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Recently it has been demonstrated that the finite difference Hartree-Fock method can be used to deliver highly
accurate values of electric multipole moments together with polarizabilities αzz,Az,zz, and hyperpolarizabilities
βzzz, γzzz,Bzz,zz, for the ground states of various atomic and diatomic systems. Since these results can be regarded
as de facto Hartree-Fock limit values their quality is of the utmost importance. This paper reexamines the use of
the finite field method to calculate these electric properties, discusses its accuracy, and presents an updated list
of the properties for the following atoms and diatomic molecules: H−, He, Li, Li+,Li2+,Li−,Be2+, Be, B+,C2+,
Ne, Mg2+, Mg, Al+,Si2+, Ar, K+,Ca2+,Rb+,Sr2+,Zr4+,He2, Be2,N2,F2,O2, HeNe, LiH2+, LiCl, LiBr, BH, CO,
FH, NaCl, and KF. The potential energy curves and the dependence of the electric properties on the internuclear
distance is also studied for He2,LiH+,Be2, and HeNe systems.
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I. INTRODUCTION

The importance of polarizabilities and hyperpolarizabilities
is widely recognized since they are needed in the study of the
nonlinear optical properties of atomic and molecular systems
(see, e.g., [1–3]. Shelton and Rice reviewed measurements
and calculations of hyperpolarizabilities for atoms and small
molecules [4]. They point out that in the case of methods
that obey the Hellman-Feynman theorem, like the Hartree-
Fock (HF), multiconfiguration HF or the full configuration
interaction method, the properties can be also calculated
as the derivative of the dipole moment with respect to an
external field. They stress the difficulty when using the finite
field approach since the field strength and the number of
points must be well chosen to get numerically stable results.
Electric static properties of atoms and molecules can in
principle be routinely calculated using any of the available
quantum chemistry packages but their sensitivity to the choice
of basis set is a well-known fact. Several authors have
considered the sensitivity of calculated hyperpolarizabilities
to the choice of basis set both within the HF model and
beyond [5–10]. In the early 1990s the finite difference HF
(FD HF) method for diatomic molecules became available
to routinely generate total energies and molecular orbitals
together with multipole moments of HF limit accuracy [11,12].
Therefore the quality of finite basis sets employed could not
only be checked but new basis sets could be constructed and
properly calibrated. That was the rationale for developing the
distributed universal even-tempered Gaussian basis sets that
proved to be able to reproduce the finite difference orbital and
total energies to within submicro-Hartree accuracy together
with the dipole (hyper)polarizabilities[13–15] (and references
therein). The FD HF method also provided HF limit values for
examining convergence patterns of properties calculated using
correlation-consistent basis sets within the context of complete
basis set models and eventually helped in the development
of polarization-consistent basis sets [16–18]. The method was
also employed to provide the reference values of spectroscopic
constants of several diatomic molecules in order to compare
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the convergence patterns of the correlation-consistent and
polarization-consistent basis sets towards the complete basis
set limit [19].

Halkier and Coriani used the FD HF limit value of the
electric quadrupole moment of the hydrogen fluoride to
estimate the basis set truncation errors when performing the
state-of-the-art calculations to determine the full configuration
interaction basis set limit value of this property [20]. This
work is an apparent demonstration that when accurate post-HF
treatment is at stake then the basis set development must
guarantee that the HF values are also accurate. Similarly,
Pawlowski et al. used the FD HF method to obtain the
dipole polarizability and the second hyperpolarizability of
the Ne atom to estimate basis set errors present in the
calculations using the CCS, CC2, CCSD, and CC3 coupled
cluster models and Dunning’s correlation-consistent basis sets
cc-pVXZ augmented with diffuse functions [21].

Those efforts have established the FD HF approach as a
reliable source of the HF limit values of electric properties for
diatomic molecules calculated using the finite field method.
This method is also well suited to studying the electric proper-
ties of atoms and their ions. This is due to the fact that atomic
systems placed in an external static electric field are of the same
symmetry as diatomic molecules and can be well described in
the prolate spheroidal coordinate system employed in the FD
HF method. Therefore the method was also applied to a number
of atomic systems [22,23] and the calculations were carried
out using an improved version of the two-dimensional (2D)
finite difference Hartree-Fock program [24].

In this paper the FD HF method has been
employed to provide reference values of the dipole and
quadrupole moments, dipole polarizabilities, the first
and second dipole hyperpolarizabilities, and also dipole-
quadrupole polarizabilities and dipole-dipole-quadrupole
hyperpolarizabilities for the following atomic and diatomic
systems: H−, He, Li, Li+,Li2+,Li−,Be2+, Be, B+,C2+, Ne,
Mg2+, Mg, Al+,Si2+, Ar, K+,Ca2 + ,Rb+,Sr2+,Zr4+, BH,
FH, F2, CO, N2,O2, LiCl, NaCl, KF, and LiBr. The dependence
of the interaction energy, the dipole and quadrupole moments
as well as the (hyper)polarizabilities of He2,LiH+,Be2, and
NeHe on the internuclear distance was also studied.
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The reported polarizabilities and hyperpolarizabilities were
obtained within the finite field method as numerically eval-
uated derivatives of dipole and quadrupole moments with
respect to the external field. Since the FD HF is capable of
producing multipole moments with 10–12 significant figure
accuracy the high quality of (hyper)polarizability values can
be guaranteed. It is claimed that this approach can lead to
the αzz and Az,zz polarizabilities of 6–8 significant figures
accuracy and the βzzz and Bzz,zz hyperpolarizabilities can be
quoted with 4–6 digits. The second hyperpolarizability is very
sensitive to the quality of the solution of the HF equations
and its accuracy can vary from 2 to at most 5 significant
figures.

The paper is organized as follows. The next section
contains a very succinct presentation of the finite fields FD
HF method. Afterwards the accuracy of the calculations for
atoms and homo- and heteronuclear molecules (in that order)
are discussed for selected systems and the results for other
species are given. Finally, the potential energy curves and
the dependence of the electric properties on the internuclear
distance for a number of small molecules are shown.

