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Precision calculation of low-energy electron-impact excitation cross sections of helium
among the ground and excited states
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Low-energy electron-impact cross sections of helium among the ground and some low excited states are
calculated using the R-matrix method. The convergences of the cross sections are checked systematically by
using five sets of high-quality target states; i.e., including 5, 11, 19, 29, and 39 physical target states, respectively.
Our calculated cross sections are in excellent agreement with the benchmark high-resolution experimental
data. Compared with the recommended theoretical data, there is a deviation of about 6%, which suggests the
recommended data may need a revision. Based on our calculation results, the influence of the Rydberg target
states on the collision cross sections of the excited states is found to be similar to the case of the ground state; i.e.,
the amplitude of resonance structures will decrease with respect to the principal quantum number n of Rydberg
target states. This result should be very useful for providing the cross-section data in the whole energy regions
with high quality, which would be of great importance in related scientific fields.
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I. INTRODUCTION

The process of electron-impact excitation plays an impor-
tant role in various fields, such as radiation physics [1], plasma
physics [2], atmospheric physics [3], and astrophysics [3–5].
Helium is an abundant element in the universe. Electron-
impact excitation cross sections of helium, either from the
ground state or from excited states, are indispensable physical
parameters for astrophysics [6–10]. Accurate collision cross
sections of helium are important in obtaining reliable helium
abundances, which can test modern theories of galactic and
primordial nucleosynthesis [8].

Helium is probably the simplest and most straightforward
atom for the experimental investigation. Detailed experimental
studies have been carried out in the past 80 years (see review
articles [11–14] and references therein). Although many exper-
imental studies have been carried out, the physical precisions
of the scattering cross sections are still difficult to determine.
Some experiments are not absolute measurements [15,16];
the normalization strongly depends on the theoretical values.
For the absolute measurement experiment, the state-of-the-
art experimental precisions are anticipated with only about
10% [17]. For example, absolute measurements of the cross
sections (Piech et al. [18,19]) often lead to considerable un-
certainties, sometimes the uncertainties were even larger than
the measured quantities. Therefore, theoretical computations
should play an indispensable role to satisfy needs.

With only two electrons, the helium atom is a simple
nontrivial many-body system. It provides a perfect testing
ground for developing a general method to deal with electron
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scattering from complex atoms or ions. Over the past decades,
a large number of calculations of electron-helium scattering
have been performed. For instance, an increasing number of
physical targets (5-, 11-, 19-, 29-) states of R-matrix calcula-
tions of the Belfast group (Berrington et al. [20,21], Berrington
and Kingston [22], Sawey et al. [23]) were carried out. Sawey
and Berrington carried out a 29-state R-matrix calculation [24]
providing total collision strengths for all LS transitions
among the lowest 19 (n � 4) states, which are valuable for
astrophysics. Fursa and Bray [25] applied the convergent
close-coupling (CCC) method to e-He scattering calculation
in the incident energy range from 1.5 to 500 eV, where the
overall agreement with the experimental data for excitation
cross sections from the ground state is good, but without
detailed resonance structure. Bartschat [26] carried out an
R-matrix with pseudostates (RMPS) calculation focusing on
the intermediate energy region. Stepanovic et al. [16] delivered
a joint experimental and theoretical study of near-threshold
electron-impact excitation of the 3 3S and 3 1S states in helium.
With the normalization determined by theoretical work, their
joint experimental measurement is in good agreement with
their 69-state B-spline R-matrix (BSR-69) calculation.

However, most works concentrated on the excitation from
the ground state; the investigation of excitations from the
excited states is limited. Furthermore, distinct discrepancies
still exist in different theoretical calculations, especially for
the low-energy regions. The dynamical processes in this
energy region become very complicated when the resonance
structures caused by including higher Rydberg target states are
involved. It is difficult to perform calculations at low-energy
regions near threshold due to the strong electron correlations.
The estimation of the convergence is even more difficult.
Earlier, we proposed a calculation scenario to perform the
R-matrix calculation in low-energy regions in a systematical

1050-2947/2015/91(2)/022707(10) 022707-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.022707


ZENG, GAO, HAN, AND LI PHYSICAL REVIEW A 91, 022707 (2015)

way, from which the convergence of the calculation can be
examined [27].

