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Relativistic formulation of the Voigt profile
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The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic
or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of
homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect.
Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases,
namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the
Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.
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I. INTRODUCTION

The spectral lines, their shapes and their widths, either in
absorption or emission spectroscopy, are powerful tools for gas
and plasma diagnostics in a variety of physical systems and
environments, including stellar and planetary atmospheres,
interstellar gas clouds, exhaust gases from combustion pro-
cesses, and plasma plumes from laser ablation or flames.
These examples are characterized by extreme thermodynamic
conditions, in which the temperature can be as high as
thousands of kelvin. The standard Voigt profile, which is a
convolution of Gaussian and Lorentzian profiles, represents
the commonly used line-shape model, simultaneously taking
into account Doppler and collisional broadening effects. With
the growing precision of laser spectroscopy, one may wonder
when the relativistic Doppler effect becomes significant and
to what extent it affects the shape of the spectral lines.

High spectral fidelity is a relatively new feature of modern
atomic and molecular spectroscopy, implemented in few spe-
cialized laboratories and mostly due to the recent availability
of optical frequency comb synthesizers [1]. It can be obtained
when using a tunable laser with a sufficiently narrow emission,
such as an extended cavity diode laser or a quantum cascade
laser, to probe the species of interest, in conjunction to the
comb, which simply provides a frequency ruler against which
the tunable laser can be calibrated [2–5]. If the spectral fidelity
is accompanied by a sufficiently high signal-to-noise ratio
(SNR), interesting line-shape investigations can be carried
out [6], aimed at a better understanding of the physical
mechanisms determining the absorption profile associated
with a given spectral line. In this respect, exceptionally
precise measurements of absorption line shapes have been very
recently reported by Cygan et al., on the 16O2 B band at 689 nm
[7]. It should be mentioned that at some level of accuracy the
relativistic effect can be an issue also for the spectroscopic
determination of the Boltzmann constant by means of Doppler
broadening thermometry [8,9].

Similarly, the relativistic Doppler effect might be consid-
ered in astronomical spectroscopy in the near future. In fact,
sophisticated astrophysical models require high-quality spec-
tra with increasing resolution and accuracy. This is stimulating
the development of high-resolution stellar spectrometers at the
largest telescopes [10]. A famous example is given by the
Potsdam Echelle Polarimetric and Spectroscopic Instrument

(PEPSI) at the Large Binocular Telescope Observatory of
Tucson, Arizona, whose installation and testing began in July
2014 [11]. The PEPSI project is designed to provide stellar
spectra from 390 and 1050 nm, with a signal-to-noise ratio of
5000 and a resolution (defined as λ/�λ) of 320 000 [12].

In a recent paper, a new formulation of the relativistic
Doppler-broadened line profile, based upon the relativistic
Doppler effect, has been proposed [13]. This work has
demonstrated the failure of the commonly accepted prediction,
which was reported in the pioneering work of Gerbal and
Prud’Homme[14].

In the present paper, we calculate the relativistic Voigt
profile and investigate the difference between the relativistic
and the classical Voigt profiles as a function of the gas
temperature. Our attention is focused on one of the most
promising candidates for the observation of the relativistic
corrections to the emissive line profiles, namely, molecular
hydrogen [15–18]. As is well known, this species is of
great interest in astrophysics [19–22]. In particular, molecular
hydrogen is the most abundant molecule in the atmospheres
of cool stars and its quadrupole lines in the infrared act as a
sensitive probe [23], similar to the atomic hydrogen lines in
hot stars [24].

II. EMISSIVE RELATIVISTIC VOIGT PROFILE

In this section we present a derivation of the relativistic
Voigt profile. Presently, we are focused only on the sponta-
neous emission process. Note that the other two process related
to the problem of the shape of molecular or atomic transitions,
absorption, and stimulated emission, should be considered in
a different way.