II. METHOD

A. Finite difference Hartree-Fock method

For a closed-shell, N -electron, atomic or molecular system
the Hartree-Fock equations are a set of N one-particle (integro-
differential) equations (Fock equations) [12,24],

Fφi = εiφi, i = 1, . . . ,N, (1)

where φi = φi(x,y,z,σ ) are spin orbitals forming the Slater
determinant,

� = 1√
N !

det
∣∣φi1 (1),φi2 (2), . . . ,φiN (N )
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where

∇2V i
C = −4πφ∗

i φi,

∇2V ij
x = −4πφ∗

i φj (3)

are Poisson equations determining the electron-electron
Coulomb and exchange potentials via the single particle and
the pair densities, respectively [25]. The Fock equations are
solved by the self-consistent field (SCF) iterative procedure
and therefore the right-hand sides of Eq. (2) can be treated
during each iteration as already known functions since they are
determined by the orbitals obtained in the previous iteration
[and approximate orbital energies obtained via integration of
Eq. (1)]. Thus, not only the Coulomb and exchange potentials

but also the orbitals can be obtained by solving Poisson-type
equations.

Diatomic molecules can be described in the prolate
spheroidal coordinate system,

ξ = (rA + rB)/RAB

η = (rA − rB)/RAB

θ azimuth angle

1 � ξ < ∞,

−1 � η � 1,

0 � θ � 2π,

where atoms A and B are placed along z axis at points (0,0,

− RAB/2) and (0,0, + RAB/2), and rA and rB are the distances
of a given point from these atomic centers. The cylindrical
symmetry of the diatomic systems allows for factoring out
(and later treating analytically) the angular part and expressing
the orbitals and the potentials in the form,

φi

V i
C

V
ij
x

⎫⎬
⎭ = f (ξ,η)eimθ (4)

where the parameter m is equal to 0, ±1, ± 2, ± 3 for σ,π,δ,
and ϕ type of orbitals, respectively.

In the early 1980s Laaksonen, Pyykkö, and Sundholm
proposed a fully numerical scheme for solving these two-
dimensional Poisson equations by employing high-order finite
differences (FD) to transform the Poisson equations into large
and sparse systems of linear equations [12,26]. The method
has been improved in various ways over the last two decades
by the present author and its latest version has recently been
published [24].

To allow for a more accurate and easier description of the
orbitals and of the potentials in the vicinity of the nuclei, the
transformed variables,

ν = cos−1η

μ = cosh−1 ξ

0 � ν � π,

0 � μ < ∞,

and, consequently, an equidistant two-dimensional grid in ν

and μ variables can be used. [It is a similar approach to
that used in the numerical Hartree-Fock method for atoms
where the radial variable r is transformed into ρ = ln(Zr) and
the differential equations are solved on an equidistant mesh
[27,28].] Thus, the HF Eqs (2) and (3) can be cast in the form
of the second-order partial differential equations of the elliptic
type,

{
A(μ)

∂2

∂μ2
+ B(μ)

∂

∂μ
+ C(ν)

∂2

∂ν2
+ D(ν)

∂

∂ν
+ E(ν,μ)

}

u(ν,μ) = F(ν,μ), (5)

which have unique solutions within the region, provided the
solution is known along its boundary. In practical applications
one cannot impose the boundary conditions at the infinity
and therefore the solutions are sought on a rectangular
domain,

(0,π ) × (0,μ∞), cosh(μ∞) = 2r∞/RAB,

where the parameter r∞ must be large enough to guarantee
proper boundary conditions. Establishing the boundary values
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at μ∞ poses no problem since the asymptotic values of the
potential functions V

j

C and V
ij
x can be evaluated from their

multipole expansion and the values of orbitals φi from the
asymptotic form of Eq. (2).

In the FD HF method, the orbital and the potential functions
u(ν,μ) are discretized on this region using meshes with Nν and
Nμ points in the respective variables (such a grid is denoted as
[Nν × Nμ/r∞]). The partial differential equations of the HF
method in the form of Eq. (5) are discretized using an eighth-
order central difference expression and the resulting large and
sparse systems of linear equations are solved using the succes-
sive overrelaxation method which has proved to be both robust
and efficient. Various improvements introduced into the FD HF
method in the course of its development have resulted in con-
siderable increase in its efficiency and therefore this method
can be applied routinely to small- and medium-size diatomic
molecules. Of course, as a result of the constant enhancement
in computers’ performance the notion of the medium-size
molecule refers to the larger and larger systems, a decade ago
to the systems containing about 10–15 electrons, nowadays
35–45.

The FD HF method is a truly basis-set-independent
approach and if the mesh and r∞ are chosen ade-
quately the HF orbitals can be obtained to the re-
quired accuracy (within double or quadruple precision
arithmetic) [24].

B. Static electric properties

The Hamiltonian of a quantum system in a weak, static
electric field can be written as [1]

H = H0 −
∑

α

μαFα − 1

3

∑
α,β

�αβFαβ

− · · · (α,β,γ,δ = x,y,z) , (6)

and its energy as
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3
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3
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Aγ,αβFγ Fαβ

−1

6
Bγδ,αβFγ FδFαβ − · · · . (7)

The electric properties, namely the dipole polarizabil-
ity αzz, the first and second dipole hyperpolarizabilities
βzzz and γzzzz, the dipole-quadrupole and dipole-dipole-
quadrupole polarizabilities Az,zz and Bzz,zz, can be evaluated
by means of the finite field method. Usually, when algebraic,

TABLE I. Electric properties of the Li+ ion calculated by means of the finite field on [343 × 649/200] grid using the data from the upper
part of the table. μz,αzz, etc., denote the z components of the total dipole moment, polarizability, etc., with respect to the center of mass
while ET , μe

z, and �e
zz denote the total energy and electric dipole and quadrupole moments for a given field strength. Entries with � show the

properties modified by their respective relative errors 1 × 10−13, 4 × 10−11, and 2 × 10−9.

