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Classical simulations of noisy stabilizer circuits are often used to estimate the threshold of a quantum error-
correcting code. Physical noise sources are efficiently approximated by random insertions of Pauli operators.
For a single qubit, more accurate approximations that still allow for efficient simulation can be obtained by
including Clifford operators and Pauli operators conditional on measurement. We examine the feasibility of
employing these expanded error approximations to obtain better threshold estimates. We calculate the level-1
pseudothreshold for the Steane [[7,1,3]] code for amplitude damping and dephasing along a non-Clifford axis.
The expanded channels estimate the actual channel action more accurately than the Pauli channels before error
correction. However, after error correction, the Pauli twirling approximation yields very accurate estimates of
the performance of quantum error-correcting protocols in the presence of the actual noise channel.
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I. INTRODUCTION

The threshold theorem of quantum error correction
promises the accurate implementation of arbitrary size quan-
tum algorithms if the underlying physical errors are below
certain values. The error thresholds depend strongly on the
specific quantum error correcting code, how errors are detected
and fixed [1–3], and what errors are assumed [4–7]. Most
codes have been designed to fix random Pauli errors and
error correction procedures can be simulated efficiently using
the stabilizer formalism [8,9]. A broader class of errors
including Clifford operations [10] and Pauli measurements
[11] can also be included in this formalism. For a single qubit,
this extended error set has been shown to yield improved
approximations of realistic error models including amplitude
damping [11].

Here we examine whether these improved approximations
also lead to more accurate threshold estimates. Specifically, we
calculate the level-one pseudothreshold for the Steane [[7,1,3]]
code [12] for two nonstabilizer errors, amplitude damping and
a depolarization channel along a magic-state axis, and compare
the exact solution to approximations based on Pauli errors or
Clifford and Pauli measurement errors. The Steane code has
been well studied theoretically [13–19] and a logically encoded
state has been recently demonstrated experimentally [20]. The
code is small enough to allow for exact simulation similar to
recent work on distance-3 surface codes, which compared a
realistic error model corresponding to T1 (amplitude damping)
and T2 (dephasing) processes and an approximate Pauli error
model based on twirling [6].

In addition to the pseudothreshold, we are interested in
two other qualities of the approximation, the accuracy and the
honesty. The accuracy is a measure of how close is the state
generated by the approximate evolution to the state generated
by the exact evolution. We describe an approximation as
honest if the final state after the approximate evolution is
further from the initial state than the final state after the exact
evolution. In other words, an approximation is honest if it
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upper-bounds the error of the exact evolution. As pointed out
by Puzzuoli et al. the composition of honest approximations is
not necessarily honest [21]. This implies that an approximation
that is honest at the one-qubit physical level might lead
to a dishonest representation of the overall error produced
on the system. As our goal is to employ our approximate
channels to infer the performance of error-correcting strategies
under realistic nonstabilizer noise, we need to be sure that
they compose in an honest fashion. We provide numerical
evidence that, in the context of an error-correcting circuit,
an honest approximation at the physical level remains honest
at the logical level. Furthermore, we show that, for the
error models studied, physically dishonest approximations
based on the Pauli channel might lead to approximations
at the logical level that are both approximately honest and
very accurate, in agreement with similar results obtained by
Geller and Zhou [22]. This suggests that it might not be
necessary for the approximations to be honest at the physical
level.

The paper is organized as follows. In Sec. II, we describe
the realistic error channels and our method to approximate
them [11]. In Sec. III, we review the important concepts
of honesty and accuracy of an approximate channel. In
Sec. IV we explain our procedure for calculating the pseu-
dothresold. In Sec. V, we present our results before concluding
in Sec. VI.

II. ERROR CHANNELS

We review all the error channels introduced in Ref. [11]. We
start with the stabilizer expansions to the Pauli channel (PC)
that are used as models to approximate realistic nonstabilizer
error channels. Next, we discuss two important error channels
that lie outside the stabilizer formalism. Finally, we review
two different constraints under which the approximations are
performed. All the error channels introduced in this section
will be expressed in the operator-sum representation.

