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Fourier analysis of the nuclear flux density in diatomic molecules: A complementary tool to map
potential-energy curves and to characterize vibrational wave functions
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Pump-probe spectroscopy has allowed the construction of the nuclear probability density ρ(R,t) as a function
of the internuclear bond distance (R) and the time (t) in diatomic molecules and consequent deduction of the
nuclear flux density j (R,t). Thus, the two observables [ρ(R,t),j (R,t)] comprise a very detailed description of
the nuclear motion in ultrafast molecular dynamics. Here a Fourier analysis of j (R,t) is proposed and compared
with the already existing Fourier analysis of ρ(R,t). It is shown that the two power spectra |ρ̃(R,ω; T )|2 and
|j̃ (R,ω; T )|2 provide the same information in the frequency domain ω, but entirely different information in the
spatial domain (i.e., along the R coordinate).
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I. INTRODUCTION

Pump-probe spectroscopy, the most common technique in
femtosecond chemistry, has allowed the construction of ρ(R,t)
in diatomic molecules, for instance, in the Na2 molecule
vibrating in the excited state 21�g [1], and in the D2

+

molecular ion vibrating in the ground state 2�g
+ [2]. In a

pump-probe experiment, a pump pulse is used to excite or
ionize a molecule. Consequently a nuclear wave packet is
immediately launched and propagated in an excited state of
the molecule or in the ground state of the molecular ion.
Then a delayed probe pulse monitors the wave packet, e.g.,
by dissociation of the vibrating molecule. Experimentally, the
kinetic energy of the charged fragments is recorded [kinetic
energy release (KER) spectrum] as a function of the time delay
between the pump and probe pulses. The nuclear probability
density ρ(R,t) is then constructed from the KER spectrum
by using the Coulomb law, as established in Ref. [4]. This
technique has provided detailed information about molecular
vibrations, for instance observation of the dephasing and the
revival [5,6] of the nuclear wave packet [2,7].

During the field-free propagation of the wave packet the
time-dependent nuclear wave function can be represented as a
coherent superposition of vibrational eigenstates χn(R) of the
nuclear Hamiltonian,

�(R,t) =
∑

n

cnχn(R)e−iEnt/�. (1)

The set of constant coefficients {cn} is determined by the initial
wave packet �(R,0). The two R-dependent observables of
concern here are the nuclear probability density

ρ(R,t) =
∑
mn

cmcn cos (ωmnt)χm(R)χn(R) (2)

and the nuclear flux density

j (R,t) = �

μn

∑
mn

cmcn sin (ωmnt)χm(R)
d

dR
χn(R), (3)

where μn is the reduced mass of the nuclei and ωmn = (Em −
En)/� is the Bohr frequency. Alternatively, the nuclear flux
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density j (R,t) can be obtained from the nuclear probability
density ρ(R,t) by means of the continuity equation [8]. In fact,
the continuity equation was recently used to deduce an exper-
imental nuclear flux density [3], which revealed several novel
quantum effects for the first time. Thus, the two observables,
the probability density and the flux density, comprise a very
detailed (space- and time-resolved) description of vibrations
in molecular dynamics.

It is instructive to supplement the description of the
molecular vibration on the space-time domain provided by
ρ(R,t) and j (R,t) with its space-frequency counterpart. Thus,
by Fourier transforming the nuclear probability density and the
nuclear flux density separately for each internuclear distance
R, the Fourier power spectra (also referred to as quantum
beat spectra) are obtained. Here we illustrate these ideas
first by quantum-dynamical calculations in the D2

+(2�g
+)

molecular ion, and then we apply the concepts to the available
experimental fluxes (the D2

+ and Na2 molecules) reported in
the literature [3].