In the relativistic case, the final result depends on the
details of the considered source of light and the detection
system. Therefore it is crucial to precisely define the whole
physical problem. Let us assume that in the laboratory frame
we observe a cloud that contains Nmol molecules. In the real
physical system the rate of photons emission will depend on
the excitation mechanism, whose description is beyond the
scope of this paper. We denote the number of photons emitted
per second by a single molecule in the molecule and laboratory
frames by σ ′ and σ , respectively. Due to the invariance of the
number of photons these two quantities are dependent via the
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following relation:

σ ′dt ′ = σdt, (1)

where dt ′ and dt are time intervals in the molecule (S ′) and
laboratory (S) frames, respectively. In the simplest case, it can
be assumed that σ does not depend on molecule velocity. When
the rate of excitation events is much smaller than the rate of
spontaneous emission then the rate of photons emission will
almost not be influenced by the rate of spontaneous emission.
In other words, the rate of photon emissions will be determined
by the dynamics of excitation processes. Therefore it seems
more natural to assume that the rate of photons emission in the
laboratory frame σ is the same for all molecules. The same
assumption was adopted in Ref. [13]. Note that it follows
from Eq. (1) that if σ is speed independent then σ ′ is speed
dependent, because dt/dt ′ is a function of speed.

Note also that if the opposite assumption was taken, i.e.,
speed-independent rate of photons emission in the molecule
frame, then the transformation of the time will lead to
additional speed-dependent factor in the laboratory frame. The
consequence of it will be that a normalized profile assumed
in the molecule frame will not lead to a normalized profile in
the laboratory frame. However, in general, the normalization
integral does not have to be Lorentz invariant and the change
of the profile normalization under the Lorentz transformation
does not imply that the model assumptions are unphysical.

As it is in the case of classical Voigt profile, we assume
that in the molecule frame the frequency distribution of
photons is given by the Lorentz profile ILP(ω′) = (1/π )�′/
(�′2 + (ω′ − ω′

0)2), where �′ is the half width at half maximum
and ω′ and ω′

0 are the frequency of emitted photon and the
transition frequency, respectively. The physical quantities in S ′
and S are denoted with and without prime, respectively. Note
that the choice of the Lorentzian distribution assumes isotropic
line-broadening collisions in S ′. It should be noted that for
simplicity we neglect any speed dependence of Lorentzian
width as well as velocity-changing collisions, which can affect
the spectral line shape [25].

Let us consider a class of molecules having a momentum
�p. In their frame, S ′, the number of photons emitted by
each molecule into the solid angle d�′ having frequency
ω′ is (σ ′dt ′)ILP(ω′)dω′d�′/(4π ). Hence, the total number of
photons emitted by the molecules of the momentum class is

dN ′
phot = σ ′dt ′ILP(ω′)dω′ d�′

4π
Nmolf ( �p)d3 �p, (2)

where f ( �p) is the relativistic momentum distribution in the S

frame. For simplicity we assume that in S the cloud remains
at rest or moves at speed much smaller than the mean speed of
its thermal distribution, hence the momentum distribution is
not shifted with respect to thermal distribution. Note that this
assumption does not influence the derivation of classical Voigt
profile.

Following transformation of the time and space coordi-
nates [26] to transform the frequency, the solid angle element,
and the time interval from S ′ to S we used the following
relations [27]:

ω′

ω
= dω′

dω
= dt

dt ′
= κ,

d�′

d�
= κ−2, (3)

being

κ = γ (1 − β cos ξ ), (4)

where γ = 1/
√

1 − β2, β = v/c, and ξ is an angle, in the S

frame, between photon wave vector �k and molecule velocity �v.
The number of photons is invariant, namely, dN ′

phot = dNphot,
hence the number of photons in S per solid angle element d�,
per frequency interval dω, per unit time is

dNphot

d�dωdt
= dN ′

phot

d�′dω′dt ′
d�′dω′dt ′

d�dωdt

= σ

4π
κ−1ILP(κω)Nmolf ( �p)d3 �p. (5)

In Eq. (5) we used Eq. (1), which states that σ =
σ ′dt ′/dt . In thermodynamic equilibrium, the relativistic
momentum distribution f ( �p) is proportional to the Boltz-
mann energy distribution, namely, f ( �p) ∝ e−E/kBT , where
kB is the Boltzmann constant, T the gas temperature, E =
m0c

2γ = m0c
2
√

1 + p2/(m0c)2 and �p = m0γ �v is momentum
of emitter. Taking into account the normalization condition∫

f ( �p)d3 �p = 1, the relativistic momentum distribution can
be written as

f ( �p) = 1

4πα(m0c)3K2(1/α)
e−γ /α, (6)

where α = kBT /(m0c
2) and KN (z) is the modified

Bessel function of the N th order. In the spheri-
cal coordinates the d3 �p element can be written as
dϕdθ sin θp2dp = (m0c)3dϕdθ sin θγ

√
γ 2 − 1dγ [note that

γ =
√

1 + p2/(m0c)2], where the angles ϕ and θ are defined
in Fig. 1.