In the present work, using the scenario of Ref. [27], we
perform an R-matrix calculation of the collision cross sections
of helium from ground state [1s2] 1 1S and the metastable
state [1s2s] 2 3S to the [1s2s] 2 3,1S and [1s3s] 3 3,1S states.
The convergence of the calculation is checked systematically
through five sets of target states. Meanwhile, the available
high-resolution experimental data, i.e., Buckman et al. [15]
and Stepanovic et al. [16], serve as independent benchmarks
of our results. Note that these experiments are not absolute
measurements and involve the contribution from cascade
effects as well. In order to compare with the experiments (1) the
experimental data have to be normalized to the precise theoreti-
cal calculations. More details will be discussed in Sec. II where
we compare our results with the experimental measurements
of Buckman et al. [15] and Stepanovic et al. [16]. (2) Accurate
high-excitation scattering cross sections are needed to make
cascade corrections. Taking these two facts into account, our
calculated cross sections are in excellent agreement with the
corresponding experimental measurements. This demonstrates
that our high-excitation scattering cross sections are also
in good quality, which should be useful for the related
applications and will be reported elsewhere. For the excitation
processes from the excited states, the absolute measurement
data of Piech et al. [18,19] provide transitions from the
[1s2s] 2 3S, but with large uncertainties. As high-resolution
measurement of cross sections from lower-excitation states
are limited, how to estimate the precision of the calculation
from a lower-excitation state is still a difficult problem. In this
work, with the cross sections from the ground state accurate
enough, we can anticipate the transitions among those states
will have the same precision, because we adopt the same
sets of convergent target-state wave functions. Compared with
the recommended data [24], which are widely used in the
astrophysical studies, there is a deviation of about 6%. Such
deviation suggests the recommended data should be updated.
Furthermore, from our calculation results, the influence of the

Rydberg states to the collision cross section from the excited
state is elucidated. Amplitude of resonance structures in these
cross sections will decrease with respect to the principal
quantum number n representing the Rydberg states considered,
which is similar to the behavior of the cross section from the
ground state [27]. Therefore, it needs only finite physical target
states for electron-impact excitation calculations between
these lower excited targets. This demonstrates that the cross
sections obtained by the partial wave expansion methods valid
at low energy could be interfaced with the cross sections
obtained by the first Born approximation method valid at
high energy [28]. More specifically, the present calculation
scenario (including the same target wave functions) can be
extended to calculate the partial Born amplitude corrections,
which would be very powerful for providing cross-section data
with high quality in related scientific fields. We will discuss
the calculation of such correction factor in the Conclusions
section briefly; more details will be reported elsewhere [29].

II. THEORETICAL METHODS AND CALCULATION
RESULTS

Many previous works [20–23,30–35] have given the de-
tailed descriptions of the R-matrix method dealing with the
electron-atom collision process. Only a brief description will
be presented here. We first briefly describe the approach taken
to approximate target wave functions in our calculation, and
then describe the scattering calculation. In the present work,
based on multiconfiguration self-consistent field (MCSCF)
calculation strategies [27,36], we prepare five sets of high-
quality target orbital bases using CIVPOL code [37]. These five
sets of bases all include pseudo-orbitals, which are used to
deal with the important electron correlations. The differences
between the five sets of bases are mainly the number of
spectroscopy orbitals used to describe the physical target
states which correspond to the physical states observed in the
spectrum. The orbitals in each set are listed in Table I. The

TABLE I. The basis sets used in the calculations.

Basis set No. Atomic orbitals (AO)a Physical target statesb No. of physical target states

Set 1 nl(n = 1,2 l = 0,1) 1s2 1S, 1s2s 3,1S, 1s2p 3,1P o 5
nl(n = 3,4 l = 0 − 3)

Set 2 nl(n = 1 − 3 l = 0 − 2) Set 1c + 11
nl(n = 4,5 l = 0 − 4) [1s3s 3,1S, 1s3p 3,1P o, 1s3d 3,1D]

Set 2′ nl(n = 1 − 3 l = 0 − 2) Set 1c + 11
nl(n = 4,5,6 l = 0 − 4) [1s3s 3,1S, 1s3p 3,1P o, 1s3d 3,1D]

