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Configuration-interaction many-body-perturbation-theory energy levels of four-valent Si I

I. M. Savukov
Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA

(Received 4 December 2014; published 25 February 2015)

The mixed configuration-interaction (CI) many-body-perturbation-theory method is accurate in divalent atoms.
In more complex atoms, with the number of valence electrons it becomes progressively more difficult to saturate
CI space. Here, a four-valence electron atom, Si I, is considered. It is found that by using a relatively small cavity
of 30 a.u. and by choosing carefully configuration space, it is possible to obtain quite accurate agreement between
the theory and experiment. After subtraction of systematic shifts of 481 and −426 cm−1 for the lowest even and
odd states, respectively, the deviation between theory and experiment becomes at the level of 100 cm−1. This
agreement is comparable to that in divalent atoms where the CI saturation has been achieved. It is anticipated
that the approach can also give good results for atoms with more valence electrons to be considered in the future.
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I. INTRODUCTION

The spectra of complex atoms are of great interest in many
applications. Neutral silicon, Si I, in particular has astrophys-
ical importance due to its high abundance and significant
contribution to solar and stellar opacities. Si atom properties
are also needed for various industrial applications, including
in nanotechnology. Several methods are available for accurate
calculations of low states of Si I and other multivalence
atoms that are based on multiconfiguration expansions. In
the configuration-interaction (CI) method, the atomic states
are expanded in the basis of fixed radial orbitals. While the
method can be quite accurate for few-electron atoms, it has
difficulty in atoms such as silicon due to a large size of full
CI space. If CI is limited to the valence electron sector, the
important core-excitation effects are neglected, but even the
partial inclusion of configurations to account for these effects
at reasonable level would lead to very large CI matrices.
Double excitations, in particular, create two holes and two
extra virtual electrons, so the number of particles in CI grows
from 4 to 8. The configuration space can be decreased with
multiconfiguration Hartree-Fock method (MCHF), in which
the radial orbitals are optimized to approach the physical
radial basis. Thus, fewer orbitals are required. Still, there are
difficulties with including core excitations, and convergence
of MCHF can be a problem. Another possibility is to use
adjustable parameters to take into account core excitations,
valence-valence interactions, and relativistic effects. This
approach is implemented in Cowan’s code [1]. The advantage
of Cowan’s code is that the energy can be fitted accurately
to experimental values providing means of identification in
complex spectra; however, wave functions are not necessarily
accurate, as in other semiempirical methods. A most efficient
ab initio way to include valence-core interactions is to combine
CI and many-body perturbation theory (MBPT). Because
valence-core interaction is relatively weak, MBPT can treat
it with adequate accuracy, while CI can be constructed only
from valence electrons.

Returning to Si I, its energies and transition properties have
been computed with the relativistic Cowan code (relativistic
MCHF with adjustable electrostatic parameters) [2], MCHF
(the Breit-Pauli approximation) [3], B-spline R-matrix BSR
code [4], and other methods. While in various methods,

especially of semiempirical type, energy levels can be accu-
rately reproduced, the lifetimes and transitions rates are not.
A good comparison of experimental and theoretical lifetimes
is provided in Ref. [5], which illustrates that Si I lifetimes
obtained with the Cowan code have significant deviations from
the experiment and more accurate theories.

In this paper, we use the CI-MBPT approach, which has not
been applied to the Si I atom before. The CI-MBPT method
is very accurate for divalent atoms, but for the majority of
atoms with a larger number of valence electrons, the accuracy
is lower due to difficulty of the saturation of the valence CI
space. For example, if the basis is limited by the maximum
principal number Nmax = 8 and angular momentum lmax = 3,
the number of CI states, as calculated with the CI-MBPT code,
increases rapidly from Si III J = 2 to Si II J = 3/2 to Si I

J = 2 for single (S), double (D), and triple (T) excitations
from the ground state in the following progression: Si III:
12 → 352 → 352; Si II: 63 → 2077 → 11 912; Si I: 340 →
7007 → 86 582. Apparently for an atom with four valence
electrons such as Si I to maintain a reasonable size of the CI
matrix, either the triple excitations have to be restricted or
the basis has to be substantially truncated compared to that
typically used in divalent CI-MBPT calculations (Nmax = 15).
Thus, some strategy is needed for both optimizing the basis
and minimizing the number of states and configurations.