Throughout the paper we use X, Y , and Z to represent
the Pauli matrices with associated eigenvectors {|+〉,|−〉},
{|+i〉,|−i〉}, and {|0〉,|1〉}, respectively.
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A. Efficiently simulatable processes

One of the main ideas introduced in [11] was that the PC
can be greatly expanded without becoming nonstabilizer. We
do this by adding Kraus operators that correspond to either
Clifford operations or Pauli measurements followed by con-
ditional Pauli operations. For the one-qubit case, the Clifford
channel (CC), which corresponds to the first expansion, is
composed of the 24 operators that maintain the symmetry
of the chiral Clifford octahedron [23]. Another expansion to
the PC can be obtained by introducing pairs of operators that
effectively produce a measurement in a Pauli basis followed by
a conditional Pauli operation, such that all states are mapped
to the same state. We refer to these pairs of operators as
measurement-induced translations. For each Pauli state, |λ〉,
these operations can be represented by the following pairs:

{Eλ0 = |λ〉〈λ|,Eλ1 = |λ〉〈λ⊥|}. (1)

The addition of these measurement-induced translations
to the PC gives rise to the Pauli + measurements channel
(PMC), while their addition to the CC produces the Clifford +
measurements channel (CMC).

B. Nonstabilizer error channels

As in [11], we use the efficiently simulatable channels
to approximate realistic nonstabilizer channels. In particular,
we focus on the amplitude damping channel (ADC) and the
polarization along an axis in the x-y plane of the Bloch sphere
(PolφC), shown on Eqs. (2) and (3), respectively:

ADC =
{

EA0 = |0〉〈0| + √
1 − γ |1〉〈1|

EA1 = √
γ |0〉〈1|, (2)

PolφC =
{

Exy0 = √
1 − pφ I

Exy1 = √
pφ [cos(φ) X + sin(φ) Y ].

(3)

C. Constraints

The free parameters in the PC and its expansions correspond
to the probabilities associated with the Kraus operators.
Previously, we have obtained stabilizer approximations to the
realistic nonstabilizer channels by minimizing the Hilbert-
Schmidt distance [24,25] over the parameter space of the
models. As we do not want to underestimate the deleterious
effect of the target channel on quantum information (i.e., we
want our approximation to be honest [10]), we perform the
minimizations such that the approximate channels constitute
an upper bound on the error induced on the system. Mathe-
matically, this condition can be enforced in a variety of ways
by employing different fidelity or distance measures. From the
constraints that we have studied, the most lenient corresponds
to the average fidelity constraint, in which we enforce the
following condition:

Fav(I,target) ≥ Fav(I,model). (4)

The average fidelity between a unitary transformation V and
a quantum channel K is given by:

Fav(V,K) = 1

N2

∑
i

|Tr(V †Ki)|2, (5)

where N is the dimension of the Hilbert space and {Ki}
are the Kraus operators of the error channel K . On all the
approximations that we have performed, the average fidelity
constraint has always given the same results as if no constraint
had been applied.

On the other hand, the most stringent constraint corresponds
to the worst trace distance, which enforces that the trace
distance between an initial pure state and the final state
generated from the model approximations cannot be smaller
than the trace distance between the initial state and the target
transformation:

DTr(ρ,target(ρ)) � DTr(ρ,model(ρ)), (6)

where the trace distance is calculated using the following
expression:

DTr(ρ,σ ) = 1
2 Tr|ρ − σ |. (7)

This worst trace distance constraint results in approximate
channels that are honest, in the sense that the deleterious effect
of the target error channel on any pure quantum state will
never be underestimated, as pointed out by Magesan et al.
[10] and Puzzuoli et al. [21]. We could think of an even tighter
constraint in which we enforce this condition on every initial
state, pure or mixed. However, if the target and the model
transformations have different fixed points, this condition is
impossible to satisfy. We compare results for both constraints
and label them “A” (average fidelity constraint) and “W” (worst
trace distance constraint).