Set 3 nl(n = 1 − 4 l = 0 − 3) Set 2c + 19
nl(n = 5,6 l = 0 − 4) [1s4s 3,1S, 1s4p 3,1P o, 1s4d 3,1D, 1s4f 3,1F o]

Set 4 nl(n = 1 − 5 l = 0 − 4) Set 3c + 29
nl(n = 6,7 l = 0 − 4) [1s5s 3,1S, 1s5p 3,1P o, 1s5d 3,1D, 1s5f 3,1F o, 1s5g 3,1G]

Set 5 nl(n = 1 − 6 l = 0 − 4) Set 4c +
nl(n = 7,8 l = 0 − 4) [1s6s 3,1S, 1s6p 3,1P o, 1s6d 3,1D, 1s6f 3,1F o, 1s6g 3,1G] 39

aOne-electron atomic orbitals used to construct the multielectron bases, including the spectroscopy orbitals denoted as nl and polarized
pseudo-orbitals denoted as nl.
bDenotes the target states formed by spectroscopy orbitals, represents the physical states observed in the spectrum.
cDenotes the physical target states used in the corresponding basis set.
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radial parts of these orbitals are expanded in Slater form as

Pnl (r) =
∑

i

cir
pi exp (−ξ ir). (1)

More specifically, the five sets of orbital bases are con-
structed from atomic orbitals including spectroscopy orbitals
(labeled as nl and with fixed number of radial nodes, i.e.,
n − l − 1) and pseudo-orbitals (labeled as n̄l and without re-
striction of radial nodes). For n � np, where np = 2, . . . ,6 for
basis sets p = 1, . . . ,5, respectively, the orbitals are optimized
as spectroscopy orbitals with the configurations generated
by single excitation from 1s2 only. In order to consider the
electron correlations adequately, we further optimize the n̄ =
np + 1 and then n̄ = np + 2 orbitals as pseudo-orbitals with
the configurations created by single and double excitations
from 1s2. In order to check the convergence of the calculations,
we further construct Set 2′ by optimizing the n̄ = n2 + 3
pseudo-orbitals to take into account more electron correlations.
The spectroscopic orbitals are used to represent the main
physical states, while the pseudo-orbitals are used to deal
with the important electron correlations, which are specific
linear combinations of infinite bound-type Rydberg orbitals
and continuum orbitals determined by variational method.
Therefore, the pseudostates in our calculation channels have
physical meanings, which may be different from the B-spline
R-matrix calculations such as Refs. [16,26]. The R-matrix
radius, static dipole polarizabilities, and calculated energies
for each set are shown in Table II. The pseudo-orbitals are
constructed to optimize the energy levels of the physical
target states, and the polarizability is not specially optimized,
so the polarizability calculated by each set is larger than
the experimental value. The calculated energy levels of the
corresponding physical target states of the five sets are all
in good agreement with the experimental values [38] within
1%, as shown in Table II. Stepanovic et al. [16] have a more
accurate description of the target wave functions than ours.
In order to make a more direct comparison and to confirm
the convergence of our calculations, we carry out an extra
calculation using Set 2′. As shown in Table II, the precision of
the target states in Set 2′ is almost at the same level of those
in Ref. [16]. By comparing with the cross sections calculated
by Set 2′, we can confirm that the accuracy of our five set
calculations is sufficient in the present work. Furthermore, all
the calculated thresholds of the five sets were corrected ac-
cording to the experimental excitation energies. The quantum
defects of the target states from our five set calculations are all
with good channel properties. More specifically, our calculated
quantum defects of different target channels (symmetries) vary
slowly with the increase of principal quantum number, and
agree excellently with the experimental data. Such agreement
means the calculation precisions of various excited target states
achieve the same level and demonstrates that the electron
correlations of targets are taken into account adequately.
Using these sets of “quasicomplete” bases, we can construct
configuration interaction (CI) wave functions of the target
states with the configurations generated by single and double
excitations from 1s2. Based on these wave functions, we
carefully choose five sets of target terms, respectively, to
calculate the collision cross sections. As shown in Table I,
Set 1 includes five physical states (with principal quantum

number n � 2), Set 2 (and Set 2′) includes 11 physical states
(with n � 3), Set 3 includes 19 physical states (with n � 4),
Set 4 includes 29 physical states (with n � 5), while Set 5
includes 39 physical states (with n � 6) to test convergence of
other calculations with n � 5, e.g., Sawey and Berrington [24]
and Stepanovic et al. [16]. By using these sets of target, we
can systematically examine the convergence of the scattering
calculations and elucidate the influence of the Rydberg states
to the collision cross sections.

