
PHYSICAL REVIEW A 91, 022701 (2015)

Strong suppression of positron-induced double ionization of helium at low-to-intermediate velocities
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Based on our previous work of the classical over-barrier ionization model, the single- and double-ionization
cross sections of positron-helium impact are calculated. The calculation results are consistent with the
experimental data. The screened Coulomb potential is used to obtain the trajectory of the positron in
single-ionization process. The positron is seemed to be scattered by the rest He+ core in double ionization.
The strong Coulomb defection effect makes the double ionization to be significantly suppressed at low velocities.

DOI: 10.1103/PhysRevA.91.022701 PACS number(s): 34.80.Uv

I. INTRODUCTION

Helium ionization induced by positron has been stud-
ied widely both in experiments and theories. Fromme [1],
Jacobsen [2], Moxom [3,4], Knudsen [5], and Ashley [6]
had measured the single-ionization cross section of positron-
helium collision from the threshold to intermediate and high
energies. Charlton [7] measured the double-to-single ratio
R21 of positron-helium impact and electron-helium impact
and proposed the assumption that the difference of double
ionization between the electron and proton was attributed to
their opposite charge. Bluhme [8] found that positronium for-
mation was strongly suppressed during the double-ionization
process. In theory, Basu [9], Baluja [10], Zhifan [11], and
Mukherjee [12] used quantum methods to study the ionization
cross section of positron-helium scattering. Schultz and Olson
[13] used the classical trajectory Monte Carlo (CTMC) method
to calculate the single-ionization cross section of positron-
helium collision at intermediate velocities. The second-order
Born model was proposed by Kheifets [14] to describe the
simultaneous ionization excitation and double ionization of
He impacted by positron at velocity of 12 a.u. Simonovic
[15] used the classical Newtonian method to calculate the
double-ionization cross section of positron-helium impact near
the threshold. Recently, Dey [16] calculated the fivefold-
differential cross section (FDCS) for double ionization of
He by positron impact at 610 eV. The second-order Born
approximation was used by Dal Cappello [17] to calculate the
fourfold-differential cross section (4DCS) of double ionization
for helium impacted by positron at 621 eV.

In this paper, we extended our COBI model [18], which
dealt with the double ionization of helium impacted by heavy
ions, to the case of positron-impact ionization. Based on
the picture of sequential over-barrier ionization, and taking
the Coulomb deflection effect into account, the single- and
double-ionization cross sections of positron-helium impact
in low-to-intermediate velocities were obtained. The cal-
culation results are consistent with available experimental
data. The strong Coulomb deflection makes double ionization
of positron-helium impact significantly suppressed at low
velocities. Atomic units are used in the following context.
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II. MODEL

In this model, based on the picture of sequential over-
barrier ionization, the trajectory modifications induced by the
Coulomb deflection effect are made to calculate the positron’s
trajectories in single and double ionization of helium. At
first, we will review the COBI model to grasp the picture
of sequential over-barrier ionization.

A. Proton-impacted ionization of helium

In Bohr’s over-barrier (OB) [19] model and its extension
COBM [20], two important internuclear distances are intro-
duced. The first is the release distance Rr , in which the target
electron will be released to the projectile side. The second is
the capture distance RC , in which the released electron will
be captured. The two distances are respectively calculated as
follows:

Rr = Z + 2
√

qZ

I
, (1)

RC = 2q

v2
, (2)

where q and Z are the effective charges of projectile and
target core; I is the ionization energy of target electron; v is
the projectile’s velocity.

For low-velocity collisions, RC > Rr , indicating that all
the released electrons will be captured and that no ionization
takes place. For intermediate-velocity collisions,RC < Rr ,
indicating that many of the released electrons cannot be
captured. In the OB model, it is simply assumed that these
electrons will go back to the target after collision. But, in fact,
the released but noncaptured electron will be continuously
accelerated by the approaching ion. In Sattin’s work [29], the
trajectory of released optical electron is calculated to get the
single capture and ionization cross section of atom target near
the velocities of 1 a.u.