The total number of photons emitted by all momentum
classes in the laboratory frame per solid angle element d�,
per frequency interval dω, per unit time can be found by
integrating Eq. (5) over the whole momentum space

IRVP(ω) = σ

(4π )2

∫ ∞

1
dγ

∫ π

0
dθ

∫ 2π

0
dϕ sin θκ−1ILP(κω)

×
{

Nmol

αK2(1/α)
e−γ /αγ

√
γ 2 − 1

}
. (7)

Here, we took advantage from the assumption, discussed in
the beginning of this section, that σ does not depend on the
velocity. The expression in curly brackets is known as the

FIG. 1. Angles and vectors in the S frame.
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Jüttner distribution [13,28]. The integral over ϕ is trivial, since
no term depends on it. If we assume that the observation
direction is parallel to the z axis, see the �k wave vector in
Fig. 1, then ξ = θ and Eq. (7) can be explicitly written as

IRVP(ω) = σ

8π2

Nmol

αK2(1/α)

∫ ∞

1
dγ e−γ /α

√
γ 2 − 1

∫ π

0
dθ sin θ

× 1

1 − β cos θ

�′

�′2 + [γ (1 − β cos θ )ω − ω′
0]2

. (8)

It should be noted that β =
√

γ 2 − 1/γ . The integral over the
θ angle can be carried out analytically, thus leading to our final
formula for the relativistic Voigt profile

IRVP(�ω) = σ0

πβmK2
(
2/β2

m

) �′

β2
m�′2 + ω2

D

∫ ∞

1
dγ

× e−2γ /β2
mγ

{
ωD

�′ [arctan (ξ+(γ ))−arctan (ξ−(γ ))]

+βm ln

(
1 +

√
1 − γ −2

1 −
√

1 − γ −2

)

+ 1

2
βm ln

(
1 + ξ 2

−(γ )

1 + ξ 2+(γ )

)}
, (9)

where

ξ±(γ ) = �ω

�′ (γ ±
√

γ 2 − 1) + ωD

�′
γ ±

√
γ 2 − 1 − 1

βm

(10)

and σ0 = σNmol/(4π ). To be consistent with a common
line-shape notation we introduced in Eqs. (9) and (10) ωD =
(vm/c)ω′

0 and �ω = ω − ω′
0. Moreover we replaced the α pa-

rameter, exploited in Ref. [13], with βm = vm/c, which seems
to be more intuitive and easier to interpret (α = β2

m/2). By vm

we mean the most probable speed of classical nonrelativistic
Boltzmann distribution (vm = √

2kBT /m0). Note that within
this notation the relativistic Voigt profile is described by two
parameters characterizing also the classical Voigt profile (ωD

and �′), and one extra parameter βm, which controls how
important the relativistic effects are. It should be also noted that
in general both the classical and the relativistic Voigt profiles
depend on the same set of physical parameters, however
the classical Voigt profile effectively depends only on the
product of

√
T and ω0 (ωD ∝ √

T ω0), hence mathematically
it is defined by one parameter less. This property is also
related to the physical interpretation of the relativistic Voigt
profile. One needs to remember that keeping constant the ωD

parameter and increasing the βm parameter physically means
that the temperature is increasing, while the line position ω′

0 is
decreasing such as to keep ωD unchanged. It should be noted
that in the weak relativistic limit (small βm) a special approach
to numerically evaluate the integral from Eq. (9) needs to be
applied, see Appendix A.

In the next two sections we show that our formulation of the
relativistic Voigt profile is consistent with the formulas for two
available limit cases, i.e., classical Voigt profile (Sec. III) and
relativistic Doppler profile (Sec. IV). Finally, in Appendix B,
we show analytically that the profile given by Eq. (9) is
normalized.

FIG. 2. (Color online) Relativistic Voigt profile for �′/ωD = 1.
Black, green, and blue lines correspond to βm = 0.3, 0.6, and 0.99,
respectively. The vertical dashed lines indicate the values of �ω

corresponding to ω = 0. As a reference, also the classical Voigt profile
is presented as a red line.