One approach that can help to substantially reduce the basis
for expanding lowest states is to reduce the cavity size. The
cavity is introduced into CI-MBPT calculations to replace the
infinite number of Rydberg and continuum states with a small
number of cavity-bound states. Because smaller cavities have
larger spacing between the energy levels of the basis functions
and because high-energy basis functions do not overlap much
with low-energy atomic states of interest, for a given accuracy,
Nmax will be reduced. This approach is suitable as long as the
calculated atomic wave functions and energy levels are not
significantly perturbed by the cavity. Later, it will be shown
that a cavity of 30 a.u. can be used to calculate a large number
of lowest Si I states with a good accuracy. The second
approach is to optimize the choice of configurations. Not all
configurations couple strongly to the lowest states of interest,
so by choosing an optimal set, a good level of accuracy
might be possible to achieve with a reasonable number
of configurations. In this regard, energy calculations for a
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four-valence electron (4v) atom such as Si I are of great interest
to the theory as an intermediate step in calculations between
currently well-understood divalent atoms and much more
complex atoms such as Fe I, U I, etc., where even assignment of
theoretical levels can be problematic due to the low accuracy
of existing methods and possibility of order reversal between
levels. Without unambiguous assignment, the theory cannot
be reliably used for calculations of other, unknown properties.
Moreover, in some cases energies might not be available
altogether and alternative semiempirical methods cannot be
used. Previously, calculations with the CI-MBPT method were
performed for other 4v atoms such as Ge, Sn, Pb [6]. The
comparison between results will be of interest to see the trend
in accuracy. Si I has smallest relativistic and core-polarization
corrections, which are treated quite accurately with the MBPT
method, so the accuracy is mostly limited by the CI space
saturation. The main focus of this work is on improving the
accuracy of valence-valence CI part.

II. METHOD

In this work, a CI-MBPT method developed for open-shell
atoms with multiple valence electrons is used (see for example
[6]). The effective CI-MBPT Hamiltonian for Si I can be split
into two parts:

H eff =
M∑

i=1

h1i +
M∑

i �=j

h2ij . (1)

The one-electron contribution

h1 = cα · p + (β − 1)mc2 − Ze2/r + V N−4 + �1 (2)

in addition to the V N−4 Dirac-Hartree-Fock (DHF) potential
contains the valence electron self-energy correction �1 [7].
In the current CI-MBPT program, the self-energy correction
is calculated with the second-order MBPT. The two-electron
Hamiltonian is

h2 = e2/|r1 − r2| + �2, (3)

where �2 is the term accounting for Coulomb interaction
screening arising from the presence of the core [8]. In the
program, the screening is also calculated in the second order.
Further details on the CI-MBPT approach can be found in
Ref. [9]. In terms of specific numerical steps, first, DHF VN−4

potential for the closed-shell Si V ion is calculated. Alterna-
tively, Si III potential can be used, but additional subtraction
diagrams will be required, which in some CI-MBPT codes are
not incorporated. No significant improvement in accuracy of
Si I energies has been observed by using the VN−2 potential.
Second, the basis in the frozen VN−4 is calculated with the
help of a B-spline subroutine for the ion in a cavity of radius
R. The basis is then used to evaluate the CI-MBPT terms
in Eq. (1). Finally, the eigenvalue problem is solved for the
effective Hamiltonian matrix. The program generates a set of
configurations by single, double, etc., excitations of the input
configurations limited by the lmax and Nmax.

III. CI-MBPT CALCULATIONS

To test the accuracy of CI-MBPT method in Si I, the energies
of the lowest states with J = 0 − 3 that are not yet affected by

the cavity shift have been calculated. This shift was estimated
from trends in the deviations of energies from experiments for
different cavity sizes, which starting with some energy for a
given J and parity rapidly increases. The cavity shift for a
given state is related to the removal energy of the least bound
electron and its asymptotic behavior. In the final calculations,
the cavity size of 30 a.u. has been adopted. The configurations
were chosen as follows. For the even states J = 0–3, one and
two electrons of the reference valence configurations 3s2 3p2,
3s23p4p, and 3s4s3p2 were excited with the limits on the
excited states lmax = 3 and Nmax that generated states with a
specific J and parity. For example, single excitations from
3s23p2 produce configurations of type 3sns3p2, 3snd3p2,
3s23pnp, and 3s23pnf , while double excitations produce
configurations of type 3s2npmp, nsmp3p2, and many others.
The number of double-excited states considerably exceeds
the number of single-excited states. Some effective triplet
excitations from the ground states are included via the initial
choice of reference configurations. Similar procedure was
carried out for the odd states. The reference configurations
were chosen 3s3p3, 3s23p4s, and 3s23p3d. The list of
nonrelativistic configuration was converted automatically to
the list of relativistic configurations. The total number of states,
the size of the effective Hamiltonian matrix, ranged from 6 to
30 k, depending on J and Nmax as illustrated in Table I. Table I
also illustrates that the deviation from experiment decreases for
larger Nmax, as expected. Unfortunately, currently the program
has a limitation on the number of states about 34 k. To have
uniform accuracy for the considered states with J = 0–3,
we chose Nmax = 8 that resulted in the number of states not
exceeding 34 k.