The total wave function used to describe the collision in the
inner region r < a, is expanded as

�k (1,2,3) = A
∑
ij

aijk�i (1,2,̂r3,σ3)uj (r3)

+
∑

j

bjkφj (1,2,3), (2)

where the �i are channel functions formed from all the target
states in each set, the uj (r3) are continuum orbitals that
describe the motion of the scattering electron, and the φj

are three-electron bound configurations formed from all the
orbitals in each set. The aijk and bjk coefficients are found by
diagonalizing the three-electron Hamiltonian in each basis. For
each angular momentum l of the scattering electron, we choose
a different number of Lagrange-orthogonalized continuum
orbitals for a different set of bases. For example, we choose
more than 80 Lagrange-orthogonalized continuum orbitals for
Set 5; the highest orbital energies of them are larger than
6.36 Ryd. The total angular momentum of (N + 1)-electron
system is L = 0−9. Furthermore, the total wave functions of
the three-electron system of the inner region are constructed
according to Eq. (2). The bound type three-electron configu-
rations used in the calculations are generated by allowing all
the three electrons exciting from the reference configuration
1s2 2s1. These large number of bound type three-electron
configurations are adopted in order to consider the electron
correlations within the reaction zone adequately.

Based on the partial cross-section method, we calculated
the inelastic scattering cross sections of helium impacted by
low-energy electron using the FARM code [39]. Figures 1
and 2 show the convergent properties of the cross section
excited from the ground state to the final states of [1s2s] 2 3,1S,
and the comparison with other theoretical results. As the
resonance details of the cross sections of Bartschat [26] are
not clear, we folded all the theoretical results with 37 meV in
Figs. 1(b) and 2(b). The good agreement between Sets 2 and 2′
demonstrates that the quality of the target-state wave functions
in our five sets is good enough for cross-section calculations.
The calculated cross sections using the other four target bases
sets with more physical target states are consistent with each
other except for the five physical target states bases set, which
illustrates that five target physical states are not sufficient
for the cross-section calculations in this energy region. The
differences between the cross sections of the other four target
bases sets are only in the energy region above the thresholds
of the newly added physical target states, the contributions
of which to the cross sections become smaller and smaller
and almost negligible at N > 6. This result can be understood
from the point that when the incident energies increase, more
and more channels are opened; hence the contribution of a
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FIG. 1. (Color online) (a) The convergent property of our calcu-
lated [1s2] 1 1S → [1s2s] 2 3S cross section. (b) The comparison of
our Set 5 calculation with other theoretical results; the cross sections
are folded with 37 meV.

specific channel in total resonance structure becomes smaller
and smaller. Based on Fig. 1, the uncertainty of our best two
bases, i.e., Sets 4 and 5, can be estimated as 0.4% at lower
energy around 20.25 eV, and 2.4% at higher energy around
24.25 eV. Based on Fig. 2, the uncertainty can be estimated
as 0.9% at lower energy around 21.2 eV, and 2.8% at higher
energy around 24.5 eV. It is understandable that the uncertainty
at higher energy is greater than that at lower energy, because
more target states should be involved at higher energy. At
the energy around 22 eV where the cross sections of the two
transitions show only a smooth energy dependence, the cross
sections of Sawey and Berrington [24] are about 7.8% and
6.8% higher than ours for the 2 3S and 2 1S states, respectively;

FIG. 2. (Color online) (a) The convergent property of our calcu-
lated [1s2] 1 1S → [1s2s] 2 1S cross section. (b) The comparison of
our Set 5 calculation with other theoretical results; the cross sections
are folded with 37 meV.

FIG. 3. (Color online) The experimental measurement of the
effective cross section of [1s2] 1 1S → [1s2s] (2 3S + ε∗2 1S), and
the comparison with the theoretical calculations. The experimental
measurement is normalized to our theoretical calculation at 20.25 eV
(labeled as solid point). According to the experiment, ε is set to
be 0.8.

the cross sections of Bartschat [26] are about 1% and 21%
higher than ours for the 2 3S and 2 1S states, respectively.