II. THEORY

The Fourier transform of ρ(R,t) and j (R,t) read:

ρ̃(R,ω; T ) = 1√
2π

∫ T

0
ρ(R,t)e−iωtdt

= 1√
2π

∑
mn

cmcnχm(R)χn(R)

×
∫ T

0
cos(ωmnt)e

−iωtdt (4)

and

j̃ (R,ω; T ) = 1√
2π

∫ T

0
j (R,t)e−iωtdt

= 1√
2π

∑
mn

cmcnχm(R)
d

R
χn(R)

×
∫ T

0
sin(ωmnt)e

−iωtdt, (5)

respectively. The Fourier transform of the probability den-
sity Eq. (4) was used to analyze ρ(R,t) constructed from
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experimental data for the vibrating D2
+ molecular ion [9].

It has also been applied to quantum-dynamical calculations
on a wide set of prototypal diatomic molecules [10]. For
each internuclear distance the power spectra display differ-
ent groups of frequencies. At low frequencies the group
with ωm,n=m+1 appears, followed by the second group with
ωm,n=m+2 and so on. If T is long enough, each individual
value of ωmn in the group can be resolved to reveal the product
of two vibrational eigenstates cmcnχm(R)χn(R) when the R

dependence of the power spectrum is analyzed. For T → ∞,∫ T

0 cos(ωmnt)e−iωtdt and
∫ T

0 sin(ωmnt)e−iωtdt are described
in terms of the Dirac δ function, yielding power spectra with
infinitely fine resolution. From such an analysis, one can map
the intramolecular potential energy, or more precisely, the
derivative of potential energy curve in which the wave packet
is being propagated [9–11].

III. RESULTS

In order to illustrate our theory, we consider the propagation
of a nuclear wave packet in the 2�g

+ electronic ground
state of a D2

+ molecular ion, initiated, for example, by the
photoionization of a D2 molecule. Figure 1(a) displays
the power spectrum for the calculated probability density of
the D2

+ molecular ion vibrating in the 2�g
+ electronic state.

The coefficients {cn} correspond to the Franck-Condon factors
between the vibrational eigenfunction �(R) of the electronic
ground state of the D2 and the vibrational eigenfunctions of
the D2

+, i.e., cn = 〈χn|�〉. Details of the calculation of the
potential energy curves and the eigenfunctions can be found
in Ref. [12]. Detailed interpretation of the power spectrum of
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FIG. 1. (Color online) Power spectra of a D2
+ molecular ion

vibrating in the 2�g
+ electronic state: (a) power spectrum of

the calculated nuclear probability density [|ρ̃(R,ω; T = 1200 fs)|2],
(b) power spectrum of the calculated nuclear flux density
[|j̃ (R,ω; T = 1200 fs)|2]. On the left |χm(R)χn(R)|2 (upper panel)
and |χm(R)dχn(R)/dR − χn(R)dχm(R)/dR|2 (lower panel).

the probability density for this system is given in Refs. [9–11].
However, for the sake of a self-contained presentation, we
summarize the main features of this power spectrum here. The
left panel of Fig. 1(a) exhibits a series |χm(R)χn=m+1(R)|2
corresponding to the quantum beats between successive
vibrational eigenstates. For example, at ω0,1 = 47.3 THz the
quantum beat |χ0(R)χ1(R)|2 appears, exposing the node of
the χ1(R) vibrational eigenstate around R ∼ 2a0. At ω1,2 =
45.4 THz the quantum beat |χ1(R)χ2(R)|2 appears with three
nodes, one from the χ1(R) eigenstate and two from the χ2(R)
eigenstate, and so on. Hence, each frequency displays a nodal
structure along the internuclear distance, and the boundaries
of |χn(R)χm(R)|2 depict the potential energy curve as can be
seen from Fig. 1(a).

We turn our attention now to the power spectrum of the
flux density [see Fig. 1(b)]. As in the case of the probability
density, the Bohr frequencies are revealed. However, the
R dependence is quite different [compare Eq. (4) with
Eq. (5)]. Now what is observed along the internuclear distance
is proportional to |χm(R)dχn(R)/dR − χn(R)dχm(R)/dR|2
instead of |χm(R)χn(R)|2. It is noteworthy that the new R