For simplicity, our previous work of the COBI model had
assumed that when the projectile enters the distance RI , in
which the kinetic energy of the released electron converted
from the Stark energy is larger than its ionization energy, the
electron will be ionized. RI satisfies Eq. (3):

q

RI

� I + q

Rr

. (3)
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For the release, capture, and ionization processes are grad-
ually implemented, the probabilities of these three processes
should be considered as follows:

Pr = 2
√

R2
r − b2

v

1

T
= trelease

T
when b � Rr, (4)

PC =
2
√

R2
C − b2

v

1

T
= tcapture

T
when b � RC, (5)

PI = Pr − PC = trelease − tcapture

T
when b � RI , (6)

where b is the collision parameter; T = 2πn3/Z2 is the orbital
period of helium’s 1s electron. From Eqs. (4)–(6), we know
that the probabilities of release, capture, and ionization are
the ratios of the release, capture, and ionization duration
(trelease, tcapture, and tionization) to the orbital period T of target
electron. It should be noted that all these probabilities are cal-
culated under the linear trajectory approximation for incident
proton.

It is important to distinguish the two electrons with
subscripts i (i = 1,2) for helium target, Rri , RCi , and RIi

are the distances for the ith released electron. They satisfy the
following equations:

Rri = Zi + 2
√

qiZi

Ii

, (7)

RCi = 2qi

v2
, (8)

qi

RIi

� Ii + qi

Rri

(i = 1,2), (9)

where Ii is the ith ionization energy of the target electron
and I1 = 24.6 eV, I2 = 54.4 eV for two helium electrons, qi

and Zi = n
√

2Ii are the effective charges of the projectile
and the target core seen by the ith target electron. The first
released electron loses its screen ability to the target nucleus
while it screens the incident projectile [18,20], the value of q2

will be much smaller than that of q1. In our previous work,
the parameters of Z1 = 1.34, Z2 = 2 and q1 = 1, q2 = 0.3
are used [18,21–23] to obtain good calculation results in
proton-impacted single- and double-ionization cross sections
of helium.

B. Positron-impacted ionization of helium

The positron has the same charge with the proton, so the
release, capture, and ionization distances of the two helium
electrons should be the same as those for proton impact.
However, the mass of the positron is about three orders of
magnitude less than the proton, the Coulomb deflection effect
on the positron’s trajectory in single- and double-ionization
processes should be considered in the calculation of the
release, capture, and ionization probabilities for positron
impact.

The single-ionization process may be approximately con-
sidered as the process that the incident positron is scattered
by a screened helium atom. Thus, the well-known screened
Lindhard potential is used to calculate the positron’s trajectory
in helium single ionization. Equation (10) is the screened
Lindhard potential:

Vscreen(r) = qZHe

(
1

r
− 1

(r2 + 3a2)1/2

)
, (10)

a = 0.8853/
(
Z

2/3
He + q2/3

)1/2
, (11)

a1 = 0.8853/
(
Z

1/2
He + q1/2

)2/3
, (12)

a2 = 0.8853/
(
Z0.3

He + q0.3
)
, (13)

where ZHe = 2 is the nuclear charge of Helium target;
a = 0.5504, a1 = 0.4920, and a2 = 0.3968 are three com-
monly used screen parameters for positron-helium impact
system; r is the distance between positron and target
nucleus.

Figure 1(a) shows the schematic collision geometry of
positron-helium collision for the first removed electron. The
release duration of the first released electron is trelease1 =
t
̂A1D1

= ∫ D1

A1

1
ve+

dl, where ve+ is the positron’s velocity; the

capture duration is tcapture1 = tÊ1F1
= ∫ F1

E1

1
ve+

dl and the ion-

ization duration is tionization1 = ∫ D1

A1

1
ve+

dl − ∫ F1

E1

1
ve+

dl. t
̂B1C1

=∫ C1

B1

1
ve+

dl is used to judge whether positron can enter the
distance RI1. If t

̂B1C1
� 0, the ionization will not occur. With

the step-by-step numerical integration along the positron’s
trajectories, the values of t

̂A1D1
, t

̂B1C1
, tÊ1F1

can be obtained.
Like the calculation for the proton case [Eqs. (4)–(6)],
the probabilities of release, capture, and ionization of the

FIG. 1. (Color online) The geometry of positron-helium collision in (a) single-ionization and (b) double-ionization process.
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first electron in positron-impacted helium are, respectively,
calculated as

P e+
r1 = trelease1

T
, (14)

P e+
C1 = tcapture1

T
, (15)

P e+
I1 = tionization1

T
when t

̂B1C1
�= 0. (16)

To ensure the calculation accuracy, the variable-step 4-order
Runge-Kutta method is used to solve the differential equations
of position movement.