After various preliminary tests and optimizations of the
cavities and configurations, as described above, we have
calculated the energy levels for the lowest J = 0–3 states that
are not affected by the cavity (30 a.u.). The even states are
compiled in Table II. A close and consistent agreement has
been achieved at the level of 400 cm−1; however, it can be
noted that a relatively constant systematic shift exists for all
the considered levels, except for the fine-structure ground-state

TABLE I. Number of states (Nstates) for given configuration
input parameters. The basic configurations for the even states are
3s23p2, 3s23p4p, and 3s4s3p2. The single and double excitations
are restricted with Lmax = 2 and Nmax specified in the table. � is the
deviation of theoretical energies from experiment in cm−1.

J Parity Nmax Nstates �

0 even 8 6073 569
0 even 10 11581 535
0 even 12 18857 459
0 even 14 27901 425
1 even 8 15847 327
2 even 8 20862 356
3 even 8 19999 389
0 odd 8 6806 − 482
0 odd 10 13062 − 408
0 odd 12 21342 − 332
0 odd 14 31646 − 130
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TABLE II. Comparison of CI-MBPT and NIST (experimental)
energy levels for the lowest J = 0–3 even states that do not have
strong cavity perturbation. The differences between CI-MBPT and
NIST energies have a substantial systematic shift � = 481 cm−1,
which if subtracted brings the theory in close agreement with
experiment, at the level of 100 cm−1 (the last column). Such small
residual deviation facilitates positive identification of the levels. The
shift is not subtracted from the ground-state fine-structure levels. All
energies are given in cm−1.

Configurations J ECI−MBPT ENIST � � − �

3s23p2 3P 0 0 0 0 0
3s23p2 1S 0 15963 15394 569 88
3s23p4p 3P 0 49559 49028 531 50
3s23p4p 1S 0 52325 51612 713 232

3s23p2 3P 1 80 77 3
3s23p4p 1P 1 47611 47284 327 − 154
3s23p4p 3D 1 48398 48020 378 − 103
3s23p4p 3P 1 49577 49061 516 35
3s23p4p 3S 1 49843 49400 443 − 38

3s23p2 3P 2 234 223 10
3s23p2 1D 2 6655 6299 356 − 125
3s23p4p 3D 2 48485 48102 383 − 98
3s23p4p 3P 2 49726 49189 537 56
3s23p4p 1D 2 50823 50189 634 153
3s23p4p 3D 3 48654 48264 389 − 92

levels (of the same configuration). The nature of the shift is
not clear, but it can most likely be attributed to the omitted
states n > Nmax, especially belonging to continuum. Actually,
Table I shows that at least in the case of J = 0 with increase
in Nmax the shift is substantially reduced for both even and
especially odd states. (Note that other J states of Si I and
generally of other more complex atoms require the number
of configurations beyond the current limit, so the trends with
Nmax are difficult to investigate.) This trend for J = 0 states
and the fact that the shift is similar for other J states allow us
to implement an ab initio shift removal by calculating it for
lowest-J states (J = 0 in our specific case) in the limit of large
Nmax. Alternatively, the shift can be removed semiempirically
when some or all experimental levels are available. We chose
the semiempirical approach to illustrate in Table II the ultimate
reduction in deviation. After subtracting the average shift,
found to be 481 cm−1, the level of agreement with experiment
becomes much better, at the level of 100 cm−1. The shift
subtraction, although it does not improve apparently wave
functions, can help in the positive identification of levels.

Similar accuracy and the systematic shift are observed
between CI-MBPT and NIST energies in odd states (Table III).
However, the shift is negative, −426 cm−1. If subtracted, it
brings experiment and theory in agreement at the 100-cm−1

level. The increase in Nmax from 8 to 14 for J = 0 states leads
to the reduction of the deviation from −482 to −130 cm−1, by
352 cm−1, which is close to 452 cm−1, the average systematic
shift for all levels in Table III. For odd states, it seems possible
to predict the shift ab initio with quite good accuracy using the
lowest J = 0 state.