Field strength ET μe
z �e

zz

−0.004 −7.236 416 717 250 984 × 100 −7.579 002 451 511 413 × 10−4 −9.341 812 447 945 240 × 10−7

−0.002 −7.236 415 580 401 649 × 100 −3.789 492 129 942 298 × 10−4 −2.335 434 197 489 605 × 10−7

0.0 −7.236 415 201 452 712 × 100 −1.393 329 895 904 571 × 10−14 −5.228 456 556 594 097 × 10−15

+0.002 −7.236 415 580 401 760 × 100 −3.789 492 129 784 786 × 10−4 −2.335 434 193 569 130 × 10−7

+0.004 −7.236 416 717 250 201 × 100 −7.579 002 451 544 477 × 10−4 −9.341 812 435 628 704 × 10−7

μz 7 × 10−11 1 × 10−14

μz + � 2 × 10−10 1 × 10−14

αzz 0.189 474 4 0.189 474 454 89
αzz + � 0.189 474 7 0.189 474 454 90
βzzz 6 × 10−5 1 × 10−8

βzzz + � 4 × 10−5 2 × 10−8

γzzzz 0.227 398
γzzzz + � 0.227 399
Az,zz 8 × 10−14

Az,zz + � 2 × 10−13

Bzz,zz −0.116 771 397 8
Bzz,zz + � −0.116 771 397 9

Fz �μe
z/��e

zz αzz βzzz γzzzz Az,zz Bzz,zz

2 × 10−4 4 × 10−10/2 × 10−6 1.894 744 547 × 10−1 1 × 10−6 2.335 51 × 10−1 1 × 10−11 −1.167 713 2 × 10−1

4 × 10−4 1 × 10−10/2 × 10−7 1.894 744 549 × 10−1 2 × 10−7 2.275 16 × 10−1 4 × 10−12 −1.167 714 1 × 10−1

8 × 10−4 6 × 10−11/2 × 10−7 1.894 744 548 × 10−1 3 × 10−8 2.274 55 × 10−1 6 × 10−12 −1.167 714 0 × 10−1

2 × 10−3 4 × 10−11/2 × 10−9 1.894 744 549 × 10−1 1 × 10−8 2.273 98 × 10−1 8 × 10−14 −1.167 714 0 × 10−1

4 × 10−3 6 × 10−11/1 × 10−9 1.894 744 549 × 10−1 8 × 10−9 2.274 13 × 10−1 2 × 10−13 −1.167 714 0 × 10−1

2 × 10−3 4 × 10−11/2 × 10−9 1.894 744 55 × 10−1 1 × 10−8 2.274 × 10−1 8 × 10−14 −1.167 714 0 × 10−1
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TABLE II. Electric properties of the Sr2+ ion calculated by means of the finite field on [1039 × 1987/200] grid using the data from the
upper part of the table. μz,αzz, etc., denote the z components of the total dipole moment, polarizability, etc., with respect to the center of mass
while ET , μe

z, and �e
zz denote the total energy and electric dipole and quadrupole moments for a given field strength. Entries with � show the

properties modified by their respective relative errors 2 × 10−13, 5 × 10−8, and 2 × 10−6.

Field strength ET μe
z �e

zz

−0.0012 −3.130 995 686 905 641 × 103 −7.061 227 300 986 449 × 10−3 −1.551 909 834 235 485 × 10−5

−0.0006 −3.130 995 683 727 841 × 103 −3.530 607 210 169 431 × 10−3 −3.879 769 625 820 077 × 10−6

0.0 −3.130 995 682 668 831 × 103 −9.387 699 944 733 510 × 10−11 −2.648 433 258 838 013 × 10−11

+0.0006 −3.130 995 683 727 801 × 103 −3.530 607 027 415 838 × 10−3 −3.879 762 220 242 375 × 10−6

+0.0012 −3.130 995 686 905 472 × 103 −7.061 227 119 725 404 × 10−3 −1.551 909 380 012 200 × 10−5

μz 2 × 10−8 9 × 10−11

μz + � 6 × 10−7 9 × 10−11

αzz 5.883 5.884 341 6
αzz + � 5.885 5.884 341 7
βzzz 0.2 2 × 10−5

βzzz + � 2.6 6 × 10−4

γzzzz 60.1
γzzzz + � 61.8
Az,zz 8 × 10−9

Az,zz + � 2 × 10−8

Bzz,zz −21.554 07
Bzz,zz + � −21.554 09

Fz �μe
z/��e

zz αzz βzzz γzzzz Az,zz Bzz,zz

2 × 10−4 2 × 10−7/4 × 10−6 5.884 341 6 × 101 9 × 10−5 6.00 × 101 5 × 10−9 −2.155 409 × 101

3 × 10−4 1 × 10−7/5 × 10−5 5.884 341 5 × 101 2 × 10−4 6.11 × 101 8 × 10−8 −2.155 415 × 101

6 × 10−4 5 × 10−8/2 × 10−6 5.884 341 6 × 101 1 × 10−5 6.01 × 101 9 × 10−9 −2.155 406 × 101

8 × 10−4 3 × 10−8/8 × 10−6 5.884 341 6 × 101 1 × 10−4 6.01 × 101 3 × 10−8 −2.155 414 × 101

1 × 10−3 3 × 10−6/8 × 10−6 5.884 341 6 × 101 3 × 10−4 6.01 × 101 4 × 10−10 −2.155 406 × 101

2 × 10−3 5 × 10−7/5 × 10−4 5.884 349 9 × 101 2 × 10−3 5.78 × 101 6 × 10−6 −2.155 266 × 101

6 × 10−4 5 × 10−8/2 × 10−6 5.884 342 × 100 6 × 10−4 6.0 × 101 1 × 10−8 −2.155 41 × 101

basis-set-dependent methods are used to solve the HF equa-
tions for atoms and molecules the total energy is more
accurately determined than the wave function and therefore the
E(Fz) function (in fact, its discrete representation) is used to
evaluate the properties. On the contrary, in the FD HF method
the accuracy of the total energy and the corresponding wave
function match each other (for a detailed discussion see [24]).
Therefore one can get these properties using the following
equations:

μz(Fz)=μz(0)+αzzFz+ 1
2βzzzF

2
z + 1

6γzzzzF
3
z +· · · , (8)

�zz(Fz) = �zz(0) + Az,zzFz + 1
2Bzz,zzF

2
z + · · · , (9)

αzz =
(

dμz

dFz

)
Fz=0

βzzz =
(

d2μz

dF 2
z

)
Fz=0

γzzzz =
(

d3μz

dF 3
z

)
Fz=0,

(10)

Az,zz =
(

d�zz

dFz

)
Fz=0

Bzz,zz =
(

d2�zz

dF 2
z

)
Fz=0

. (11)

As a result these equations allow one to calculate the properties
in a more numerically stable manner and thus also more
accurately.