III. HONESTY AND ACCURACY AT THE PHYSICAL AND
LOGICAL LEVELS

For each approximate channel, we study two properties:
honesty and accuracy. An approximate channel is honest if
it does not underestimate the detrimental effect of the target
error channel. The accuracy of an approximate channel refers
to how closely it can mimic the effect of the target channel
on an initial state. More explicitly, if a target error channel E

maps a pure state ρ to E(ρ) and an approximate channel A

maps the same state to A(ρ), then A is honest if

DTr(ρ,E(ρ)) � DTr(ρ,A(ρ)) (8)

for every pure state in the initial physical or logical space. The
accuracy is measured by the average trace distance between
the resulting states:

〈DTr(E(ρ),A(ρ))〉. (9)

Notice that for both properties, our measure of choice is
the trace distance. A good approximate channel will be honest
(or as least dishonest as possible) and as accurate as possible,
not only at the physical level, but also at the logical levels. We
distinguish four different scenarios to compare honesty and
accuracy: (i) the physical (one-qubit) level, (ii) the uncorrected
logical level, (iii) the logical level with perfect EC, and (iv) the
logical level with faulty EC, as depicted in Fig. 1.

For each target non-Clifford error channel, we study
two kinds of approximations: (i) the Pauli channels (PC),
which employ only one-qubit Pauli operators, and (ii)
the expanded channels or Clifford + measurements channels
(CMC), which include all the one-qubit Clifford operators
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FIG. 1. We study the honesty and accuracy of the approximate channels at the physical level and at the logical level before and after error
correction. The logical initial state is encoded without errors and then errors are applied. The preparation of the ancillary cat state in the faulty
EC is error-free as well, as shown in Fig. 2.

and the measurement-induced translations [11]. In turn, each
kind of approximation is performed with the average fidelity
constraint (A) and the worst trace distance constraint (W),
resulting in four approximate channels. Notice that the uncon-
strained PC is equivalent to the Pauli twirled approximation
[10,21,22], the channel obtained by removing the off-diagonal
elements from the target channel’s process matrix in the Pauli
basis [26]. We also analyze the completely isotropic Pauli
channel or depolarizing channel (DC), the most common error
model used when calculating thresholds. In this paper we are
comparing single-qubit error channels and we only use the
single-qubit depolarizing channel. This channel is a version
of the PCa where the coefficients corresponding to each Pauli
matrix are forced to have the same value. This error model
serves as a reference. The approximations are summarized in
Table I.

IV. CALCULATION OF THE PSEUDOTHRESHOLD

Our objective with respect to the pseudothreshold is
twofold. On the one hand, we want to study how sensitive
a QECC’s threshold is to the noise model. On the other
hand, we want to determine if the thresholds obtained with
our expanded error models approximate the realistic threshold
more accurately than the PC.

A. Procedure to compute the level-one pseudothreshold

Because our target error models are nonstabilizer, we per-
form exact (full density matrix) simulations of quantum error
correction (QEC) circuits up to the first level of encoding. We

TABLE I. Summary of the various target and approximate
channels.

Channel Complete name Honesty constrained

ADC amplitude damping –
PolφC polarization along non-Clifford axis –
PCa Pauli no
PCw Pauli yes
CMCa Clifford + measurements no
CMCw Clifford + measurements yes
DC Depolarizing channel no

calculate a particular QEC code’s level-one pseudothreshold
under a given error channel in the following way:

(i) Run the physical circuit:
(a) Choose an initial 1-qubit pure state, |ψ〉.
(b) Apply the selected error channel.
(c) Compute the fidelity between the initial and final

states.
(ii) Run the logical circuit:

(a) Encode the initial state using the selected QECC.
(b) Apply the error channel to each physical qubit.
(c) Perform EC.
(d) Compute the fidelity between the initial and final

logical states.
We are interested in how much the final state is affected
by errors which are uncorrectable by the selected QECC.
Therefore, for the case with faulty corrections, we perform
one round of perfect EC before computing the fidelity. This has
the effect of eliminating correctable errors, which happened
during or after the faulty EC. The process of performing a
round of perfect EC and then computing the fidelity can also
be viewed as computing an error-corrected fidelity:

FEC(|ψL〉,ρL) =
√∑

i

〈ψL|E†
i P

†
i ρLPiEi |ψL〉, (10)

where |ψL〉 is the initial logical state and ρL is the final logical
state, which, in general, will not be pure. The set {Ei} consists
of all error operators which the QECC is designed to correct,
while {Pi} is the set of projectors to the subspaces associated
with each error. For the Steane [[7,1,3]] code, the set {Ei}
is formed by the 64 Pauli operators formed by all possible
combinations of X and Z errors acting independently on at
most one qubit and includes the identity operator for the case
of no errors.