dependence of the power spectrum displays no nodes for
any couple (m,n) of eigenstates, as can be seen from the
left panel of Fig. 1(b). Notice that the power spectrum of
the flux density supplements the spectrum of the probability
density, in the sense that the power spectrum of the probability
density exposes the inner and outer turning points of the
potential, while the power spectrum of the flux density exposes
a structure between the turning points with several maxima
and minima corresponding to the inflection points (where
the first derivative takes extreme values) of the eigenstates.
For example, the quantum beat at ω0,1 = 47.3 THz displays a
maximum around R ∼ 2a0. At this internuclear distance, the
maximum value of χ0(R) and one of the inflection points
of χ1(R) match [see Fig. 2(a)]. The inflection points of
χ0(R) almost match with the maximum and minimum values
of χ1(R) [see Fig. 2(b)], although they are overlapped by
the dominant distribution |χ0(R)dχ1(R)/dR|2, thus rendering
this contribution imperceptible [see above Fig. 2(a), where
|χ0(R)dχ1(R)/dR − χ1(R)dχ0(R)/dR|2 is displayed]. At the
second quantum beat (ω1,2 = 45.4 THz), two of the inflection
points of χ2(R) are magnified by the maximum and minimum
values of χ1(R) [see Fig. 2(c)], while the inflection points
of χ1(R), magnified by the maximum and minimum values
of χ2(R) [see Fig. 2(d)], become imperceptible [see above
Fig. 2(c), where |χ1(R)dχ2(R)/dR − χ2(R)dχ1(R)/dR|2 is
displayed]. In summary, the first quantum beat exposes the
inflection point of the eigenstate χ1(R) together with the
maximum value of χ0(R), the second quantum beat exposes
two of the inflection points of the eigenstate χ2(R) together
with the maximum values of χ1(R), and so on.

To demonstrate the practicability of the formalism, we need
to construct j (R,t) from experimental data. For instance,
the flux density j (R,t) can be obtained from the density
ρ(R,t) by means of the continuity equation [8] together
with the proper boundary conditions, according to j (R,t) =
−∂t

∫ R

0 dR′ρ(R′,t). A more detailed description can be found
in the original paper by Manz and coworkers [3]. There,
the flux density is deduced from original measurements of
ρ(R,t) by Frohnmeyer and Baumert for Na2(2�g) [1] as
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FIG. 2. (Color online) Wave functions χ0(R), χ1(R) and χ2(R)
and their corresponding derivatives dχ0(R)/dR, dχ1(R)/dR and
dχ2(R)/dR. On top, the components ω0,1 and ω1,2 of the power
spectrum of the flux density [|j̃ (R,ω; T = 1200 fs)|2] are shown.
The vertical lines indicate the position of the maxima of the power
spectrum.

well as by Ullrich, Moshammer, and coworkers for D2
+ [2].

Figures 3(a) and 3(b) display, respectively, the power spectra
for the constructed nuclear probability density [2] and the
deduced nuclear flux density [3] of the D2

+ molecular ion.
The power spectrum of the probability density differs from
the previous calculations (see Fig. 1) mainly because of the
field dressing of the molecular ion by the extremely intense
(Imax ∼ 0.5 × 1015W/cm2) laser pulse [2,13]. Since the power
spectrum of the probability density |ρ̃(R,ω; T )|2 was analyzed
elsewhere [9], here the analysis is restricted to a comparison
of |ρ̃(R,ω; T )|2 with its counterpart |j̃ (R,ω; T )|2. In gen-
eral, both power spectra display well the Bohr frequencies
ωm,n=m+1.
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FIG. 3. (Color online) Power spectra of a D2
+ molecular ion:

(a) power spectrum of the constructed nuclear probability density
[|ρ̃(R,ω; T = 800 fs)|2] from experimental data, (b) power spectrum
of the deduced nuclear flux density [|j̃ (R,ω; T = 800 fs)|2].
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FIG. 4. (Color online) Power spectra of a Na2 molecule vibrating
in the 21�g electronic state: (a) power spectrum of the constructed
nuclear probability density [|ρ̃(R,ω; T = 1800 fs)|2] from experi-
mental data, (b) power spectrum of the deduced nuclear flux density
[|j̃ (R,ω; T = 1800 fs)|2]. On the left |χm(R)χn(R)|2 (upper panel)
and |χm(R)dχn(R)/dR − χn(R)dχm(R)/dR|2 (lower panel).