TABLE III. Dependence of the electric properties of the H− ion on the finite field strength (in a.u.).

Fz �μe
z/��e

zz αzz βzzz γzzzz Az,zz Bzz,zz

2.5 × 10−5 5 × 10−9/1 × 10−8 9.140 589 7 × 101 6 × 10−5 5.9769 × 106 6 × 10−9 −7.670 234 × 104

5 × 10−5 3 × 10−9/4 × 10−9 9.140 589 6 × 101 2 × 10−4 5.9805 × 106 6 × 10−9 −7.670 232 × 104

7.5 × 10−5 2 × 10−9/1 × 10−9 9.140 588 9 × 101 4 × 10−6 5.9862 × 106 2 × 10−9 −7.670 226 × 104

1 × 10−4 1 × 10−9/1 × 10−9 9.140 587 2 × 101 4 × 10−7 5.9944 × 106 2 × 10−9 −7.670 210 × 104

7.5 × 10−5 2 × 10−9/1 × 10−9 9.140 589 × 101 4 × 10−6 5.99 × 106 2 × 10−9 −7.670 23 × 104
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TABLE IV. Polarizabilities and hyperpolarizabilities (in a.u.) of selected atoms and ions obtained by means of the finite field method. Each
atomic systems is treated as a diatomic molecule with the B nucleus having zero charge and the internuclear distance set to 2 a.u. In the case
of the Li− ion the calculations were also carried out in quadruple precision (QP). The first column lists the systems studied together with the
electric field strength, Fz (in a.u.), and the grid used denoted as [Nν × Nμ/R∞]. The rows with a single dipole polarizability value show results
of the numerical RHF finite field calculations of Koch and Andrae [29].

System/grid/Fz αzz βzzz γzzzz Az,zz Bzz,zz

H− [649 × 1231/200]
7.5 × 10−5 9.140 589 × 101 2 × 10−3 5.99 × 106 2 × 10−9 −7.670 2 × 104

9.140 59 × 101

He [349 × 661/200]
1 × 10−3 1.322 233 73 × 100 2 × 10−6 3.604 × 101 6 × 10−12 −6.579 796 8 × 100

1.322 23 × 100

Li [445 × 883/250]
1.25 × 10−4 1.701 201 9 × 102 3 × 10−4 −5.7 × 104 1 × 10−7 −5.809 54 × 104

Li+ [343 × 649/200]
2 × 10−3 1.894 744 55 × 10−1 1 × 10−8 2.274 × 10−1 1 × 10−13 −1.167 714 0 × 10−1

1.894 74 × 10−1

Li2+ [349 × 661/200]
4 × 10−3 5.555 555 6 × 10−2 2 × 10−10 2.257 7 × 10−2 6 × 10−14 −1.623 228 2 × 10−2

Li− [445 × 883/250]
1 × 10−5 1.199 134 × 103 5.4 × 101 2.28 × 109 7 × 10−4 −1.043 4 × 107

1 × 10−5 QP 1.199 133 6 × 103 2 × 10−7 2.28 × 109 5 × 10−12 −1.043 44 × 107

1.199 13 × 103

Be2+ [349 × 643/200]
8 × 10−3 5.185 735 6 × 10−2 3 × 10−9 8.191 × 10−3 1 × 10−13 −8.226 611 × 10−3

5.185 74 × 10−2

Be [445 × 853/200]
2 × 10−4 4.561 638 1 × 101 2 × 10−3 3.912 × 104 3 × 10−9 −3.315 156 1 × 103

4.561 64 × 101

B+ [349 × 661/200]
8 × 10−4 1.137 900 81 × 101 7 × 10−5 3.501 × 102 2 × 10−10 −1.384 317 7 × 102

1.137 90 × 101

C2+ [349 × 661/200]
1 × 10−3 4.508 404 0 × 100 3 × 10−5 −5 × 10−1 2 × 10−11 −1.738 099 57 × 101

4.508 40 × 100

Ne [349 × 661/200]
2 × 10−3 2.376 746 66 × 100 4 × 10−5 6.884 × 102 3 × 10−12 −1.303 830 86 × 101

2.376 75 × 100

Mg2+ [349 × 661/200]
1 × 10−3 4.700 407 0 × 10−1 3 × 10−6 5.2 × 10−1 1 × 10−11 3.107 60 × 10−1

4.700 41 × 10−1

Mg [349 × 661/200]
2.5 × 10−4 8.159 373 0 × 101 5 × 10−5 1.501 × 105 1 × 10−8 −1.074 371 2 × 104

8.159 37 × 101

Al+ [445 × 853/200]
7.5 × 10−4 2.644 310 21 × 101 5 × 10−4 2.941 × 103 2 × 10−9 −8.071 986 9 × 102

2.644 31 × 101

Si2+ [445 × 853/200]
1 × 10−3 1.259 460 46 × 101 2 × 10−4 1.154 × 102 9 × 10−10 −1.544 828 35 × 102

1.259 46 × 101

Ar [451 × 859/200]
1 × 10−3 1.075 800 16 × 101 1 × 10−4 9.603 × 102 2 × 10−10 −1.397 828 4 × 102

1.075 80 × 101

K+ [445 × 853/200]
1 × 10−3 5.460 454 17 × 100 1 × 10−4 9.35 × 101 6 × 10−10 −2.516 412 7 × 101

5.460 45 × 101

Ca2+ [451 × 859/200.0]
2 × 10−3 3.260 676 9 × 100 1 × 10−5 1.665 × 101 4 × 10−10 −6.999 720 4 × 100

3.260 68 × 100
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TABLE IV. (Continued.)

