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Electron-atom resonances: The complex-scaled multiconfigurational spin-tensor electron
propagator method for the 2P Be− shape resonance problem
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We propose and develop the complex-scaled multiconfigurational spin-tensor electron propagator (CMCSTEP)
technique for theoretical determination of resonance parameters with electron-atom and electron-molecule
systems including open-shell and highly correlated atoms and molecules. The multiconfigurational spin-tensor
electron propagator (MCSTEP) method developed and implemented by Yeager and co-workers in real space
gives very accurate and reliable ionization potentials and attachment energies. The CMCSTEP method uses a
complex-scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated
Hamiltonian where all of the electronic coordinates are scaled by a complex factor. The CMCSCF was developed
and applied successfully to resonance problems earlier. We apply the CMCSTEP method to get 2P Be− shape
resonance parameters using 14s11p5d , 14s14p2d , and 14s14p5d basis sets with a 2s2p3d complete active
space. The obtained values of the resonance parameters are compared to previous results. Here CMCSTEP
has been developed and used for a resonance problem. It appears to be among the most accurate and reliable
techniques. Vertical ionization potentials and attachment energies in real space are typically within ±0.2 eV or
better of excellent experimental results and full configuration-interaction calculations with a good basis set. We
expect the same sort of agreement in complex space.
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I. INTRODUCTION

Resonances in electron-atom or electron-molecule scat-
tering processes have attracted much attention. They play
major roles in electron transport and energy exchange between
electronic and nuclear motions, in vibrational excitation of
molecules or molecular ions by electron impact, in dissociative
attachments and recombination [1,2], and as a mechanism for
DNA damage by low-energy electrons [3,4].

In order to avoid direct calculation of an outgoing wave in
resonance problems, we use a complex coordinate scaling (CS)
technique, which was proposed and developed by Aguilar,
Balslev, and Combes [5,6] and Simon [7] in the early 1970s. In
this approach the electronic coordinates (r) of the Hamiltonian
are scaled (or “dilated”) by a complex parameter η as r →
ηr , where η = αeiθ with α > 0 and θ ∈ (−π,π ). Under this
transformation, the bound states are real and are unchanged
by complex scaling and the continuum of the complex-scaled
Hamiltonian H̄ is rotated by an angle 2θ at each threshold such
that the continuum states appear as complex eigenvalues of the
complex-scaled Hamiltonian H̄ . The resonance parameters
E = Er − i �r

2 hidden in the continua are exposed in complex
space for some suitable η, where Er and �r are the resonance
position and width of that resonance state, respectively.

Other alternative methods have included the complex
absorbing potential (CAP) [8,9] instead of CS. CAP methods
have not been shown conclusively to be superior to standard
complex scaling.

Previously, we developed the quadratically conver-
gent complex-scaled multiconfigurational self-consistent
field [10,11] (CMCSCF) method with step length control to
obtain the resonance parameters. In real space, the MCSCF
method with a small complete active space (CAS) has been
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proven to be a very effective method to describe nondy-
namical and some dynamical correlation correctly and is
computationally cheaper than very large or full configuration-
interaction (CI) calculations [12] while still incorporating
the fundamental physics of what is going on. Based on the
CMCSCF initial state, we also developed a method termed
the M1 method [11,13], in which the complex M1 matrix
is constructed from the first block of the M matrix defined
in the multiconfigurational spin-tensor electron propagator
(MCSTEP) method [14–18]. This block allows for only
simple electron removal and addition to orbitals with no more
complicated processes allowed to mix in.

The MCSTEP method, however, includes many addi-
tional operators which allow for more complicated electron
ionization and attachment processes to be included. It is
designed to calculate reliably the ionization potentials (IPs)
and attachment energies (AEs) for atoms and molecules
which cannot generally be handled accurately by perturbation
methods. In addition to simple additional electron operators in
all orbitals as in the M1 method, the MCSTEP method includes
operators that allow for electron removal and electron addition
to all orbitals in excited states within the CAS [14–18]. In
complex space, the M1 and CMCSTEP methods use CMCSCF
states as reference or initial states along with H̄ . Both the
CMCSCF and M1 methods have been previously efficiently
used to study the 2P Be− shape resonance [10,11,13].

