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We propose an approach for finding an optimal measurement for quantum state discrimination that maximizes
the probability of correct detection with a fixed rate of inconclusive results. In our approach, we obtain the
optimal measurement by solving the problem of finding a measurement that maximizes the weighted sum of
the probability of correct detection and that of inconclusive results. We show that this problem can be reduced
to the widely studied problem of finding a minimum error measurement for a certain state set, which maximizes
the probability of correct detection without inconclusive results. As an application of our approach, we show how
to solve the problem of finding an optimal measurement for qubit states with a fixed rate of inconclusive results.
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I. INTRODUCTION

Quantum state discrimination is one of the fundamental
problems in quantum information theory. The goal of this task
is to distinguish between a given finite set of known states with
given prior probabilities as well as possible. If the given states
are not orthogonal, then perfect discrimination between them
is impossible. Therefore, the problem is to find a measurement
that minimizes or maximizes a certain optimality criterion.
Since the basic framework of quantum state discrimination
was established by the pioneering work of Helstrom, Holevo,
and Yuen et al. [1–3], several optimization strategies have been
proposed, such as Bayes strategy [1–3], Neymann-Pearson
strategy [2], mutual information strategy [1], and minimax
strategy [4].

A measurement maximizing the correct probability, which
is called a minimum error measurement, has been well inves-
tigated. Necessary and sufficient conditions for a minimum
error measurement have been formulated [1–3,5]. Closed-form
analytical expressions for minimum error measurements have
also been derived for some cases (see, e.g., [6–9]). In another
strategy, we can consider a measurement that can achieve
error-free, i.e., unambiguous, discrimination at the expense of
allowing for a certain rate of inconclusive results [10–12]. An
unambiguous measurement that maximizes the correct proba-
bility, which is called an optimal unambiguous measurement,
has been investigated, and closed-form analytical expressions
have been obtained for some cases (see, e.g., [13–16]).
The use of an optimal unambiguous measurement can be a
more efficient eavesdropping strategy on quantum cryptosys-
tems [17,18].

Minimum error measurements and optimal unambiguous
measurements can be interpreted as special cases of optimal
inconclusive measurements (OIMs), which maximize the
correct probability with a fixed failure, i.e., inconclusive,

probability [19–21]. An OIM can be expected to guarantee
that the correct probability is higher than that of an optimal
unambiguous measurement while maintaining a sufficiently
low error probability. Note that a measurement that max-
imizes the correct probability where a certain fixed error
probability is allowed, which we call an optimal error margin
measurement (OEM), has also been investigated [22–24]. An
OEM has a close relationship with an OIM [25,26]. Although
necessary and sufficient conditions for an OIM have been
derived [20,21,27], obtaining an OIM is generally a more
difficult task than obtaining a minimum error measurement or
an optimal unambiguous measurement. In fact, closed-form
analytical expressions of OIMs are not known except for some
particular cases [25,26,28].

In this paper, we propose an approach for finding an OIM.
In Sec. III, we present our approach, where we consider
the problem of maximizing an objective function that is the
weighted sum of the correct and inconclusive probabilities. We
first obtain a measurement maximizing the objective function,
which we call a modified optimal inconclusive measurement
(MOIM), and then find a corresponding OIM. We show that the
problem of finding an MOIM can be reduced to the problem
of finding a minimum error measurement for a certain state
set, and thus is relatively easy to solve. Moreover, we clarify
the relationship between an MOIM and an OIM as well as an
OEM. In Sec. IV, we show how to solve the problem of finding
an MOIM and an OIM for qubit states.