(iii) Repeat steps (i) and (ii) for various noise strengths
to obtain fidelities for the physical and logical circuits. The
threshold is given by the first intersection between the two
curves.

(iv) Repeat this procedure for several initial states to obtain
an average threshold. For the perfectly corrected case, we
select 80 initial points uniformly distributed on the Bloch
sphere. For the faultily corrected case, we select 20.

Notice that our logical unit consists of a logical identity
gate, which is always faulty, and an EC step, which may or
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FIG. 2. Circuits representing the measurement of the operator IIIXXXX in (a) an error-free regime and (b) a faulty regime. In the former
case, we only need to employ 1 ancillary qubit. Notice that the ancillary qubit starts in the |+〉 state and the measurement is performed in the
X basis. In the faulty EC regime, in order to make the procedure fault tolerant, we employ four ancillary qubits initialized in a cat state [29].
We then measure each ancillary qubit in the X basis and compute their parity to extract the outcome.

may not be faulty. This logical unit is often referred to as a
simple rectangle, in contrast to an extended rectangle, where
the logical gate is inserted between two EC steps [27,28]. The
qualitative trends of the resulting pseudothresholds should re-
main unchanged between a simple and an extended rectangle.

B. Methods of error correction

The EC step is performed by measuring the stabilizer gener-
ators and later correcting any detected errors. We distinguish
between the error-free EC, which results in a code-capacity
pseudothreshold, and the faulty EC, which results in the
more realistic circuit-based pseudothreshold. The faulty EC
is built by inserting an error channel after each gate in the
original circuit. As the Steane code will be the focus of
our analysis, consider, for example, the measurement of the
stabilizer IIIXXXX, as depicted in Fig. 2. The error-free
EC step would consist of circuits analogous to Fig. 2(a) for
each stabilizer generator. On the other hand, in the faulty EC
regime, each stabilizer generator would be measured as shown
in Fig. 2(b). Each stabilizer measurement is then repeated and
the syndrome is compared to the one in the previous round.
If there is a disagreement between these two, a third round
of stabilizer measurements is performed and its syndrome is
selected as the definitive one.

V. RESULTS

A. Honesty and accuracy of the approximations

By construction, the W approximations are honest at the
physical (one-qubit) level, provided that the initial state is
pure. In our previous work we also determined that, when
approximating a general non-Clifford channel at the physical
level, the expanded channels are more accurate than the Pauli
channels. Before computing the level-one pseudothresholds
for different approximations, we first examine if the honesty of
the W approximations and the greater accuracy of the expanded
channels were maintained at the logical level.

1. Amplitude damping channel (ADC)

For the physical, logical uncorrected, and logical with
perfect EC levels, we have selected 80 initial states uniformly
distributed over the Bloch sphere surface. For the logical
faultily corrected level, we have selected 20 points, because
the simulations involve three extra qubits and consequently
take an exponentially longer time. We have computed the
trace distance between each initial state and the resulting
final state after the ADC and its approximations. The average
distances are shown in the first row of Fig. 3 as a function
of the damping strength, γ . Likewise, we have computed
the trace distance between each final state after the ADC
and each final state after every approximate channel. The
average distances are presented in the second row of Fig. 3.
The behavior in the limit of small damping strength (γ → 0)
is summarized in Tables II and III. In this limit, it is useful
to Taylor-expand the distances in terms of the noise strength
and compare the coefficients of the leading-order terms.
Expectedly, for the corrected logical cases the linear term is
suppressed and the leading order is quadratic. For the physical
and uncorrected logical cases, the leading order is linear. At
the logical level with faulty EC, simulations were only carried
out at low damping strengths (γ ∈ [10−5,10−3]), which is the
pertinent region for the pseudothreshold computation.

