s � 0. (47)

Calculation results for the triple-differential scattering cross
section

σ
(3)
⊥ = ρc σ

(3)
c,⊥ (48)

are presented in Fig. 6. The energy position of the scattering
cross-section structure on the energy axis of the ω0, ω2

photons is defined by the hypothesis probability function in
Fig. 1(b) and the considerably nonmonotonic behavior of the
scattering probability density function P (x0,y0). With this, the
structure of the scattering cross section (48) presents us with

FIG. 6. Triple-differential scattering cross section of a linearly
polarized (perpendicular to the scattering plane, ⊥) x-ray ω1 photon
by the εp electron of the continuous spectrum of the ionized atomic
state of Ne in the approximation �1s = �beam = 0. (b) Same as (a),
but rotated by 180◦. The values of ω1, I1s , and θ are the same as in
Fig. 3. ω2 is the energy of the scattered photon.

a description of two quantum effects of scattering of the ω1

photon by the ionized atom, which were not investigated in [3].
First effect. In the region of elastic scattering, along with the

known contribution of the harmonic l = 0 [R0 with x0 = y0 in
Eq. (43)] of Thomson scattering, appears a contribution of an
infinite (and countable) number of harmonics l ∈ [1,∞) [Rl

with x0 = y0 in Eq. (43)]. This effect [exclude R2 for l = 1,
x0 = y0 in Eq. (43)] can be interpreted as an effect of changing
the l symmetry of the continuous spectrum electron of the final
elastic scattering state.

Second effect. Outside of the region of elastic scattering
there appears not only the structure of the normal Compton
scattering cross section (as a continuation along the energy
axis of the ω2 photon of the scattering cross-section structure
in Fig. 3 with ω0 � I1s), but also the structure of the anomalous
Compton scattering cross section. The existence of the second
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effect follows from Eq. (47) as a realization of the double
inequality

0 � ω2 � ω1 + (ω0 − I1s). (49)

Indeed, with ω0 > I1s an energy region ω2 > ω1 occurs.
Let us give a physical interpretation of Eq. (49) in a different

form. Write down the energy conservation law for process (41)
in the form:

ω2 = ω1 + (K1 − K2), (50)

where K1 (K2) is the kinetic energy of the continuous spectrum
electron of the initial (final) scattering state. Then: (a) when
K2 > K1, the normal Compton scattering regime is defined
(final scattering state electron takes away part of the ω1 photon
energy); (b) when K2 = K1, the regime of elastic (including
Thomson) scattering is defined (ω1 photon is elastically
scattered by the initial scattering state electron); (c) when
K2 < K1, the regime of anomalous Compton scattering up
to K2 = 0 is defined (all kinetic energy of the initial scattering
state electron is transferred to the ω1 photon: ωmax

2 = ω1 + K1,
K1 = ω0 − I1s). With the increase in the energy of the ω0

photon (increasing K1) and a fixed value of energy of the
ω1 photon, the maximum of the normal Compton scattering
profile is reduced and shifted into the long-wave energy
region of the ω2 photon relative to the energy value of the
elastic scattering [Fig. 6(a)]. An analogous result, but with an
evolution into the short-wave energy region of the ω2 photon,
is true for the cross-section profile of the anomalous Compton
scattering of the ω1 photon by the ionized atom [Fig. 6(b)].
With γ1s > 0 and γb > 0, the said effects are “hidden” in the
complex analytical structure of the double improper integral
of the first kind [Eq. (42)]. Calculation of this integral is a
subject of future investigations.