TABLE III. Comparison of CI-MBPT and NIST (experimental)
energy levels for lowest J = 0–3 odd states. A systematic shift � =
−426 cm−1 if subtracted brings the theory in close agreement with
experiment, at the level of 100 cm−1 (the last column). The ground-
state fine-structure levels do not have large shift.

Config. J ECI−MBPT ENIST � � − �

3s23p4s 3P 0 39201 39683 −482 − 56
3s23p3d 3P 0 50257 50602 −345 81
3s23p5s 3P 0 53797 54245 −448 − 22
3s23p4d 3P 0 56415 56733 −319 107
3s23p4s 3P 1 39282 39760 −479 − 53
3s23p4s 1P 1 40606 40992 −386 40
3s3p3 3D 1 44852 45276 −424 2
3s23p3d 3P 1 50219 50566 −347 79

3s23p3d 1P 1 52957 53387 −430 − 4
3s23p3d 3D 1 53725 54185 −460 − 34
3s23p5s 3P 1 53869 54314 −445 − 19
3s23p5s 1P 1 54460 54871 −411 15
3s3p3 5S 2 32507 33326 −819 − 393
3s23p4s 3P 2 39485 39955 −470 − 44
3s3p3 3D 2 44871 45294 −422 4
3s23p3d 1D 2 46944 47352 −408 18

3s23p3d 3F 2 49559 49851 −292 134
3s23p3d 3P 2 50149 50500 −351 75
3s23p3d 3D 2 53745 54205 −460 − 34
3s23p5s 3P 2 54093 54528 −435 − 9
3s3p3 3D 3 44903 45322 −419 7
3s23p3d 3F 3 49647 49934 −287 139
3s23p3d 1F 3 52931 53362 −431 − 5
3s23p3d 3D 3 53800 54258 −457 − 31

IV. DISCUSSION AND CONCLUSION

Atoms with four valence elections were not much inves-
tigated with the precision CI-MBPT method in the literature,
with the notable exception being work by Dzuba [6] motivated
by the alpha-variation project. Lead is of additional interest
to theory due to parity-nonconservation (PNC) fundamental
symmetry experiments [10–12].

On examples of J = 0–3 even and odd states we have
shown that CI-MBPT theory gives good results if appropri-
ate cavity and configurations are chosen, especially when
systematic shifts are removed. This should be compared to
calculations by Dzuba [6] for Ge, Sn, and Pb. In Ge I for
the states beyond the ground-state fine-structure manifold,
the deviation of theory from experiment on the order of
1000 cm−1 is observed. Moreover, although there are two
different systematic shifts for even and odd states that can be
removed to improve accuracy, the deviation still remains at
300 cm−1 for odd states. Even states reveal better accuracy,
but the number of levels considered is quite small to evaluate
the performance of theory by analyzing statistics. In Sn I

the situation is similar; however, the MBPT core-valence
corrections become larger, more than 1000 cm−1 and require
more careful treatment. In Si I, the valence-core corrections are
the smallest and omitted high-order effects are insignificant.

The deviation of energies from experiment of the
MCHF method (the Breit-Pauli approximation) [3] ranges to
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1000 cm−1, although many states have quite small deviations
below 100 cm−1. No specific systematic shift can be identified.
The lifetimes are in good agreement with experiment as well.
At this point, it is not clear which method is better, but it is
definitely important to have independent calculations to avoid
a bias existing in each approach. It seems that even slightly
better accuracy is achieved in B-spline R-matrix calculations
[4], also based on expansions using MCHF calculations.

In this paper, we have demonstrated that CI-MBPT theory
performs well for Si I and there are ways for improving
accuracy. We have observed systematic shifts for even and
odd systems of states, and if these shifts are subtracted the
deviation of theory from experiment become at the level of
100 cm−1. This is almost an order of magnitude improvement
over CI-MBPT calculations in Sn I. The shifts can be attributed
to the omitted high-energy states in CI, and in some cases the
shifts can be predicted ab initio using the lowest states that

require smallest number of configurations. In order to obtain
energies for a relatively large number of states, we have chosen
the cavity 30 a.u., a compromise between the cavity shift effect
and the speed of convergence with the number of excited states.
In addition to choosing carefully the cavity, the configurations
also were chosen in such a way that the deviations of theory
from experiment became quite uniform. Finally, we hope in
the future the method can be further developed to treat most
atoms in the periodic table as complex as actinides.
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