Notice that at the physical level in the first row of Fig. 3,
the W approximations result in curves that are above the target
ADC by construction, while the a approximations produce
curves below it. This behavior is also present in the small noise
strength limit, as can be seen by the magnitudes of the linear
coefficients (Table II): PCa < CMCa < ADC < CMCw <

PCw. Likewise, the accuracies of the CMC approximations
are much better than that of the PC approximations (Table III).
In the γ → 0 limit, the CMC approximations are ≈3 times
more accurate.

At the three logical levels, the W approximations are honest
for every damping strength. This is true not just on average, but
for every initial state considered. This is an important result,
as it means that we can safely use the W approximations as a
substitute of the ADC when determining codes’ thresholds or
other error-correcting properties. Remarkably, the dishonesty
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FIG. 3. (Color online) Distances used to assess the honesty (top row) and accuracy (bottom row) of the approximate channels to the ADC
at various levels.

TABLE II. Honesty of the approximate channels to the ADC in the limit of small damping strength. Standard
deviations below 10−9 are not reported.

Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
Channel DTr/γ DTr/γ DTr/γ 2 DTr/(102γ 2)

ADC 0.55(27) 3.62 3.76(96) 8.0(1.8)
PCa 0.347(79) 3.50 3.76(96) 7.8(1.8)
PCw 0.81(12) 8.35 18.5(3.5) 37.7(8.0)
CMCa 0.50(18) 4.00 3.48(45) 6.3(1.2)
CMCw 0.66(24) 5.33 6.19(80) 11.3(2.2)
DC 0.333 3.50 2.75(36) 4.95(96)

TABLE III. Accuracy of the approximate channels to the ADC in the limit of small damping strength. Standard
deviations below 10−9 are not reported.

Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
Channel DTr/γ DTr/γ DTr/γ 2 DTr/(102γ 2)

PCa 0.500 2.41 7(12) × 10−6 0.123(28)
PCw 0.63(26) 4.94 14.8(2.6) 29.8(6.2)
CMCa 0.166(60) 1.35 1.61(44) 2.15(74)
CMCw 0.194(60) 1.75 3.05(94) 3.7(1.1)
DC 0.505(97) 2.92 1.68(69) 3.2(1.2)
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FIG. 4. (Color online) Distances used to assess the honesty (top row) and accuracy (bottom row) of the approximate channels to the Polπ/8C
at various levels.

of the PCa is greatly reduced from the physical to the logical
levels in the limit of small γ . Its error is below the honesty
cutoff by 36% at the physical level but by less than 2% for
both corrected logical levels and well within the deviation in
the distance. In contrast, the dishonesty of the CMCa is not
improved at the logical levels and is below the honesty cutoff
by 8–20% for all cases.

The variation of the accuracy from level to level shows an
interesting behavior. For both levels where the effect of the
errors is linear (physical and uncorrected logical), in general
the CMC channels and the a approximations are more accurate

than the PC channels and the W approximations, respectively.
This is seen by the magnitudes of the linear coefficients
(Table III): CMCa < CMCw < PCa < PCw. At the logical
level with perfect EC, this intuitively expected behavior is
seen only for high damping strengths (γ > 0.5) (see Fig. 3).
Surprisingly, for lower damping strengths, the most accurate
approximation is given by the unconstrained PC, as can be
observed by the suppression of the second order terms in the
accuracy (Table III). This behavior is particularly pronounced
at the logical level with perfect EC, where the second-order
terms for the PCa and ADC are practically indistinguishable.

TABLE IV. Honesty of the approximate channels to the Polπ/8C in the limit of small noise strength. Standard
deviations below 10−9 are not reported.

Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
Channel DTr/p DTr/p DTr/p2 DTr/(103p2)

Polπ/8C 0.78(24) 7.00 16.2(4.7) 2.22(72)
PCa 0.73(20) 7.00 16.2(4.7) 2.22(72)
PCw 0.93(18) 9.47 18.5(4.9) 2.71(77)
CMCa 0.77(22) 7.41 17.8(5.1) 2.67(83)
CMCw 0.84(23) 8.17 20.8(5.9) 3.12(96)
DC 0.667 7.00 11.0(1.4) 1.82(35)

022335-6



COMPARISON OF A QUANTUM ERROR-CORRECTION . . . PHYSICAL REVIEW A 91, 022335 (2015)

TABLE V. Accuracy of the approximate channels to the Polπ/8C in the limit of small noise strength. Standard
deviations below 10−9 are not reported.

Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
Channel DTr/p DTr/p DTr/p2 DTr/(102p2)

PCa 0.278(82) 2.47 6.1(7.7) × 10−6 5.8(1.6) × 10−5

PCw 0.36(21) 4.95 3.8(1.1) 6.2(1.6)
CMCa 0.108(25) 1.09 1.76(41) 4.7(1.0)
CMCw 0.132(43) 1.37 4.6(1.1) 9.2(2.4)
DC 0.46(11) 4.67 9.2(1.3) 9.7(1.5)

2. Polarization along a non-Clifford axis channel (PolφC)

We perform an analogous analysis for our second target
error channel: the polarization along a non-Clifford axis on
the X-Y plane of the Bloch sphere. We select the axis forming
an angle φ = π/8 with respect to the X axis, as this is the
angle for which the expanded error models perform the worst
[11]. Once again, we have selected 20 initial states for the
faultily corrected level and 80 points for all other levels.
We have computed the trace distance between each one of
them and the resulting final state after the Polπ/8C and its
approximations. The average distances are shown in the first
row of Fig. 4 as a function of the noise strength, p. Likewise,
we have computed the trace distance between each final state
after the Polπ/8C and each final state after every approximate
channel. The average distances are presented in the second
row of Fig. 4. The behavior in the limit of small noise strength
(p → 0) is summarized in Tables IV and V. As for the ADC,
at the physical and uncorrected logical levels, the leading order
is linear. At the corrected logical levels, the leading order is
quadratic.

As observed on the ADC, the W approximations are honest
at every level and for every noise strength. This holds in
the average case and also for each initial state considered.
Interestingly, the CMCa becomes honest on average and the
PCa average distances are indistinguishable from honest.

Notice that, just like for the ADC, at the physical and
uncorrected logical levels, the CMC channels and the A
approximations are more accurate than their counterparts PC
and W, respectively. This can be seen by the magnitudes
of the linear coefficients (Table V): CMCa < CMCw <

PCa < PCw. At the physical level, and in the p → 0
limit, the CMC approximations are ≈3 times more accurate

TABLE VI. Thresholds for the Steane code under the ADC and
its Pauli and expanded approximations. ADC/PCa uses ADC at the
physical level and PCa at the logical level.

Code capacity Circuit-based

Channel 〈γth〉 RMS 〈γth〉 × 104 RMS ×104

ADC 0.18(17) – 4.8(4.2) –
PCa 0.132(38) 0.171 4.8(1.4) 3.91
PCw 0.061(43) 0.204 2.36(60) 4.69
CMCa 0.19(17) 0.0498 6.4(4.2) 1.67
CMCw 0.15(14) 0.0644 4.8(3.1) 1.12
DC 0.162(22) 0.165 7.2(1.4) 4.60
ADC/PCa 0.30(37) 0.255 4.9(4.2) 0.101

than the PC approximations. At the corrected logical levels,
the most accurate approximation is once again given by
the PCa. Surprisingly, this behavior holds even up to high
noise strengths (p = 0.6). In the low noise limit, and at the
corrected logical levels, the second order terms are practically
suppressed. In this limit, the PCa is on average more accurate
than the CMC channels by a factor of 105.