Buckman et al. [15] measured the yield of metastable atoms
resulting from electron-impact excitation of helium. Although
the energy resolution is very high, their experiment cannot
resolve the two metastable states 2 3S and 2 1S. Therefore
the cross section measured is the effective collision excitation
cross section. Figure 5 shows the experimental measurements
of the effective collision excitation cross section of helium
from the ground state to the two mixed metastable states,
and the comparison with our calculated result. According to
the detective efficiency of 2 3S and 2 1S in the experiment,
the weight of the two metastable states in our calculated effec-
tive collision excitation cross section is set to 1:0.8 [15]. Since
the linewidth of the electron beams used in the experiment is
about 5.893 meV [15], in order to compare with the experiment
data more clearly, the calculated cross sections are folded with
the experimental linewidth. The experimental data of Buckman
et al. are not absolute measurements, so we have to normalize
the experimental data to the theoretical results. In Fig. 3, we
normalize the experimental measurements to our calculated
cross section at the first peak at 20.25 eV (labeled as solid red
circle). In the experiment, any metastable helium atoms (2 1S

or 2 3S states) resulting from electron collisions are detected
unsolved by a channel electron multiplier. The detected
metastable atoms may come from either direct excitation
from the ground state, or a cascade of higher excited states.
More specifically, when the incident energy is larger than
the higher excitation threshold, the higher excited states will
also be populated which may cascade down the lower states.
Therefore, the cross section measured in the higher-energy
region should be taken with the cascade corrections. The
population of the metastable state from the cascade process is
proportional to the radiative transition rate and the population
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of the higher excited state which in turn is proportional to
the related impact excitation cross section from the ground
state. Hence both the radiative transition rates and the impact
excitation cross sections are needed to make the corrections.
In our work, the data of radiative transition rates are taken
from the NIST values [38]. The related impact excitation
cross sections are obtained from our calculations. Using the
collision excitation cross sections of our Set 5 calculation,
we have made cascade corrections in our calculated cross
sections in two cases, i.e., direct cascade correction (N 3P →
2 3S,N 1P → 2 1S) and full cascade correction (all possible
transitions that can cascade to the two metastable states in all
possible ways, e.g., N ′ 3D → N 3P → 2 3S). Compared with
experimental results, our calculated cross sections with full
cascade correction are in good agreement with experimental
data. The uncertainty of the experimental measurement is
about 7.5%. The greatest difference between our calculated
cross section and the experimental measurement appears at a
sharp resonance at about 22.46 eV, where our calculation is
7.6% higher than the experimental measurement. The average
difference between our calculation and the experimental
measurement is within 1.5%. Sawey and Berrington [24]
carried out a 29-state R-matrix calculation, and provide
their recommended collision-strength data for all transitions
between N � 4 states. We transformed the recommended data
from collision strength to cross section, and compare with our
calculation and the experiment of Buckman et al. Compared
with our calculated cross sections without cascade correction,
the recommended data are 5.6% higher as a whole. At the peak
of the cross section, where there is no cascade contribution,
the recommended data are 9.8% higher than the experiment.
In the energy region of 21.4–22.1 eV, where the cross section
shows only a smooth energy dependence, the cross section of
Sawey and Berrington [24] is about 8.5% higher than ours.
We also made a comparison with Bartschat [26], the effective
cross section of which is 4.6% higher than ours as a whole.
The calculation of Bartschat agrees well with our result and
the experiment in the energy region below 21 eV. But for
the energy region between 21.4 and 22.1, where the cross
section shows only a smooth energy dependence, the result
of Bartschat is 7.9% higher than our result without cascade
correction.

Figures 4 and 5 show the convergent properties of the
cross section excited from the ground state to the final states
of [1s3s] 3 3,1S, and the comparison with other theoretical
results. As the resonance details of the cross sections of
Bartschat [26] are not clear, we folded all the theoretical results
with 37 meV in Figs. 3(b) and 4(b). The convergence of the
two excitation cross sections behaviors is similar to that of
[1s2] 1 1S → [1s2s] 2 3,1S cross sections. Based on Fig. 4, the
uncertainty of our best two bases, i.e., Sets 4 and 5, can be
estimated as 2.4% at lower energy around 22.8 eV, and 7.8% at
higher energy around 24.3 eV. Based on Fig. 5, the uncertainty
can be estimated as 8.6% at lower energy around 22.94 eV,
and 12.7% at higher energy around 24.3 eV. At the energy
around 23.2 eV where the cross sections of the two transitions
show only a smooth energy dependence, the results of Sawey
and Berrington [24], Bartschat [26], and Stepanovic et al. [16]
are about 9.2%, 10.3%, and 6.5% higher than ours for the
3 3S state, while for the 3 1S state, they are 12.7%, 12.7%, and