Moreover, we have developed and implemented the
complex-scaled multiconfigurational time-dependent Hartree-
Fock (CMCTDHF) method [also called the complex-scaled
multiconfigurational linear response (CMCLR) method]. The
CMCTDHF method uses the CMCSCF state as the initial state.
In real space the multiconfigurational time-dependent Hartree-
Fock method has been successfully used to study electronic
excitation energies and linear response properties [19]. The
CMCTDHF method has previously been implemented and
successully employed to study Auger resonances for Li and
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Li-like cations [20], and Be and Be-like cations [21] and
Feshbach resonances for both Be+(2p) [22] and He(2s2) [23]
systems, as well.

In this work we implement the CMCSTEP method for the
2P Be− shape resonance problem using 14s11p5d, 14s14p2d,
and 14s14p5d basis sets with a 2s2p3d CAS and compare our
results with previous results. The reasons why we implement
this method for resonance problems are as follows: (i) the
MCSTEP method in real space works exceptionally well and
gives very accurate and reliable values of vertical IPs and
AEs for general atomic and molecular systems, which are well
consistent with experimental measurements [24–28], so that
we expect that the CMCSTEP method is able to give reliable
values of resonance parameters; (ii) even though this approach
has been implemented here in complex space, this is a direct
extension of the CMCSCF [10] and M1 [11] methods which we
previously developed and implemented, so we expect that the
obtained results for this resonance problem will be different
from those previously obtained and very accurate [10,11].

The paper is organized as follows. In Sec. II we discuss
the theoretical part of the CMCSTEP method. In Sec. III we
present and discuss our results. Then conclusions follow.

II. THEORY

The complex-scaled electronic Hamiltonian is non-
Hermitian. It is complex symmetric. This causes the
wave function |ψm〉 to be complex-conjugate biorthogonal
(CCBON) where 〈ψ∗

i |ψj 〉 = δij (∗ means the complex con-
jugate) [29]. Creation operators are introduced as aT =
a† = (a∗)† rather than a† with the usual anticommutation
relations for creation and annihilation operators still holding
by changing “†” to “T ” [30,31].

Therefore, the CMCSTEP method may be formulated in the
same way as MCSTEP via the single-particle Green’s function
or electron propagator method [14–18] or superoperator
formalism [32] with modified second-quantization operators
and H̄ . We will not discuss the MCSTEP method in detail
here, but it can be found in Refs. [14–18].

CMCSTEP IPs and AEs are obtained from the following
complex generalized eigenvalue problem:

MXf = ωf NXf , (1)

where

Mrp =
∑

�

(−1)S0−�−Sf −γr W (γrγpS0S0; �Sf )

× (2� + 1)1/2〈NS0||{h∗
r (γ̄r ),H̄ ,hp(γp)}||NS0〉 (2)

and

Nrp =
∑

�

(−1)S0−�−Sf −γr W (γrγpS0S0; �Sf )

× (2� + 1)1/2〈NS0||{h∗
r (γ̄r ),hp(γp)}||NS0〉. (3)

ωf is an IP or AE from the N -electron initial tensor state
|NS0〉 with spin S0 to the (N ± 1)-electron final ion tensor state
|N ± 1Sf 〉 which has spin Sf . W is the usual Racah coefficient,
hp(γp) and h∗

p(γ̄r ) are tensor-operator versions of members of
the operator manifold with ranks γp and γr , respectively, {,} is

the anticommutator

{A,B} = AB + BA, (4)

and {,,} is the symmetric double anticommutator

{A,B,C} = 1
2 ({A,[B,C] + {[A,B],C}}). (5)

The CMCSTEP method uses a CMCSCF initial state with a
fairly small CAS and couples tensor ionization and attachment
operators to a tensor initial state to a final state that has the
correct spin and spatial symmetry even if the initial state is
open shell and/or highly correlated.