III. CLASSICAL VOIGT PROFILE LIMIT

In this section we show that in the nonrelativistic case,
βm → 0, the relativistic Voigt profile given by Eqs. (9) and (10)
converges to the common classical formula. Figure 2 presents
a comparison between the relativistic and classical Voigt
profiles. Note that for highly relativistic cases the broadening
is comparable with ω′

0 and the left side of the line is cut by
the ω = 0 line (see the vertical dashed lines of Fig. 2). In
this case, for ω close to zero, the assumption about Lorentzian
distribution is not valid any more. It is seen that the asymmetric
relativistic profile converges to the classical Voigt profile
as βm goes to zero. This convergence can be easily shown
analytically. First, it can be seen that the two logarithmic terms
in curly brackets in Eq. (9) are purely relativistic and they
disappear as βm → 0. Also the term β2

m�′2 in the denominator
before the integral straightforwardly goes zero. The integral
variable γ should be replaced with x = √

2(γ − 1)/βm. Then
ξ± → (�ω ± xωD)/�′ as βm goes to zero. Moreover in this
limit the modified Bessel function of the second kind can be
written as K2(2/β2

m) ≈ √
π (βm/2) exp(−2/β2

m). Finally the
whole Eq. (9) together with Eq. (10) can be rewritten as

IRVP(�ω)
βm→0−−−→ 2σ0

π3/2ωD

∫ ∞

0
dxe−x2

x

×
[

arctan

(
�ω + xωD

�′

)
− arctan

(
�ω − xωD

�′

)]
. (11)

Equation (11) is equivalent to the formula defining the common
Voigt profile, for instance see Eq. (52) in Ref. [25].

IV. RELATIVISTIC GAUSS PROFILE LIMIT

The convergence of the relativistic Voigt profile, Eq. (9), to
the relativistic Gauss profile, Eqs. (14) and (22) in Ref. [13],
for �′/ωD → 0 is presented in Fig. 3. It can be also shown
analytically. In this limit the integral over θ from Eq. (8) can

022508-3



WCISŁO, AMODIO, CIURYŁO, AND GIANFRANI PHYSICAL REVIEW A 91, 022508 (2015)

FIG. 3. (Color online) Relativistic Voigt profile for βm = 0.99.
Black, green, and blue lines correspond to �′/ωD = 0.1, 0.5, and
1.0, respectively. The gray vertical dashed line indicates the values of
�ω corresponding to ω = 0. As a reference, also the relativistic Gauss
profile is presented as a red line. Thin dashed curves represent the
solutions without the rotating wave approximation, see Appendix B.

be written as

∫ π

0
dθ sin θ

1

1 − β cos θ
πδ[γ (1 − β cos θ )ω − ω′

0]

=
{

π
β

1
ω′

0
for γω(1 − β) < ω′

0 < γω(1 + β),
0 otherwise,

(12)

where δ(·) is the Dirac δ. Consequently, defining γmin =
1
2 ( ω

ω′
0
+ ω′

0
ω

), the whole Eq. (8) simplifies to

IRVP(ω)
�′→0−−−→ σ

8π2

Nmol

αK2(1/α)

×
∫ ∞

γmin

dγ e−γ /α
√

γ 2 − 1
π

β

1

ω′
0

= σ0
ω2 + 2αω′

0ω + ω′
0

2

4K2(1/α)ωω′
0

2 e
− ω2+ω′

0
2

2αω′
0ω . (13)

This result is the same as the emissive relative Doppler profile
presented in Ref. [13], see Eq. (22) therein. To compare this
profile with other line shapes, as we did before, it is convenient
to replace ω′

0, ω, and α parameters with ωD , �ω, and βm. Then
Eq. (13) can written as

IRVP(ω)

�′→0−−−→ σ0
β2

m�ω2 + (
2 + β2

m

)
βmωD�ω + (

2 + β2
m

)
ω2

D

4K2
(
2/β2

m

)(
β−1

m ωD + �ω
)
ω2

D

× e
− β2

m�ω2+2βmωD�ω+2ω2
D

β2
mωD (βm�ω+ωD ) . (14)

From this notation of relativistic Doppler profile it is
straightforwardly seen that in classical nonrelativistic limit
(βm → 0) it converges to the common Gauss profile IGP =
σ0/(

√
πωD) exp(−�ω2/ω2

D).