(a)

(b)

FIG. 4. (Color online) (a) The convergent property of our calcu-
lated [1s2] 1 1S → [1s3s] 3 3S cross section. (b) The comparison of
our Set 5 calculation with other theoretical results; all the results
were folded with 37 meV.

21.5% higher, respectively. For other cross sections excited
from the ground state, the convergence behaviors are similar.

Figures 6 and 7 show the comparison of theoretical cal-
culations with the precise experimental measurements for the
collision excitation cross section of helium from ground state
to the final states of [1s3s] 3 3S and 3 1S states, respectively.
All the calculated cross sections are folded with 37 meV as
the experimental linewidth. Since the cross sections of the two
transitions are not absolute measurements, the experimental
measurements are normalized to the BSR-69 calculations at
the point of 23.2 eV [16] (labeled as solid diamond) in order
to compare with the theoretical results, as shown in Figs. 6(a)

FIG. 5. (Color online) (a) The convergent property of our calcu-
lated [1s2] 1 1S → [1s3s] 3 1S cross section. (b) The comparison of
our Set 5 calculation with other theoretical results; all the results
were folded with 37 meV.
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(a)

(b)

FIG. 6. (Color online) The experimental measurement of the
excitation cross section of [1s2] 1 1S → [1s3s] 3 3S, and comparison
with the theoretical calculations. The experimental measurements are
normalized to the theoretical ones at 23.2 eV (labeled as solid point),
respectively.

and 7(a). We do the same normalization of the experiment
to our calculation at the same point of 23.2 eV (labeled as
solid circle) in Figs. 6(b) and 7(b). The cascade contribution
was found to be important for the 3 3S excitation, whereas
it is negligible (less than 1%) for the 3 1S state [16]. Both
the BSR-69 calculation and ours have taken into account the
cascade corrections for the 3S state. The theoretical results
of Sawey and Berrington [24] and Bartschat [26] are without
cascade correction for both the two states.

FIG. 7. (Color online) The experimental measurement of the
excitation cross section of [1s2] 1 1S → [1s3s] 3 1S, and comparison
with the theoretical calculations. The experimental measurements are
normalized to the theoretical ones at 23.2 eV (labeled as solid point),
respectively.

As for the [1s3s] 3 3S excitation cross section shown in
Fig. 6, both the BSR-69 calculation and ours with cascade
contribution are in good agreement with the normalized
experimental measurements, except for the first two resonance
structures, where the theoretical results are somewhat higher
than the experimental measurements. For the first resonance
structure, the BSR-69 result is 16.3% higher than the experi-
mental data while our result is 10.1% higher; for the second
resonance structure, the BSR-69 result is 8.3% higher than
the experimental data while our result is 7.4% higher. The
ratio between the first two resonance structures is 0.85 for
experimental measurements, 0.92 for the BSR-69 calculation,
and 0.87 for our Set 5 calculation. More computation efforts
and further experimental measurement are needed to investi-
gate this deviation. Although both the BSR-69 calculation and
ours are in good agreement with the normalized experimental
measurements, the BSR-69 calculation is about 10% higher
than our calculated cross section as a whole. The resonant
profiles of Sawey and Berrington [24] and Bartschat [26] do
not show a good agreement with the experiment. The 46-state
RMPS calculations of Bartschat show only resonances below
the N = 3 threshold, because they only include physical states
of N = 1−3. Compared with our result at the energy around
23.2 eV where there is no cascade contribution and the cross
section shows only a smooth energy dependence, the result
of Sawey and Berrington [24] is about 9.2% higher, while
Bartschat [26] and the BSR-69 calculation is about 10.3% and
6.5% higher than our result, respectively. The recommended
data of Sawey and Berrington [24] is 5% higher than ours as a
whole.