III. RESULTS AND DISCUSSION

In this study, we investigate the low-lying 2P Be− shape
resonance problem using the �CMCSCF [see Eq. (6)], M1,
and CMCSTEP methods. This resonance problem has been
investigated theoretically in the past [33–41,43,44]. Recently,
we studied this resonance problem in terms of application of
the M1 method we have developed [11]. The Be atom has
a fairly large amount of nondynamical correlation because
the 1s22p2 configuration has considerable mixing with the
principal 1s22s2 configuration [15], so that both configurations
need to be included nonperturbatively for accurate IP and AE
calculations.

It is a common practice to report the resonance energy
relative to the total energy of the scattering target. In this work,
in �CMCSCF calculations we report on the total energy of
the continuum Be− species relative to that of the Be atom as

ε�CMCSCF(η) = EN+1
c − EN

0 , (6)

where EN+1
c and EN

0 are the total energies of the (N + 1)-
electron Be− resonance state under investigation and the N

-electron ground state of the neutral Be atom, respectively,
and the subscripts c and 0 refer to continuum and bound states,
respectively.

In �CMCSCF calculations we need to optimize each state
separately; however, in M1 and CMCSTEP calculations we
can obtain the energies of all states simultaneously. In order to
be consistent with the �CMCSCF calculation, we report the
resonance parameter εCMCSTEP obtained from the CMCSTEP
method:

εCMCSTEP(η) = ωCMCSTEP
f + EN

c − EN
0 , (7)

where ωCMCSTEP
f ≡ ωf is calculated from Eq. (1). In the case of

M1 calculations it is obtained from the M1 complex eigenvalue
problem [11] and we report on results based on complex
eigenvalues ω

M1
f rather than ωCMCSTEP

f in Eq. (7).
For this resonance problem, Venkatnathan et al. [33] found

the 14s11p basis set to be the best one. We subsequently have
shown that this 14s11p basis set is somewhat inadequate for
resonances and that at least 14p functions are much more
reliable. Hence, we chose this basis set initially and added
p and d functions to it using a geometric progression with a
view to accounting for the diffuse nature of the resonances.
Although for the very accurate IPs and excitation energies of
Be, a larger 2s2p3s3p3d CAS which enables more correlation
is necessary [16], we employ a 2s2p3d CAS with basis sets
14s11p5d, 14s14p2d, and 14s14p5d in this calculation, since
we have previously found that a larger CAS is unnecessary for
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TABLE I. Ionization potential and attachment energies for X 2S

of the Be atom and 2P Be− ion, respectively.

Method and basis set IP (eV) AE (eV)

�MCSCF: 14s11p5d–2s2p3d CAS 8.478 1.027
�MCSCF: 14s14p2d–2s2p3d CAS 8.042 1.124
�MCSCF: 14s14p5d–2s2p3d CAS 8.042 1.121
M1: 14s11p5d–2s2p3d CAS 7.571 0.836
M1: 14s14p2d–2s2p3d CAS 7.576 0.872
M1: 14s14p5d–2s2p3d CAS 7.576 0.871
MCSTEP: 14s11p5d–2s2p3d CAS 9.508 0.843
MCSTEP: 14s14p2d–2s2p3d CAS 9.506 0.918
MCSTEP: 14s14p5d–2s2p3d CAS 9.506 0.906
Ref. [15] −2s2p CAS 9.50
Ref. [15] −2s2p3s3p3d CAS 9.31
Expt. [42] 9.32

accurate shape resonance calculations [13]. However, most of
the IP basis sets are designed for IPs where tighter functions are
necessary rather than for resonance calculations where what
is needed are basis functions to describe the near continuum.
First, we performed �CMCSCF calculations with all basis
sets, and then followed it up with M1 and CMCSTEP methods.
The first two methods have already been implemented for the
resonance problem with other basis sets [10,11]; however, here
the CMCSTEP method is applied for this resonance problem.
Of these, the CMCSTEP should be the most accurate, efficient
and reliable method. So far, there appear to be no experimental
results for resonance parameters of Be−.