System/grid/Fz αzz βzzz γzzzz Az,zz Bzz,zz

Rb+ [1039 × 1987/200]
1 × 10−3 9.143 821 × 100 4 × 10−3 2.76 × 102 5 × 10−9 −6.532 556 × 101

9.143 82 × 100

Sr2+ [103 9 × 1987/200]
6 × 10−4 5.884 341 6 × 100 6 × 10−4 6.0 × 101 1 × 10−8 −2.155 41 × 101

5.884 34 × 100

Zr4+ [103 9 × 1987/200]
1 × 10−3 3.036 933 9 × 100 1 × 10−4 6.3 × 100 1 × 10−9 −4.204 097 × 100

3.036 93 × 100

III. RESULTS

The finite difference HF method together with the finite
field method applied along the z axis have been used to
obtain the dipole (hyper)polarizabilities of selected atomic and
diatomic systems. The quality of (hyper)polarizability values
is directly dependent on the field strength used to produce the
raw data, i.e., the dipole and quadrupole moments calculated
for the following five field strengths: 0, ±Fz and ±2Fz.
The first, second, and third derivatives are calculated using
the corresponding central difference five-point formulas. The
problem is that the field strength has to be small enough to
make the Taylor expansion satisfactory and large enough to
perform the numerical differentiations to a desired accuracy,
i.e., without losing too many significant figures. Moreover, if

too large a field strength is used the HF method may fail to
converge.

Let’s begin with the analysis of the raw data obtained for the
small ionic system Li+ (cf. Table I) for which highly accurate
finite difference solutions of the 2D HF equations are possible.
Due to the inversion symmetry of the system the accuracy
of the total energy and the electric dipole and quadrupole
moments can be estimated by looking at the respective values
obtained independently for ±Fz field strengths. The relative
errors of the total energy are about 10−13 and they are directly
related to the accuracy of the 1σ orbital. The quality of
the orbital can be also assessed by accuracy of the μe

z and
�e

zz values which for Fz = 0 come out 10−14 and 5 × 10−15,
respectively. For the nonzero values of the external electric

TABLE V. Electric properties of the homonuclear N2 molecule (R = 2.068 a.u.) calculated by means of the finite field on [445 × 841/200]
grid using the data from the upper part of the table. μz,αzz, etc., denote the z components of the total dipole moment, polarizability, etc.,
with respect to the center of mass while ET ,μe

z, and �e
zz denote the total energy and electric dipole and quadrupole moments for a given field

strength. Entries with � show the properties modified by their respective relative errors 2 × 10−13, 3 × 10−11, and 2 × 10−12.

Fz ET μe
z �e

zz

−1.2 × 10−3 −1.089 938 447 722 347 × 102 −2.392 248 703 020 261 × 10−2 −9.401 253 994 444 838 × 10−1

−0.6 × 10−3 −1.089 938 304 188 615 × 102 −1.196 104 010 930 643 × 10−2 −9.399 567 475 222 500 × 10−1

−0.0 × 100 −1.089 938 256 344 605 × 102 −3.463 895 836 830 488 × 10−14 −9.399 005 371 198 514 × 10−1

+0.6 × 10−3 −1.089 938 304 188 612 × 102 −1.196 104 010 889 165 × 10−2 −9.399 567 475 231 024 × 10−1

+1.2 × 10−3 −1.089 938 447 722 242 × 102 −2.392 248 702 996 902 × 10−2 −9.401 253 994 455 708 × 10−1

μz 8 × 10−10 3 × 10−14

μz + � 1 × 10−8 3 × 10−14

αzz 1.495 121 × 101 1.495 121 538 39 × 101

αzz + � 1.495 125 × 101 1.495 121 538 42 × 101

βzzz 1 × 10−2 7 × 10−7

βzzz + � 3 × 10−2 1 × 10−6

γzzzz 7.945 54 × 102

γzzzz + � 7.945 56 × 102

Az,zz 6 × 10−10

Az,zz + � 7 × 10−10

Bzz,zz −1.756 521 15 × 102

Bzz,zz + � −1.756 521 18 × 102

Fz �μe
z/��e

zz αzz βzzz γzzzz Az,zz Bzz,zz

4 × 10−4 4 × 10−11/2 × 10−12 1.495 121 539 7 × 101 3 × 10−6 7.943 × 102 3 × 10−90 −1.756 521 3 × 102

5 × 10−4 2 × 10−11/2 × 10−12 1.495 121 539 5 × 101 2 × 10−6 7.944 60 × 102 3 × 10−90 −1.756 521 2 × 102

8 × 10−4 4 × 10−11/2 × 10−12 1.495 121 538 4 × 101 1 × 10−6 7.945 54 × 102 6 × 10−10 −1.756 521 15 × 102

1 × 10−3 3 × 10−12/2 × 10−12 1.495 121 536 5 × 101 5 × 10−8 7.946 43 × 102 2 × 10−90 −1.756 521 11 × 102

8 × 10−4 4 × 10−11/2 × 10−12 1.495 121 54 × 101 1 × 10−6 7.94622 × 102 7 × 10−10 −1.756 521 × 102
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TABLE VI. Polarizabilities and hyperpolarizabilities (in a.u.) of selected diatomic homonuclear molecules obtained by means of the finite
field method. The first column lists the systems studied together with the internuclear distance in parentheses (a.u.), the grid ([Nν × Nμ/R∞]),
and the electric field strength Fz (in a.u.) used. The second set of the values was obtained using the nonlinear least-squares Marquardt-Levenberg
algorithm. The αzz,βzzz, and αzzzz parameters were obtained by fitting a third degree polynomial to five dipole moment values while Az,zz and
Bzz,zz to a polynomial of the second degree and five quadrupole moments.