As for the [1s3s] 3 1S excitation cross section shown in
Fig. 7, both the results of BSR-69 and ours are in excellent
agreement with the normalized experimental measurements.
The BSR-69 calculation is about 15% higher than our
calculated cross section as a whole. The resonant profiles of
Sawey and Berrington [24] and Bartschat [26] do not show
a good agreement with the experiment. Compared with our
result, both the cross sections of Sawey and Berrington [24]
and Bartschat [26] are 12.7% higher than ours at 23.2 eV, while
the BSR-69 calculation is 21.5% higher. The recommended
data of Sawey and Berrington [24] are 7.8% higher than ours as
a whole. From Figs. 6 and 7 we can note that the normalization
of experimental measurement to the theoretical calculations
may not be enough; absolute measurement is important.

Using the same basis sets, we calculated the cross sections
from excited states of helium. Figures 8 and 9 show our
calculated collision excitation cross section of helium from
[1s2s] 2 3S to the final states of [1s3s] 3 3S and 3 1S respec-
tively, and the comparison with other theoretical calculations
and experimental measurements. The available experimental
measurements shown in Fig. 8 are from Piech et al. [18,19].
We have subtracted the cascade contribution from the exper-
imental measurements using our calculated high-excitation
cross sections. Since the high-precision experimental data and
theoretical data are relatively rare for these excitation cross
sections, in order to verify the precision of our calculated
cross sections from excited states, we note that there exist
cross sections excited from the ground state, which can
be accurately measured by experiment as discussed above.
Considering the R-matrix method treats the excitation from

022707-7



ZENG, GAO, HAN, AND LI PHYSICAL REVIEW A 91, 022707 (2015)

FIG. 8. (Color online) (a) The convergent property of our calcu-
lated [1s2s] 2 3S → [1s3s] 3 3S cross section. (b) The comparison of
our Set 5 calculation with other theoretical results and experiments.

the ground state and from lower excited states on equal
footing; the good calculated cross sections from the ground
state indicate high-quality wave functions of the final states
of these excitations. Then the precision of the cross sections
between these excited states can be guaranteed. Therefore,
our calculated collision excitation cross sections of helium
from ground state to the states of 2 3,1S and 3 3,1S, which
have been accurately measured by experiments, can be used
as a precise criterion for evaluating the accuracy of the
cross sections 2 3S → 3 3,1S. As shown in Figs. 8 and 9, our
calculated cross sections using the four sets of 11, 19, 29,
and 39 physical target states are consistent with each other,
which demonstrate the good quality of our calculations. The

FIG. 9. (Color online) (a) The convergent properties of our cal-
culated [1s2s] 2 3S → [1s3s] 3 1S cross section. (b) The comparison
of our Set 5 calculation with other theoretical result.

differences between the four target bases sets are only in the
energy region above the thresholds of the newly added physical
target states, the contributions of which to the cross sections
become smaller and smaller and almost negligible at N > 6.
Based on Fig. 8(a), the uncertainty of our best two bases,
i.e., Sets 4 and 5, can be estimated as 0.1% at lower energy
around 3.02 eV, and 3.4% at higher energy around 4.5 eV.
Based on Fig. 9(a), the uncertainty of our best two bases, i.e.,
Sets 4 and 5, can be estimated as 2.0% at lower energy around
3.20 eV, and 4.1% at higher energy around 4.5 eV. It is also
understandable that the uncertainty at higher energy is greater
than that at lower energy, because more target states will be
involved in at higher energy. The 46-state RMPS calculation of
Bartschat [26] shows only resonance structures near the N = 3
threshold, because they only include physical N = 1–3 states.
The results of Sawey and Berrington [24] agree well with our
calculations for both the two cross sections as a whole (4.3%
higher for the [1s2s] 2 3S → [1s3s] 3 3S cross section and
8.4% higher for the [1s2s] 2 3S → [1s3s] 3 1S cross section).
But in some strongly resonant regions, there exist considerable
deviations between the result of Sawey and Berrington [24]
and our calculation. For instance, in around 3.8 eV, their result
is 27.7% larger than ours for the [1s2s] 2 3S → [1s3s] 3 3S

transition cross section, and 59.6% larger than ours for the
[1s2s] 2 3S → [1s3s] 3 1S transition cross section. More work
will be done to present cross sections from metastable states
to higher excited states, and compared with the available
experiments.