Let us note that in contrast with the results of
Secs. III A, III B, and III C, the existence of both normal Comp-
ton and Thomson scattering structures, as well as the described
quantum effects in the case of scattering of the ω1 photon by
the continuous spectrum atomic electron, is not limited by the
attosecond duration scale of the contact interaction. Indeed,
the decay of the 1s vacancy as the “spectator” over radiative
(e.g., 1s → 2p5 + ω3) and Auger autoionization (e.g., 1s →
2p4εd) channel types only modifies the Hartree-Fock field
for continuous spectrum electrons, but does not take away the
fact of their contact interaction with the ω1 and ω2 photons.
Also note that the effect of anomalous inelastic scattering by
an atomic electron of the continuous spectrum is analogous
to the same effect but with inverse Compton scattering of the
ω1 photon by a high-energy beam of free electrons (part of the
beam energy is transferred to the ω1 photon and there appears
a regime of anomalous Compton scattering). Thus, similar
to the results in [2], a theoretical and experimental study of
this effect in the case of an ionized atom is of independent
interest. In contrast to the results of experiments with a beam
of free electrons, dependence of the absolute values and the
forms of the scattering cross section (42) on both the nuclear
charge and the structure of the infinite set of l symmetries of
continuous spectrum atomic electron wave functions should
be expected. Indeed, the probability density function P (x,y)
in Eq. (43) is defined via the aforementioned infinite set of

functions, obtained in a Hartree-Fock field of the fixed atom
deep vacancy.

Refinement of the results of Sec. III is concerned, first of all,
with solving the problems of analytical construction and taking
into account the full orthonormal set of 1s2s22p6(n,ε)p states
of the atomic excitation and ionization. An example of solving
the first problem is given in our recent work [20] (the concept
of expanded infinitely dimensional Hilbert space). Solution of
the second problem is a subject of future investigations.

Thus, according to the results of Sec. III, two types of
processes are found, defining the effect of anomalous inelastic
scattering of the ω1 photon by the excited and ionized atom.
The first type (Sec. III C): The energy of the intra-atomic
transition [Fig. 2(c)] �(n)

ps is transferred to the ω1 photon
and there appears a scattered photon of the energy ω2 =
ω1 + �(n)

ps > ω1 (Fig. 5). In this case, already with ω0
∼= I1s ,

there happens to be a significant (∼1.85 times for the Ne
atom) increase in energy of the ω1 photon. The second type
(Sec. III D): The ω1 photon with ω0 > I1s takes away the
energy of the continuous spectrum atomic electron [Fig. 2(d)]
and there appears a scattered photon of energy ω2 > ω1

(Fig. 6). With ω0
∼= 2I1s , both processes create a scattered

photon of energy ω2 = ω1 + �(n)
ps , their probabilities (for

�beam → 0) nearing each other in the order of magnitude and
are summed. There appears a local maximum of probability
of the anomalous inelastic scattering effect in the resulting
scattering cross section. With ω0 > 2I1s , as is expected, the
main source of the high-energy (ω2  ω1) scattered photons
is the second type of process.

Of course, in a possible experiment (e.g., with an x-ray free-
electron laser) to discover the effect of anomalous inelastic
scattering of the ω1 photon by an excited and ionized atom,
it is necessary to satisfy the condition [3] t2 − t1 � τ1s . Here,
t1 (t2) is duration of the ω0 (ω1)-photon pulse when realizing
two-step scattering processes, investigated in this work. The
problem of satisfying this condition is still open.

IV. CONCLUSIONS

Nonrelativistic variant of quantum theory for the process
of scattering of an x-ray photon by an excited and ionized
atom with attosecond duration of the contact photon-electron
interaction is constructed. As the main theoretical result, we
predict the quantum effect of anomalous (ω2 > ω1) inelastic
scattering. It is also found that the elastic scattering of
the photon by an electron of the continuous spectrum is
accompanied by the effect of changing the orbital symmetry
of the scattered electron. On the example of the Ne atom we
obtain the absolute values and the forms of triple-differential
cross sections of normal (ω2 < ω1) Compton, elastic (ω2

∼=
ω1), and anomalous inelastic scattering in terms of the photon
energy that prepares the excitation and ionization states of
the atom. The question of an experimental observation of the
predicted quantum effects of scattering is left open (see Sec. IV
in Ref. [3]).
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