System/grid/Fz αzz βzzz γzzzz Az,zz Bzz,zz

He2 (2.9750) [343 × 607/200]
1.5 × 10−3 2.617 432 0 × 100 −6 × 10−8 −7.864 × 101 −5 × 10−12 −1.957 977 × 101

2.617 432 0 × 100 −2 × 10−8 −7.864 × 101 −1 × 10−11 −1.958 342 × 101

Be2 (3.750) [343 × 583/200]
1 × 10−4 2.163 362 0 × 102 −3 × 10−4 −3.553 × 105 −3 × 10−8 −2.860 762 × 104

2.163 362 0 × 102 −3 × 10−6 −3.553 × 105 −2 × 10−9 −2.860 988 × 104

N2 (2.068) [445 × 841/200]
8 × 10−4 1.495 121 54 × 101 −1 × 10−6 −7.946 × 102 −7 × 10−10 −1.756 521 × 102

1.495 121 54 × 101 −1 × 10−7 −7.946 × 102 −1 × 10−9 −1.756 727 × 102

N2 (2.07432) [445 × 841/200]
8 × 10−4 1.503 043 81 × 101 −7 × 10−7 −8.001 × 102 −2 × 10−9 −1.764 957 × 102

1.503 043 81 × 101 −2 × 10−7 −8.001 × 102 −1 × 10−9 −1.765 165 × 102

O2 (2.28188) [445 × 829/200]
8 × 10−4 2.080 161 × 101 −8 × 10−6 −3.680 × 103 −2 × 10−10 −1.410 816 × 102

2.080 162 × 101 −1 × 10−6 −3.680 × 103 −1 × 10−9 −1.410 926 × 102

F2 (2.66816) [445 × 805/200]
1 × 10−3 1.464 222 34 × 101 −8 × 10−7 −2.016 × 102 −5 × 10−10 −9.006 44 × 101

1.464 222 34 × 101 −1 × 10−7 −2.016 × 102 −1 × 10−9 −9.007 56 × 101

field such accurate orbitals lead to the relative errors of
the dipole and quadrupole moments equal to 4 × 10−11 and
2 × 10−9. Of course, if the dipole moment is calculated as
the first derivative of the energy via the five-point finite
difference formula its accuracy is lower by 3–4 orders of
magnitude. Taking the second and third derivatives lead to
the αzz and βzzz values with only about 6 and 4 significant
figures. When, however, the values of the dipole moment
are used to calculate the polarizabilities we get the results
having 10 and 8 significant figures. The accuracy of the dipole
moment is high enough that even the γzzzz value can be quoted
with 5 significant figures. Similarly, the good quality of the
quadrupole moments lead to the very accurate values of Az,zz

and Bzz,zz.
The lower part of Table I shows dependence of the polariz-

abilities and hyperpolarizabilities on the external electric field.
Usually four to five different field strengths can be selected that
lead to numerically stable values of the properties which can be
quoted with 9, 4, and 8 significant figures in case of αzz,γzzzz,
and Bzz,zz values, respectively.

Similar analysis can be carried out for the Sr2+ ion with 36
electrons (cf. Table II). The relative errors of the total energy
are about the same as for the Li+ system, namely, 2 × 10−13 but
are larger for the dipole and quadrupole moments (5 × 10−8

and 2 × 10−6, respectively). Consequently, for each nonzero
field strength the αzz, γzzzz, and Bzz,zz values can be calculated
with 8, 3, and 6 significant figures of accuracy. When their
dependence on the field is taken into account these properties
can be given with 7, 2, and 6 figures.

In case of the Li+ and Sr2+ systems the strength of the
electric field varied between 2 × 10−3 and 2 × 10−4. In the
case of anions the highest electron is very weakly bound and
therefore evaluation of the electric properties by the finite

field method requires an order of magnitude smaller external
electric fields. But still the properties can be evaluated in a
numerically stable manner and the relative accuracy of the
properties is retained as the results for the H− ion in Table III
show.

Similar calculations and analyses of the electric properties
have been carried out for various small- and medium-sized
atoms and ions with up to 38 electrons and are collected in
Table IV. For such systems the αzz values have been calculated
with 6-digit accuracy by an alternative numerical method by
Koch and Andrae [29] and are also included in the table to
show the perfect agreement of the one-dimensional and 2D
numerical HF methods. When examining these results a few
remarks are in place. αzz is calculated with 7–9 significant
figures and the accuracy is not directly dependent on the
number of electrons although positively charged ions are
usually more accurate than the corresponding neutral species.
Anions are most difficult to deal with since the ground-state
energy is very small and it is difficult to obtain a well-
converged solution when the external electric field is switched
on. In the case of the Li− ion, the calculations have to be
performed in quadruple precision in order to obtain meaningful
results. Although the βzzz and Az,zz values for atoms and ions
should be zero by symmetry they are shown in the table as the
accuracy indicators of the dipole and quadrupole moments. In
fact, their relative errors may serve as a good measure of the
number of significant figures at our disposal.

For homonuclear molecules the ±F symmetry still holds
and therefore the same accuracy analysis can be applied.
For example, let’s examine the N2 molecule using the raw
data from Table V. Again, the relative error of the total
energy is of the order 10−13 but the relative errors of the
μe

z and �e
zz values are even smaller than for the Li+ ion
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TABLE VII. Electric properties of the BH molecule (R = 2.3289) calculated by means of the finite field on [349 × 643/200] grid using
the data from the upper part of the table. μz,αzz, etc., denote the z components of the total dipole moment, polarizability, etc., with respect to
the center of mass while ET ,μe

z, and �e
zz denote the total energy and electric dipole and quadrupole moments for a give field strength. Entries

with � show the properties modified by their respective relative errors 2 × 10−13, 1 × 10−13, and 5 × 10−13. The bottom part of the table shows
the dependence of the properties on the field strength. For each field strength the upper line corresponds to the properties calculated via the
differentiation of μe(Fz) and �e(Fz) values while the lower line contains values obtained by the nonlinear least-squares Marquardt-Levenberg
algorithm (for Fz = 10−6 the data are missing since in this case the fitting process fails). The last line contains the proposed final values of the
properties as derived from the available raw data (μe

z,�
e,�μe

z,��e
zz) and the assessment of the numerical round-off errors.