III. CONCLUSIONS

Finally, we would like to conclude by the following
remarks. In the present work, we have systematically checked
the convergence property of all our calculations via five sets of
target state wave functions in theory, and compared with exper-
imental measurements for the effective collision cross section
of [1s2] 1 1S → [1s2s] (2 3S + ε∗2 1S) and the cross sections
of [1s2] 1 1S → [1s3s] 3 3S and [1s2] 1 1S → [1s3s] 3 1S to
further examine the convergence of our calculations. The most
common method to measure cross sections in experiments
is to obtain the fluorescence signal of the excited states,
so the cross section measured in a higher-energy region
will be mixed with cascade contributions. Our theoretical
results of [1s2] 1 1S → [1s2s] (23S + ε∗2 1S) and [1s2] 1S →
[1s3s] 3 3,1S cross sections, in which cascade corrections are
considered adequately, are in excellent agreement with the
experimental measurements. Such agreement demonstrates
that our calculated high-excitation cross sections should be
accurate enough. As space is limited, our other cross sections
will be presented in another paper in a form that is convenient
for the readers. As high-resolution measurements of cross sec-
tions from lower excitation states are limited, how to estimate
the precision of the calculation from a lower excitation state
is still a difficult problem. In this work, our calculated cross
sections of [1s2] 1 1S → [1s2s] (2 3S + ε∗2 1S) and [1s2] 1S →
[1s3s] 3 3,1S have been accurately examined by benchmark
experiments; we can guarantee the transitions among those
excitation states will have the same precision. Compared with
our results, the recommended data [24] are 5.6% higher for the
[1s2] 1 1S → [1s2s] (2 3S + ε∗2 1S) cross section, 5.0% higher
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for the [1s2] 1S → [1s3s] 3 3S cross section, 7.8% higher for
the [1s2] 1 1S → [1s3s] 3 1S cross section, 4.3% higher for the
[1s2s] 2 3S → [1s3s] 3 3S cross section, and 8.4% higher for
the [1s2s] 2 3S → [1s3s] 3 1S cross section. Such deviation
suggests the recommended data should be updated.

High-resolution experiments are mostly not absolute mea-
surements [15,16]; the normalization strongly depends on
the theoretical values. There are still some problems in the
normalization to the theoretical values. As for the examples of
[1s2] 1 1S → [1s3s] 3 3,1S cross sections, both the BSR-69 [16]
and our Set 5 calculations are in excellent agreement with
the normalized measurements, while our Set 5 calculation
is 15% lower than the BSR-69 calculation [16] for the
[1s2] 1S → [1s3s] 3 1S cross section, and 10% lower than the
BSR-69 calculation [16] for the [1s2] 1 1S → [1s3s] 3 3S cross
section. Moreover, for the first two resonance structures near
threshold of the [1s2] 1S → [1s3s] 3 3S cross section, the ratio
between them is 0.85 for experimental measurements, 0.92 for
the BSR-69 calculation [16], and 0.87 for our Set 5 calculation
closer to the experimental value. Note that the normalization
of experimental measurements to the theoretical calculations
may not be enough; absolute measurement is important, so
we appeal for further study of absolute measurement, even for
simple systems like helium.

The influence of Rydberg states has been shown in
Figs. 1, 2, 4(a), 5(a), 8(a), and 9(a), where the amplitudes
of resonance structures decrease with the increasing principal
quantum number n, which represents the Rydberg states
involved. This means that contributions of the resonance

structure to these collision cross sections are not important
at higher incident energies. Therefore, we need only finite
physical target states to perform calculations. This result
also demonstrates that the cross sections obtained by the
partial wave expansion methods valid at low energy could
be interfaced with the cross sections obtained by the first
Born approximation method valid at high energy [27]. More
specifically, starting from Born approximations [28], the
scattering amplitude f can be calculated by f = f Born + �f ,
where the correction function �f can be calculated by partial
wave expansions involving only a finite number of penetrating
partial waves (low angular momentums), which would be
very powerful for providing cross-section data in intermediate-
energy regions with high quality for related scientific fields.
Our work on how to efficiently interface the cross sections of
low incident energies and high incident energies is in progress
and will be reported elsewhere [29].
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