However, the spatial behavior of |j̃ (R,ω; T )|2 is quite un-
expected. It is a consequence of the mixing of the 2�g

+(1sσg)
state and the 2�u

+(2pσu) state mediated by the laser field [9].
This observation is supported by the quantum effect (QE3)
described in Ref. [3], which allows round trips of the nuclear
flux density j (R,t) to large internuclear distances, while the
nuclear probability density stays localized at intermediate
internuclear distances.

Finally, we examine the Na2(2�g) system. Figures 4(a)
and 4(b) display, respectively, the power spectrum for the
constructed probability density [1] and that for the deduced
flux density [3] of a Na2 molecule vibrating in the 21�g

electronic state. Unfortunately, because of the relatively short
time delay (ca. 2 ps) of the pump-probe experiment, the
individual frequencies are not resolved. Nevertheless, we can
discuss the gross features of the power spectra. Notice that
the power spectrum of the probability density is localized
around two internuclear distances, at R ∼ 6a0 and at R ∼ 9a0,
while the spectrum of the flux density is distributed along
the internuclear distance. Three photons are involved in the
pump-probe experiment with the Na2 molecule. The first two
photons create the wave packet in the 21�g electronic state via
A1�u

+ intermediate state, i.e., X1�g
+ → A1�u

+ → 21�g .
The third photon then ionizes the 21�g state. Investigation [14]
of the dynamical aspects of this multiphoton process show
that the transition A1�u

+ → 21�g occurs only at the in-
ner turning point. This implies that a limited number of
vibrational eigenstates contribute to the 21�g wave packet.
Thus, absorption of two photons induces transitions from
X1�g

+,n′ = 0 to the vibrational levels n = 11–18 of the
21�g state. The left panels of Fig. 4 show |χm(R)χn(R)|2
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and |χm(R)dχn(R)/dR − χn(R)dχm(R)/dR|2 for the relevant
vibrational eigenstates, i.e., n = 11–18. The potential energy
curve of the 21�g state reported in Ref. [15] was employed
for the calculation of the nuclear eigenstates χn(R). Thus, the
main trend of the group of frequencies ωm,n=m+1 expected
from the product of the eigenstates χm(R) and χm+1(R)
compares well with the experimental results. In other words,
the power spectrum of the density is distributed around the
inner and the outer turning points of the potential well [as
are all the |χm(R)χn(R)|2], while spectrum of the flux density
is distributed along the internuclear distance [as are all the
|χm(R)dχn(R)/dR − χn(R)dχm(R)/dR|2].

IV. SUMMARY

This paper demonstrates that Fourier analysis of the nuclear
flux density is a valuable tool for the construction of the
potential energy curves as well as for the depiction of the
inflection points of the vibrational eigenstates χn(R). It is
shown that this new observable supplements its counterpart
the nuclear probability density, in both the space-time and
the space-frequency domains. The ideas developed here were
first suggested by quantum-dynamical calculations in the
D2

+(2�g
+) molecular ion, and then applied to the D2

+

molecular ion and the Na2 molecule, for which the required
experimental data are available [1,2]. Finally we point out that
the diagonal terms |χn(R)|2 (probability density distribution

of the eigenstates) in Eq. (4) do not appear in the Fourier
analysis because they become time independent, playing the
role of constant background in the time evolution of ρ(R,t).
They consistently vanish in the flux density j (R,t) with no
possibility of appearing in Eq. (5). However, such an image
of the eigenstates has been constructed experimentally for
the H2

+ molecular ion by means of a technique combining
dissociation via electron attachment with cold-target-recoil-
ion-momentum spectroscopy [16]. So far, one can experi-
mentally obtain |χn(R)|2 (see Ref. [16]), |χm(R)χn(R)|2 (see
Ref. [9]), and |χm(R)dχn(R)/dR − χn(R)dχm(R)/dR|2, as
shown here.
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