3. High accuracy of the unconstrained PC

For both the ADC and the Polπ/8C, the unconstrained PC
results in approximations that are honest (or almost honest)
and extremely accurate at the logical corrected levels. In the
limit of small error, this is very evident by comparing the
quadratic coefficients of the PCa to the other approximations
(See Tables III and V.). The high accuracy of the unconstrained
PC in the context of EC has previously been observed. Geller
and Zhou found very good agreement between the PCa or
Pauli twirled approximation and two different realistic noise
models when correcting a Bell state [22]. Likewise, Puzzuoli
et al. observed great accuracy of the PCa when correcting
a Choi state encoded in the [[5,1,3]] code [21]. As clearly
explained in Ref. [21], after (perfect) EC, the process matrix
elements corresponding to Pauli error strings that result in
different syndromes become zero. Intuitively, we can say that
the non-Pauli advantage of the expanded approximations at
the physical level gets washed away after EC.

B. Level-one pseudothresholds

We perform the simulations of two different scenarios:
(i) one with perfect EC, which results in a relatively high code-
capacity pseudothreshold and (ii) one with faulty EC, which
results in a more realistic circuit-based pseudothreshold. Apart
from the average pseudothreshold, we also calculate the root
mean square difference (RMS) between the pseudothresholds
given by the target non-Clifford channel and the ones predicted
by each approximate channel:

RMS =
√〈(

pchannel
th − papprox

th

)2〉
. (11)

The RMS quantifies the accuracy of each approximate
channel to estimate the pseudothreshold of the target channel.
We calculate the RMS because comparing only the average
values does not account for any cancellation of errors. A certain
approximate channel can do a very poor job at approximating
the pseudothreshold for every initial state, but result in an
average that is close to the target’s average.
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TABLE VII. Thresholds for the Steane code under the Polπ/8C
and its Pauli and expanded approximations. Polπ/8C/PCa uses Polπ/8C
at the physical level and PCa at the logical level.

Code capacity Circuit-based

Channel 〈pth〉 RMS 〈pth〉 × 104 RMS ×104

Polπ/8C 0.14(24) – 3.5(1.5) –
PCa 0.086(74) 0.238 3.10(26) 1.53
PCw 0.078(16) 0.237 3.46(35) 1.48
CMCa 0.11(21) 0.112 3.09(85) 0.816
CMCw 0.09(14) 0.169 2.91(76) 0.991
DC 0.083(12) 0.244 3.92(64) 1.60
Polπ/8C/PCa 0.14(25) 0.0255 3.5(1.5) 1.19 × 10−3

The results for the ADC and the Polπ/8C are summarized
in Tables VI and VII, respectively. For the ADC, the pseu-
dothresholds are expressed in terms of the damping strength,
γ , while for the Polπ/8C, they are expressed in terms of the
noise strength, p. In both cases, the standard deviation of
the pseudothresholds is included inside parentheses. Notice
that the code-capacity pseudothresholds are about 3 orders of
magnitude higher than the circuit-based ones. The latter ones
are on the range expected for the Steane code [30]. Although
the code-capacity pseudothresholds are unrealistically high,
they show similar trends with respect to their circuit-based
counterparts.

As can be seen from Tables VI and VII, in general,
the standard deviations of the pseudothresholds about its
average values are high, especially for the target non-Clifford
channels and its expanded approximations. Despite the fact
that we consider relatively few initial states (80 and 20 for
the code-capacity and circuit-based cases, respectively), the
high variances are not a consequence of the small sample
sizes. In fact, when reducing the sample size to only six

initial points (the six Pauli states), the variances increase only
slightly, and for some channels do not increase at all. Instead,
the high variances are due to the extreme sensitivity of the
pseudothreshold to the initial state. As an illustrative example,
consider Fig. 5. The plot to the right shows how the circuit-
based pseudothreshold of the ADC and its approximations
varies as the initial state changes from |0〉 to |1〉 as a function
of the angle θ . Notice, that the pseudothreshold for the ADC
and its expanded approximations is particularly sensitive to
the initial state, ranging from 0, when the initial state is the
fixed point of the ADC, to ∼10−3.

It is interesting that the Pauli channels always result in
pseudothresholds that are lower than the real ones. This
trend has also been observed by Tomita and Svore on the
surface code [6] and suggests that anisotropic Pauli channel
approximations to realistic noise models are pessimistic. The
CMCw approximations also result in lower pseudothresholds.
This is in contrast to the isotropic Pauli channel approximation
(DC) that yields optimistic pseudothresholds.