In the COBM and COBI models, the first released helium
electron loses its screening capability to the target core. Thus,
the approaching positron will be subjected to the strong
Coulomb repulsion force coming from the rest He+ core.
The positron’s trajectory during the second electron ionization
process should be calculated with the unscreened Coulomb
potential between positron and He+ ion. The effective charge
of the rest He+ core is estimated to be ZHe+ = 1.69 according
to the well-known Slater rules [24]. Thus, the Coulomb poten-
tial Vunscreen(r) is used to simulate the positron’s trajectory in
the ionization process of the second released electron:

Vunscreen(r) = q2ZHe+

r
. (17)

Figure 1(b) shows the collision geometry of positron-
helium collision for the second removed electron. The release,
capture, and ionization durations for the second released
electron are trelease2 = t

̂A2D2
= ∫ D2

A2

1
ve+

dl, tcapture2 = tÊ2F2
=∫ F2

E2

1
ve+

dl, and tionization2 = ∫ D2

A2

1
ve+

dl − ∫ F2

E2

1
ve+

dl. t
̂B2C2

is
used to judge whether the double ionization will occur.
The probabilities of release, capture, and ionization of the
second released electron for positron impact are, respectively,

FIG. 3. (Color online) R21 of the proton- and positron-helium
impact. The present results (red line, positron) and our previous results
[18] (green line, proton). Dashed blue line represents calculation
results from Ref. [28], dots are experimental data [1,7,8,26,27].

calculated as

P e+
r2 = trelease2

T
, (18)

P e+
C2 = tcapture2

T
, (19)

P e+
I2 = tionization2

T
when t

̂B2C2
�= 0. (20)

Now, we get the probabilities of the first released electron
P e+

r1 , P e+
C1 , and P e+

I1 , and those of the second released electron
P e+

r2 , P e+
C2 , and P e+

I2 . By using the independent event model
(IEVM) [25], we can extract the two-electron probabilities
from these single-electron probabilities.

FIG. 2. (Color online) (a) Single-ionization cross section of positron-helium impact: lines are calculation results with three different screen
parameters, dots are experimental data [1,8] and the dashed blue line represents Schultz and Olson’s results [13]; (b) double-ionization cross
section of positron-helium impact: lines are calculation results with three different screen parameters, dots are experimental data [8].
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So, the single-ionization cross section is expressed as

σ+ = 2π

∫
P e+

I1

(
1 − P e+

I2 − P e+
C2

)
bdb

+ 2π

∫
P e+

I2

(
1 − P e+

I1 − P e+
C1

)
bdb. (21)

The double-ionization cross section is expressed as

σ 2+ = 2π

∫
P e+

I1 P e+
I2 bdb. (22)

The double-to-single ionization ratio R21 is expressed as

R21 = σ 2+

σ+ . (23)

III. RESULTS AND DISCUSSION

From Fig. 2(a), we can observe that our calculation
results of single-ionization cross sections are not sensitive

to the changes of the screen parameters. The maximum
differences between them are no more than 15% and appear
in the place with the maximum ionization cross section. For
velocities lower than 6 a.u., calculations are well consistent
with experimental data. However, for higher velocities,
calculation results are somehow larger than experimental data.
Calculations by Schultz and Olson [13] are well consistent
with experimental data for velocities lower than 3 a.u. [8].
But, for the higher velocity, their results fall off more rapidly
than the experimental data.

Calculation results and experimental data of positron-
induced double-ionization cross sections of helium are plotted
in Fig. 2(b). For velocities lower than 5 a.u., calculations are
in good agreement with experimental data. The model and the
experimental data both show that double ionization reaches
its maximum at the velocity of 4 a.u. and lags behind single
ionization at the velocity of 2–2.5 a.u. When the positron’s

FIG. 4. (Color online) The normalized scattering probability I (v,θ ) after (a) the single ionization and (b) the double ionization had occurred,
and the positron is scattered to the angle of θ . Color dots represent the calculation results of ln [I (v,θ )]. Cross-section ratios of (c) single
ionization and (d) double ionization of helium by positron (e+) and proton (p) impact. Red line is our model results and dots are experimental
data derived from Refs. [1,8,26].
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velocity is higher than 5 a.u., the calculations are 30% larger
than experimental data.