In Table I we present IPs for the X 2S state of the
Be atom and AEs for 2P Be− resonance state obtained
from �CMCSCF, M1, and MCSTEP (θ = 0 rad and α = 1)
calculations, in which Im(E) = 0. A comparison of values
of IPs and AEs to previously obtained theoretical values and
experimental measurements presented in this table shows that
MCSTEP calculations give more reliable values for resonance
problems than MCSCF and M1 approaches.

In Table II we show a summary of the obtained values
for the 2P Be− shape resonance for three different basis sets.
In rows 2–4 of Table II we show results from �CMCSCF
calculations. These give larger widths than M1 or CMCSTEP
calculations. Resonance parameters obtained from the M1 and
CMCSTEP methods shown in rows 5–10 are fairly consistent
with each other, although the CMCSTEP results will be more
accurate. The optimal values of α and θ enable one to estimate

the resonance parameters, and can be found by the system of
equations below:

∂E

∂α
= η

α

∂E

∂η
= 0, (8)

∂E

∂θ
= −iη

∂E

∂η
= 0, (9)

which form the trajectory method by determining E(αopt,θopt)
corresponding to the stability (loops, kinks, inflections, or
any kind of “slow down”) in the plots of Im(E) as a
function of Re(E) evaluated as a series of α (α trajectory)
and a series of θ (θ trajectory) values [34]. Vertical IPs
and AEs in real space are typically within ±0.2 eV or
better of excellent experimental results and full configuration-
interaction calculations with a good basis set [15]. We expect
the same sort of agreement in complex space. Indeed this
can be seen by looking at Table II where our results are in
general agreement with those of considerably less accurate
methods.

In Table III we have listed theoretical results obtained by
other workers. Our current results with our best basis set
(14s14p5d) are quite far from complex CI [39] and density
functional theory (DFT) combined with CAP [43] calculations.
We note that the CI calculations did not include any effect
of quadruple excitations. It is well known that these need
to be included for accurate CI energies and properties [44].
The complex DFT calculation contains parameters that are
experimentally determined and also the basis set used is small
(contracted Gaussian 5s4p1d functions) and not adequate
for resonance calculations. However, the values obtained
from CMCSTEP in this work are fairly comparable with
those obtained by �SCF [37,38] and electron propagator
methods [33,37,38,44], although these other methods will not
be as accurate, since they are based on a single configuration
and the Be atom is inherently multiconfigurational with the
1s22p2 configuration mixing in strongly (i.e., 10%) with the
1s22s2 configuration for the initial state. From our previous
experience with calculations for IPs and AEs for atomic
systems [15,24,25], we know that the MCSTEP methods
works very well; therefore we can say that the values of reso-
nance parameters obtained from CMCSTEP in this work are
reliable.

In Fig. 1 we show the θ trajectories for the 2P Be− shape
resonance obtained from the CMCSTEP method. The curves
shown in panels (a), (b), and (c) correspond to calculations

TABLE II. Summary of theoretical calculations for the 2P Be− shape resonance relative to the 1s22s2 ground state.

Method and basis set α θopt (rad) Er (eV) �r (eV)

�CMCSCF: 14s11p5d–2s2p3d CAS 1 0.49 0.714 1.541
�CMCSCF: 14s14p2d–2s2p3d CAS 1 0.55 0.816 1.731
�CMCSCF: 14s14p5d–2s2p3d CAS 1 0.55 0.819 1.736
M1: 14s11p5d–2s2p3d CAS 1 0.36 0.764 0.796
M1: 14s14p2d–2s2p3d CAS 1.03 0.36 0.790 0.856
M1: 14s14p5d–2s2p3d CAS 1.03 0.37 0.789 0.874
CMCSTEP: 14s11p5d–2s2p3d CAS 1 0.30 0.768 0.740
CMCSTEP: 14s14p2d–2s2p3d CAS 1.03 0.30 0.795 0.681
CMCSTEP: 14s14p5d–2s2p3d CAS 1.03 0.36 0.756 0.862
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TABLE III. Theoretical calculations for the 2P Be− shape resonance.