The CMCs give more accurate pseudothreshold estimates
than the PCs, as can be seen by comparing their RMS
values. Although we might expect the a channels to result
in better approximations than the W channels, in general this
is not the case. The most important variation is between the
CMCs and the PCs. In general, however, the W channels
result in lower pseudothresholds than the a channels, which
implies that honest approximations at the physical level do a
good job at giving conservative estimates of the threshold.
Finally, we notice that the circuit-based pseudothresholds
are quite comparable yielding pseudothresholds within a
factor of two for all of the error models. The DC model
representing isotropic depolarizing noise yields the worst
results.

In the previous section, we noticed that the PCa, one of
the simplest approximations at the physical level, and one that
is not even honest, results in very accurate and practically

FIG. 5. (Color online) Variation of the circuit-based level-one pseudothreshold as a function of the angle θ for the ADC and its
approximations. Each point corresponds to the pseudothreshold averaged over different values of the angle φ for the same angle θ . The
initial state is given by |ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉. For the ADC and its expanded approximations, the pseudothreshold depends
strongly on the initial state. The zoom-in figure on the left shows how the pseudothreshold is computed for a particular point on the Bloch
sphere, namely by finding the first intersection between the physical and logical error (1 − F ).
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honest approximations at the corrected logical levels. In the
context of our level-one pseudothreshold estimation, this result
suggests that we can take a different strategy. Instead of using
the approximate channel at both the physical and logical level
to calculate the pseudothreshold, we can use the target channel
at the physical level and the PCa approximation at the logical
level. More generally, we can simulate the realistic noise model
in an exact way whenever it is feasible, and in the encoded cases
just use the PCa. If we take this approach, we obtain more
accurate state by state pseudothresholds for the circuit-based
case as seen in Tables VI and VII.

VI. CONCLUSIONS

We have studied the feasibility of using approximate
error channels at the physical level to simulate the per-
formance of QEC protocols under the influence of nonsta-
bilizer errors. We have selected the Steane [[7,1,3]] code
as a model QEC protocol and have calculated the hon-
esty and accuracy of the Pauli and expanded approxima-
tions to realistic nonstabilizer errors. We have also com-
puted the code’s pseudothreshold under the different error
models.

Similar to results recently obtained for distance-3 surface
codes [6], the PC approximations result in lower pseudothresh-
old values than the realistic error channels. In contrast, the
isotropic DC approximation yields higher pseudothresholds
than the target channels in the circuit-based model. Since
most thresholds in the literature use two-qubit and one-
qubit depolarizing channels, we expect that realistic error
models with equivalent fidelity will have slightly lower pseu-
dothresholds in practice. However, for more realistic models
including correlated errors across qubits [4,31], it is unclear
whether the observed trends in honesty and accuracy will be
maintained.

We have also found that physically honest approximations
compose well: they result in honest approximations at the

logical level. Perhaps more interestingly, for both realistic
noise models analyzed, the dishonesty of the PCa gets greatly
reduced at the corrected logical levels and its accuracy
becomes extremely high. This suggests that the best protocol
is to model the error as realistically as possible at the physical
level and use the PCa at the logical level. Although we have
focused on the Steane code with Shor EC, the high accuracy
of the PCa at the logical level will most likely hold for any
QECC that discretizes errors to Pauli operators. This includes
all stabilizer codes. It should also hold for other EC protocols
that rely on ancillary stabilizer states to detect Pauli errors,
including Steane and Knill EC [13,32].

As explained by Puzzuoli et al. [21], single-qubit errors
can be separated into errors that deform the Bloch sphere
(nonunitary) and errors that preserve it (unitary). Both target
error models analyzed in our work belong to the deforming
regime, where the PCa yields effectively honest approxima-
tions at the logical level for small errors. Puzzuoli et al.
found that when the errors are unitary, the PCa generally
results in very dishonest approximations. In future work, we
will compute the level-one pseudothreshold for the Steane
and other codes under unitary errors, to determine if our
Pauli and expanded approximations still result in pessimistic
pseudothreshold estimates.
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