V. ENTITY OF RELATIVISTIC EFFECTS

Molecular hydrogen will be our physical target. Since
βm = vm/c =

√
2kBT /(mc2), atomic and molecular hydrogen

are fairly good choices if one wants to look at relativistic
effects, because of their small mass. Nevertheless, also other
molecules such as O2 or CO, for which the relativistic
deformation is only four times smaller, can be considered as
candidates for searching the relativistic effects manifestation.
For the case of molecular hydrogen, temperatures between
T = 300 K and 3000 K correspond to βm ≈ 0.5 × 10−5 and
1.7 × 10−5, respectively. In Figs. 4(a) and 4(b) we present
the differences between relativistic Voigt profiles (RVP)
and classical Voigt profiles (VP) for βm = 10−4 and 10−6,
respectively, for �/ωD = 1. For a very wide range of values
of the βm parameter, from 10−2 down to 0, the shape of the
difference of these two profiles is almost the same, while its
amplitude varies with βm, see Fig. 4(c). The dependence from
this figure determines, for a given temperature, the lowest level
of signal-to-noise ratio (SNR) of measured spectrum, which
is required to distinguish the relativistic deformation of the

FIG. 4. (Color online) (a) and (b) Differences between RVP
and VP normalized to the VP amplitude for βm = 10−4 and for
βm = 10−6, respectively, for �/ωD = 1. (c) Amplitude of differences
between RVP and VP normalized to the VP amplitude as a function
of the βm parameter. The temperatures denoted in (c) correspond to
the selected βm values. They were calculated in the case of the H2

molecular mass.
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spectra. For the case of molecular hydrogen these levels are
≈1/(1.7 × 10−6) ≈ 5.8 × 105 and ≈1/(3.6 × 10−6) ≈ 2.8 ×
105 for T = 300 K and 3000 K, respectively. In astrophysical
conditions, the atomic hydrogen lines in hot stars (at T ≈
60 000 K) [24] can be even more affected by relativistic effects.
It should be also noted that the H2 ionization and dissociation
energies are T ≈ 180 000 K and T ≈ 52 000 K, respectively.
Therefore βm of order of 10−4 points the limit of molecular
hydrogen observation. It is far from the βm values assumed in
Figs. 2 and 3, hence that strong line asymmetries as presented
in these figures will not be seen in H2 spectra.

VI. CONCLUSIONS

Our derivation of the relativistic Voigt profile demonstrates
that the formula of Gerbal and Prud’Homme, which is given
in Ref. [14], is not valid. On the other hand, we have provided
strong analytical elements to support the validity of our
formulation: the convergence of the RVP to the relativistic
Gaussian profile of Ref. [13], in the limit of a negligible
homogeneous broadening, as well as the convergence to the
classical Voigt profile, in the nonrelativistic case (namely,
βm → 0). Furthermore, we demonstrated the normalization
of the RVP, another important argument to confirm the
correctness of our formulation. Our study shows that the
relativistic deformation of the Voigt profile is rather small and
its observation appears very challenging. Nevertheless, labo-
ratory experiments have already demonstrated that the shape
of molecular transitions can be measured with SNR exceeding
105 and further improvements are still possible [7]. Moreover, a
recent experiment expressly designed to observe an absorption
spectrum at the shot-noise limit [29] seems to provide a
concrete possibility for observing the relativistic Voigt profile.
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APPENDIX A: NUMERICAL EVALUATION FOR WEAK
RELATIVISTIC LIMIT (SMALL βm)

Direct numerical evaluation of the integral from Eq. (9) for
small βm is very difficult, mainly because of huge value of the
exponent power. In the simplest case, for βm not smaller than
10−4, this problem can be overcome by taking the factor e−2/β2

m

before the integral and restricting the upper integration limit
to 1 + 20β2

m. In other words the factor
∫ ∞

1 dγ e−2γ /β2
m from

Eq. (9) should be replaced with e−2/β2
m

∫ 1+20β2
m

1 dγ e−2(γ−1)/β2
m .

However, for βm smaller than 10−4 further modifications
of Eq. (9) are needed. First, as it was done in Sec. III,
the modified Bessel function of the second kind K2(2/β2

m)
should be replaced with

√
π (βm/2) exp(−2/β2

m). Moreover the
integration variable γ should be substituted with β2

mγ̃ + 1 and
consequently the integration limits 〈1,1 + 20β2

m〉 with 〈0,20〉.
We also expand the βm ln(

1+
√

1−γ −2

1−
√

1−γ −2
) term with respect to βm

obtaining β2
m2

√
2γ̃ 1/2. Finally Eq. (9) can be written in the

following form:

IRVP(�ω) ≈ 2σ0

π3/2

�′

β2
m�′2 + ω2

D

∫ 20

0
dγ̃ e−2γ̃

(
β2

mγ̃ + 1
)