Method Er (eV) �r (eV)

Static-exchange phase shift [35] 0.77 1.61
Static-exchange phase shift plus polarizability phase shift [35] 0.20 0.28
Static-exchange cross section [36] 1.20 2.60
Static-exchange plus polarizability cross section [36] 0.16 0.14
�SCF with complex 14s16p Gaussian basis set [37] 0.70 0.51
�SCF with complex 5s11p (Slater-type) basis set [38] 0.76 1.11
Single, doubles, and triples complex CI [39] 0.32 0.30
S matrix pole (Xα) [40,41] 0.10 0.15
Complex density functional theory [43] 0.580 0.223
Second-order dilated electron propagator based on real SCF [44] 0.57 0.99
Biorthogonal dilated electron propagator (bases set 14s11p) [33]:
Zeroth order 0.62 1.00
Quasiparticle second order 0.61 1.00
Second order 0.48 0.82
Quasiparticle third order 0.54 0.82
OVGF third order 0.54 0.78
Third order 0.53 0.85
�CMCSCF (14s11p–2s2p3s3p CAS) [10] 0.73 1.58
M1 (14s11p3d–2s2p3s3p3d CAS) [11] 0.72 1.12
This work:
�CMCSCF (14s14p5d–2s2p3d CAS) 0.819 1.736
M1 (14s14p5d–2s2p3d CAS) 0.789 0.874
CMCSTEP (14s14p5d–2s2p3d CAS) 0.756 0.862

with basis sets 14s11p5d, 14s14p2d, and 14s14p5d with
2s2p3d CAS, respectively. Crosses on each trajectory show a
stabilized point. All trajectories show resonance points clearly
along with an increased density of points. In all trajectories θ

starts at θ = 0.01 rad at the top and increases downwards with
a step of 0.01 rad.

Although we have here presented results for resonance
parameters for an atomic system 2P Be−, the method can
be implemented for investigating shape resonance parameters
for molecular systems. We have shown this for the 2�g N−

2
shape resonance [13] using the M1 method, and it gives
results quite consistent with previous literature results [45–48]
and experimental measurements [49,50]. In the molecular
case [13], the CS technique for the electron-nuclear Coulomb
interaction potential −Z/|r − R| has been implemented so
that −(Zη−1)/|r − Rη−1|, where Z is the nuclear charge, and

r and R are the electronic and nuclear positions relative to the
origin of a fixed molecular coordinate system [34]. We will
report CMCSTEP calculations for several molecules using
this procedure elsewhere.

IV. CONCLUSIONS

In this work we have developed the CMCSTEP method
and presented theoretical calculations for the 2P Be− shape
resonance using three different (�CMCSCF, M1, and CM-
CSTEP) methods. In our group we previously developed
the �CMCSCF and M1 methods; however, we here have
developed and implemented the CMCSTEP method for reso-
nance problems, using three different bases sets 14s11p5d,
14s14p2d, and 14s14p5d with a 2s2p3d CAS. In the
CMCSTEP calculations we use the CMCSCF state as an initial

FIG. 1. The θ trajectories for 2P Be− shape resonance obtained from the CMCSTEP method. The curves shown in (a), (b), and (c) correspond
to basis sets 14s11p5d , 14s14p2d , and 14s14p5d with 2s2p3d CAS, respectively, and the cross shows a stabilized point. Computational
parameters are α = 1 (a), 1.03 (b),(c), and �θ = 0.01 rad.
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state. The obtained values of the 2P Be− shape resonance
from the CMCSTEP method are compared with previously
obtained results in the literature. Based on our previous
results from MCSTEP calculations for IPs and AEs for
atomic and molecular systems, the results from the CMCSTEP
calculations are probably the most reliable and practical for
resonance problems.

In next step of our research work we intend to apply
the CMCSTEP method to resonance problems for open-shell

atomic and molecular systems, as well as studies for Feshbach
and Auger resonances.
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