Fz ET μe
z �e

zz

−8 × 10−4 −2.513 202 401 817 104 × 101 6.669 096 141 679 287 × 10−1 −2.675 820 974 028 706 × 100

−4 × 10−4 −2.513 182 978 333 189 × 101 6.759 377 210 087 856 × 10−1 −2.674 900 524 220 057 × 100

−0 × 100 −2.513 163 915 913 118 × 101 6.849 630 049 868 818 × 10−1 −2.674 202 595 425 942 × 100

+4 × 10−4 −2.513 145 214 466 877 × 101 6.939 866 149 037 828 × 10−1 −2.673 726 944 061 716 × 100

+8 × 10−4 −2.513 126 873 951 179 × 101 7.030 096 933 983 243 × 10−1 −2.673 473 521 181 316 × 100

μz 6.849 630 0 × 10−1 6.849 630 049 869 × 10−1

μz + � 6.849 629 9 × 10−1 6.849 630 049 870 × 10−1

αzz 2.256 062 × 101 2.256 063 998 53 × 101

αzz + � 2.256 067 × 101 2.256 063 998 52 × 101

βzzz −1.04 × 101 −1.045 967 3 × 101

βzzz + � −1.03 × 101 −1.045 967 2 × 101

γzzzz 1.790 187 9 × 104

γzzzz + � 1.790 187 6 × 104

Az,zz −1.466 914 254 × 100

Az,zz + � −1.466 914 256 × 100

Bzz,zz −1.389 132 56 × 103

Bzz,zz + � −1.389 132 57 × 103

Fz �μe
z/��e

zz αzz βzzz γzzzz Az,zz Bzz,zz

1 × 10−6 2 × 10−13/5 × 10−13 2.256 064 0 × 101 −1.0 × 101 5 × 105 1.466 91 × 100 −1.39 × 103

1 × 10−5 1 × 10−13/5 × 10−13 2.256 064 01 × 101 −1.046 × 101 1.79 × 104 1.466 914 × 100 −1.389 1 × 103

2.256 064 01 × 101 −1.046 × 101 1.79 × 104 1.466 914 × 100 −1.389 1 × 103

1 × 10−4 1 × 10−13/5 × 10−13 2.256 064 013 × 101 −1.045 98 × 101 1.789 56 × 104 1.466 914 4 × 100 −1.389 133 × 103

2.256 064 013 × 101 −1.046 04 × 101 1.789 56 × 104 1.466 927 3 × 100 −1.389 157 × 103

2 × 10−4 2 × 10−13/4 × 10−13 2.256 064 012 7 × 101 −1.045 97 × 101 1.789 66 × 104 1.466 914 4 × 100 −1.389 132 6 × 103

2.256 064 012 7 × 101 −1.046 27 × 101 1.789 66 × 104 1.466 966 1 × 100 −1.389 229 5 × 103

4 × 10−4 1 × 10−13/5 × 10−13 2.256 063 998 5 × 101 −1.045 967 3 × 101 1.790 188 × 104 1.466 914 25 × 100 −1.389 132 6 × 103

2.256 063 998 5 × 101 −1.047 194 6 × 101 1.790 188 × 104 1.46712146 × 100 −1.389 520 2 × 103

6 × 10−4 2 × 10−13/5 × 10−13 2.256 063 936 7 × 101 −1.045 967 0 × 101 1.791 079 3 × 104 1.466 913 85 × 100 −1.389 132 34 × 103

2.256 063 936 7 × 101 −1.048 730 3 × 101 1.791 079 3 × 104 1.467 381 26 × 100 −1.390 005 18 × 103

4 × 10−4 1 × 10−13/5 × 10−13 2.256 064 0 × 101 −1.045 97 × 101 1.790 × 104 1.466 914 × 100 −1.389 133 × 103

(3 × 10−11 and 2 × 10−12, respectively). The accuracy of these
moments is only slightly worse than the orbitals themselves
because the dipole and quadrupole moments are relatively
large quantities for nonzero field strengths. That is why
the polarizability can be quoted with 9 significant digits
and the second hyperpolarizability with 4. Calculations for
atoms and heteronuclear molecules are rather straightforward
once the grid is chosen. However, homonuclear systems pose
a problem since a weak external electric field breaks the
inversion symmetry, and the SCF/SOR iteration process fails
to deliver well-converged solutions. It has recently been shown
that the problem encountered is due to a near degeneracy of
some of the orbitals and consequently the results obtained
were not always satisfactory [23,24]. Therefore the electric
properties of Be2 could be calculated to a desired accuracy
and the properties of the N2,O2, and F2 systems calculated
afresh to produce results that are collected in Table VI.
Usually the static electric properties are obtained not via

the differentiation of the dipole or quadrupole moments with
respect to the field strength but rather by fitting a polynomial
to a set of energy values for different field strengths. In order
to demonstrate the high quality of the electric properties
derived by the numerical differentiation we also calculated
them using the nonlinear least-squares Marquardt-Levenberg
algorithm (also known as the damped least-squares method)
as implemented in the GNUPLOT program [30]. αzz,βzzz, and
γzzzz parameters were obtained by fitting a third degree
polynomial to five values of the dipole moment while Az,zz

and Bzz,zz—a second-degree polynomial to five values of the
quadrupole moment. As one can see both approaches are in
perfect agreement except for only small discrepancies in Bzz,zz

values.
Now, let’s examine the quality of the electric properties one

can expect to obtain by applying the finite-field 2D HF method
to heteronuclear diatomic systems. Table VII contains the raw
data and the derived electric properties for the BH molecule.
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TABLE VIII. Polarizabilities and hyperpolarizabilities (in a.u.) of selected diatomic heteronuclear molecules obtained by means of the finite
field method. The first column lists the systems studied together with the internuclear distance in parentheses (a.u.), the grid ([Nν × Nμ/R∞]),
and the electric field strength Fz (in a.u.) used. The second set of the values was obtained using the nonlinear least-squares Marquardt-Levenberg
algorithm. The αzz,βzzz, and αzzzz parameters were obtained by fitting a third-degree polynomial to five dipole moment values while Az,zz and
Bzz,zz to a polynomial of the second degree and five quadrupole moments.