×
{

ωD

�′ [arctan (ξ̃+(γ̃ )) − arctan (ξ̃−(γ̃ ))]

+β2
m2

√
2
√

γ̃ + 1

2
βm ln

(
1 + ξ̃ 2

−(γ̃ )

1 + ξ̃ 2+(γ̃ )

)}
, (A1)

where

ξ̃±(γ̃ ) ≈
(

�ω

�′ ±ωD

�′
√

2γ̃ 1/2

)
+ βm

(
ωD

�′ γ̃±
√

2
�ω

�′ γ̃ 1/2

)

+β2
m

(
�ω

�′ γ̃ ±
√

2

4

ωD

�′ γ̃ 3/2

)
± β3

m

(√
2

4

�ω

�′ γ̃ 3/2

)
.

(A2)

Equation (A2) was obtained by expanding the expression from
Eq. (10) with respect to βm. The β3

m term in Eq. (A2) can be
neglected for βm < 10−4.

APPENDIX B: RVP NORMALIZATION

In this Appendix we show analytically that, independently
from all the parameters, the area of the RVP, given by Eq. (9), is
equal to σ0. This property, together with the limit cases checked
in Secs. III and IV, is crucial to confirm the correctness of
Eq. (9).

The integral from Eq. (9) over γ is not doable analytically.
Hence, we first integrate this expression over �ω from
−∞ to +∞ and then over γ . It is convenient to introduce
dimensionless variable y = �ω/ωD . In this section by integral∫ +∞
−∞ . . . dy we mean the Cauchy principal value defined as

limy0→+∞
∫ +y0

−y0
. . . dy.

We first consider the term from Eq. (9) with arctan
functions. After a few steps it can be shown that the integration
over y leads to the simple formula∫ +∞

−∞
dy[arctan (ξ+(γ )) − arctan (ξ−(γ ))] = 2π

βm

√
γ 2 − 1.

(B1)

This allows to easily do the integral over γ from Eq. (9)
∫ +∞

1
dγ e

− 2γ

β2
m γ

ω2
D

�′

∫ +∞

−∞
dy[arctan (ξ+(γ ))− arctan (ξ−(γ ))]

= πβmK2
(
2/β2

m

) × ω2
D

�′ . (B2)

022508-5



WCISŁO, AMODIO, CIURYŁO, AND GIANFRANI PHYSICAL REVIEW A 91, 022508 (2015)

It should be noted that the ξ±(γ ) functions depend also on
y, however to make the equations more readable we do not
indicate it explicitly.

Similarly, several steps are needed to integrate the logarith-
mic terms from Eq. (9) over y

∫ +∞

−∞
dy

[
ln

(
1 +

√
1 − γ −2

1 −
√

1 − γ −2

)
+ 1

2
ln

(
1 + ξ 2

−(γ )

1 + ξ 2+(γ )

)]

= 2π
�′

ωD

√
γ 2 − 1. (B3)

Then we do the integral over γ from Eq. (9)
∫ +∞

1
dγ e

− 2γ

β2
m γωDβm

∫ +∞

−∞
dy

[
ln

(
1 +

√
1 − γ −2

1 −
√

1 − γ −2

)

+1

2
ln

(
1 + ξ 2

−(γ )

1 + ξ 2+(γ )

)]

= πβmK2
(
2/β2

m

) × β2
m�′. (B4)

The sum of the right-hand sides of Eqs. (B2) and (B4) is

πβmK2
(
2/β2

m

) ×
(

ω2
D + β2

m�′2

�′

)
, (B5)

which cancels with the factor before the integral in Eq. (9) and
hence

∫ +∞

−∞
IRVP(�ω)d(�ω) = σ0. (B6)

It should be noted that only positive frequencies are
physically meaningful, hence, in general, to obtain the line
area the profile should be integrated only from ω = 0 to ∞
or correspondingly the integral over �ω from Eq. (B6) should
goes from −ωD/βm to ∞. On the other hand, it is seen in Fig. 3
that for nonzero �′ the contribution to profile area comes also
from negative ω (to the left of the gray vertical dashed line
in Fig. 3). This means that the RVP, given by Eq. (9), is not
normalized in the range from ω = 0 to ∞. It is caused by
the fact that in our considerations we neglected the resonance
around the −ω0 frequency or, in other words, we assumed
rotating wave approximation [30]. Taking into account both
−ω0 and +ω0 contributions we obtain normalized profile
in the range from ω = 0 to ∞, see thin dashed lines in
Fig. 3.
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