In the low-to-intermediate velocity range (v � 5), target
electrons have enough time to pass through the Coulomb bar-
rier. Therefore, for velocities lower than 5 a.u., the over-barrier
ionization process is considered to be the main ionization
mechanism. For velocities from 2 to 5 a.u., the release
probability decreases as v−1 [22,23]. Therefore, the ionization
cross section will decline slowly with v [22,23]. For higher
velocities larger than 5 a.u., the release probability is too small
to let the over-barrier ionization mechanism to be dominant.
At this moment, violent binary encounters between projectile
and target electrons start to play an important role. Violent en-
counters make the single- and double-ionization cross section
decrease with v as v−2 and v−4 [30], respectively. Such type
of decreasing rate is more rapid than that of the over-barrier
ionization cross section. Therefore, the COBI model which
considers the over-barrier ionization, but neglects the binary
encounters, will be good at low-to-intermediate velocities and
be somehow limited for higher velocities. This is the main rea-
son that the calculations, both for the proton [18] and positron,
are in quantitative agreement with experimental data obtained
when the velocity is less than 5 a.u., and only qualitative
agreement is obtained when the velocity is larger than 5 a.u.

The double-to-single ionization cross-section ratio R21 of
proton- and positron-helium impact are shown in Fig. 3. The
model results of proton and positron are in good agreement
with experimental data, respectively. At lower velocities, sig-
nificant differences are observed between proton and positron.
The maximum value of R21 of proton (0.023) is reached near
1.2 a.u., while almost no double ionization occurs until the
positron’s velocity gets close to 3 a.u. The maximum value
of R21 for the positron is only 0.003, which is much smaller
than that of the proton. For higher velocities, the results of the
positron gradually coincide with that of the proton. Figure 3
indicates that when the velocity is less than 4 a.u., double
ionization by positron impact is strongly suppressed. When the
velocity of the positron is increased to 6 a.u., the suppression
effect is gradually weakened and the ratio R21 of the positron
is basically the same to that of the proton.

To understand deeply the strong suppression to the positron-
induced double ionization of helium, we calculated the
scattering probabilities that the positron is scattered to a certain
angle of θ after the single or double ionization occurred. As
shown in Fig. 4(a), when the velocity is lower than 2 a.u.,
positrons are scattered to large angles of about 50° when the
single ionization occurs. At the same velocity, as shown in
Fig. 4(c), the positron-induced cross section is only 20% of
that of the proton. When the velocity increases to 3–4 a.u.,

the majority of positrons which induce single ionization are
scattered in the angles within 10°–20° and Coulomb deflection
effect is weakened. In the meantime, the cross section of the
positron is 80%–90% of that of the proton. For velocities
larger than 6 a.u., the positrons which induce single ionization
are scattered within the angle of 1°–5° and their trajectories
are basically close to a straight line. The cross section of the
positron is basically the same to that of the proton.

As shown in Fig. 4(b), it is obvious that Coulomb deflection
effect applied on positron in double ionization is much stronger
than that in single-ionization process. Until the velocity of the
positron is close to 3 a.u., positrons cannot induce double
ionization. Moreover, positrons are back-scattered in the large
angle above 90°. In Fig. 4(d), the double-ionization cross
section of the positron is just about 10% of that of the proton
at 3 a.u. When the velocity is close to 4 a.u., the Coulomb
deflection effect is still strong and the positrons which induce
double ionization are scattered to the angles between 40°–60°.
Moreover, the double-ionization cross section of the positron
is still less than 50% of that of the proton. When the velocity
is close to 6 a.u., the scattering angle of the positron which
induces double ionization is within 10°–20° and the double-
ionization cross section of the positron increases to 80% of that
of the proton. For velocities larger than 8 a.u., the scattering
angle of the positron-induced double ionization is less than
5° and the trajectories are close to a straight line. Now, the
double-ionization cross section of the positron is 90% of that of
the proton, and the positron and proton start to show basically
consistent results.

IV. CONCLUSION

Based on the COBI model, we calculate the single- and
double-ionization cross sections of positron-helium impact
at low-to-intermediate velocities. Our model results are well
consistent with experimental data. This indicates that the
idea of sequential over-barrier ionization is applicable to
describe positron collision. The positron is scattered by a
screened helium atom in single ionization and scattered by
an unscreened He+ core in double ionization. The extremely
strong Coulomb repulsion to the positron in double ionization
is the main reason for the significant suppression of positron-
induced double ionization at low velocities.
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