System/grid/Fz αzz βzzz γzzzz Az,zz Bzz,zz

HeNe (2.750) [349 × 643/200]
4 × 10−4 2.256 064 0 × 101 −1.045 97 × 101 −1.790 × 104 −1.466 914 × 100 −1.389 133 × 103

2.256 064 0 × 101 −1.047 19 × 101 −1.790 × 104 −1.467 121 × 100 −1.389 520 × 103

2.750 0 3.764 768 8 −5.06 × 10−2 106 −7.569 820 −21.033
BH (2.3289) [349 × 643/200]
4 × 10−4 2.256 064 0 × 101 −1.045 97 × 101 −1.790 × 104 −1.466 914 × 100 −1.389 133 × 103

2.256 064 0 × 101 −1.047 19 × 101 −1.790 × 104 −1.467 121 × 100 −1.389 520 × 103

BH (2.308) [349 × 643/200]
4 × 10−4 2.223 991 5 × 101 −6.835 00 × 100 −1.766 × 104 −5.323 36 × 10−1 −1.370 953 × 103

2.223 991 5 × 101 −6.846 85 × 100 −1.766 × 104 −5.324 66 × 10−1 −1.371 336 × 103

FH (1.7328) [349 × 643/200]
1 × 10−3 5.754 254 56 × 100 −8.448 11 × 100 −2.726 × 102 −3.970 450 4 × 100 −5.331 56 × 101

5.754 254 55 × 100 −8.448 75 × 100 −2.726 × 102 −3.970 666 0 × 100 −5.332 15 × 101

CO (2.132) [445 × 841/200]
8 × 10−4 1.446 684 8 × 101 −3.141 087 × 101 −1.191 × 103 −1.137 927 6 × 101 −2.363 381 × 102

1.446 684 8 × 101 −3.141 498 × 101 −1.191 × 103 −1.138 063 5 × 101 −2.363 821 × 102

CO (2.13221) [445 × 841/200]
8 × 10−4 1.446 899 6 × 101 −3.141 231 × 101 −1.191 × 103 −1.137 888 1 × 101 −2.363 602 × 102

1.446 899 6 × 101 −3.141 873 × 101 −1.191 × 103 −1.138 100 4 × 101 −2.364 289 × 102

LiCl (3.8185) [445 × 763/200]
5 × 10−4 2.453 247 4 × 101 −7.906 33 × 101 −8.88 × 103 −1.597 068 9 × 101 −6.694 25 × 102

2.453 247 4 × 101 −7.908 36 × 101 −8.88 × 103 −1.597 011 6 × 101 −6.696 03 × 102

NaCl (4.4613) [445 × 739/200]
4 × 10−4 2.870 018 4 × 101 −2.227 967 × 102 −2.550 × 104 −6.955 908 × 101 −9.384 75 × 102

2.870 018 4 × 101 −2.229 014 × 102 −2.550 × 104 −6.955 769 × 101 −9.389 08 × 102

KF (4.1035) [541 × 907/200]
8 × 10−4 1.558 821 × 101 −5.243 × 101 −5.19 × 103 −2.404 027 × 101 −3.221 1 × 102

1.558 821 × 101 −5.250 × 101 −5.19 × 103 −2.404 083 × 101 −3.223 6 × 102

LiBr (4.10150) [103 9 × 1747/200]
2.5 × 10−4 3.405 088 5 × 101 −1.489 766 × 102 −1.737 × 104 −2.734 142 × 100 −1.333 840 × 103

3.405 088 5 × 101 −1.489 904 × 102 −1.737 × 104 −2.735 176 × 100 −1.333 964 × 103

For such a system the quality of the raw data must be assessed
by looking at the orbital norms since there in no longer ±Fz

symmetry to be exploited. If a grid is too small or the SCF
process is not properly converged orbital norms will deviate
from unity substantially. Of course orbitals can always be
normalized to unity upon completion of the SCF/SOR process
but the problem is to have these norms stable in case some
additional SCF/SOR iterations are performed. Therefore we
can estimate the relative errors of the dipole and quadrupole
moments by looking at their sensitivity to the normalization of
orbitals. In the case of the BH molecule the relative errors of
the dipole and quadrupole moments are 10−13 and 5 × 10−13,
respectively, and therefore even the second hyperpolarizability,
which is the most difficult property to calculate, can be quoted
with 8 digits. This is the accuracy to be expected for each
field strength but what really matters is a relative stability of
the γzzzz (and other properties) to changes of the field strength.
The lower part of the table demonstrates vividly that the second
hyperpolarizability can be at best given with 4-digits accuracy.
When the accuracy of the other properties is also examined we
can conclude that the finite field method delivers for the BH

molecule results of the same overall quality as for atoms and
homonuclear molecules. The results presented in Table VIII
show that this is the case for other heteronuclear diatomics
with up to 38 electrons.

Having shown that the FD HF method is capable of
generating benchmark quality results one can apply it to study
the dependence of the total energy, multipole moments, and the
static electric properties of the internuclear separation for any
diatomic molecule. However, weakly bound diatomic systems
are of special interest since they are difficult to treat using
algebraic methods [31,32]. See Supplemental Material [33] for
tables that present the results for the following van der Waals
systems: He2,LiH+,Be2, and HeNe with two tables per system.
The first table of each pair shows the R dependence of the total
and binding energy and dipole and quadrupole moments, the
other shows the R dependence of the (hyper)polarizabilities.
It is worth noting that for the homonuclear systems the
quadrupole moment values tend to zero when the internuclear
distance increases and therefore the Bzz,zz values must be given
with fewer significant digits. The R dependence for the F2

molecule can be found in [23].
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IV. CONCLUSIONS

The main purpose of this paper is to show that the finite
field approach together with the FD HF method can be used
to obtain reliable, most accurate, practically HF limit values
(within the double precision arithmetic) of the dipole (hy-
per)polarizabilities of atoms and diatomic molecules. As such
these values can be used to calibrate various basis sets used for
HF and post-HF calculations and are indispensable for estimat-
ing basis set superposition errors. This is especially important
when potential energy curves are studied for weakly bound
systems. The comparison between the static electric properties

calculated using the finite difference and algebraic HF methods
can be found elsewhere [22,23]. It suffices to say that the best
available algebraic calculations match very well the numerical
results, e.g., in case of N2 (R = 2.07432 a.u.). Maroulis gives
αzz = 15.0289,γzzzz = 799, and Bzz,zz = 175 [34].
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