II. OPTIMAL INCONCLUSIVE MEASUREMENT (OIM)

Let us consider discrimination between M quantum states
represented by density operators ρ̃m (m ∈ IM ) with prior
probabilities ξm, where Ik = {0,1, . . . ,k − 1}. ρ̃m satisfies
ρ̃m � 0 and Trρ̃m = 1, where Â � 0 and Â � B̂ respectively
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denote that Â and Â − B̂ are positive semidefinite. Also, let
ρ̂m = ξmρ̃m. ρ̂m satisfies ρ̂m � 0, Trρ̂m = ξm > 0 for any m,
and

∑M−1
m=0 Trρ̂m = 1. We refer to a set of quantum states,

ρ = {ρ̂m : m ∈ IM}, as a quantum state set. Let H be the state
space of ρ, which is the Hilbert space spanned by the supports
of the operators {ρ̂m}.

A quantum measurement that may return an inconclusive
answer can be described by a positive operator-valued mea-
sure (POVM) with M + 1 detection operators, �= {�̂m :
m ∈ IM+1}. We assume without loss of generality that each
detection operator �̂m is on H. Let M be the entire set of
POVMs on H that consist of M + 1 detection operators. Each
� ∈ M satisfies

�̂m � 0, ∀m ∈ IM+1,

M∑
m=0

�̂m = 1̂, (1)

where 1̂ is the identity operator on H. The detection operator
�̂m (m ∈ IM ) corresponds to identification of the state ρ̂m,
while �̂M corresponds to the inconclusive answer.

The correct probability, PC(�), and the error probability,
PE(�), can be expressed as

PC(�) =
M−1∑
m=0

Tr(ρ̂m�̂m),

PE(�) =
M−1∑
m=0

M−1∑
k=0

(m�=k)

Tr(ρ̂m�̂k). (2)

The inconclusive probability, PI(�), can be represented as

PI(�) =
M−1∑
m=0

Tr(ρ̂m�̂M ) = Tr(Ĝ�̂M ), (3)

where Ĝ is the Gram operator of ρ expressed as

Ĝ =
M−1∑
m=0

ρ̂m. (4)

PC(�) + PE(�) + PI(�) = 1 always holds for any � ∈ M.
An OIM is a measurement maximizing the correct probabil-

ity PC(�) under the constraint that PI(�) = p ∈ R[0,1], where
R[a,b] is the entire set of real numbers x satisfying a � x � b.
Thus an OIM is an optimal solution of the following problem:

maximize PC(�)

subject to � ∈ Mp, (5)

where Mp is the entire set of POVMs � ∈ M satisfying
PI(�) = p. An optimal solution of the following problem is a
minimum error measurement:

maximize PC(�)

subject to � ∈ M. (6)

We can easily verify that a minimum error measurement
satisfies �̂M = 0, which means PI(�) = 0. Thus a minimum
error measurement is a special case of an OIM, which
satisfies p = 0. A measurement maximizing PC(�) under

the constraint that PE(�) = 0 is an optimal unambiguous
measurement. Now, let pu be the inconclusive probability
for an optimal unambiguous measurement. Then, an optimal
unambiguous measurement can be regarded as a special case
of an OIM, which satisfies p = pu.

An OEM is a measurement maximizing PC(�) under the
constraint that PE(�) � γ , for a given γ ∈ R[0,1]. γ is referred
to as an error margin. Any OEM � is an OIM with the
inconclusive probability of p = PI(�), and any OIM �′ is
an OEM with the error probability of γ = PE(�′) [25,26]. Let
γ̃ be the error probability of a minimum error measurement.
Then, the error probability of an OEM with the error margin of
γ is min(γ,γ̃ ) [26]. Therefore, an OEM is an optimal solution
of the following problem:

maximize PC(�)

subject to � ∈ M(e)
min(γ,γ̃ ), (7)

where M(e)
γ is the entire set of POVMs � ∈ M satisfying

PE(�) = γ .
The problem of Eq. (5) is a semidefinite programming, and

its dual problem can be represented as [20]

minimize TrẐ − ap

subject to Ẑ � ρ̂m(∀m ∈ IM ), Ẑ � aĜ, (8)

where Ẑ is a semidefinite positive operator on H and a is a real
number. Similarly, the dual problem of the problem of Eq. (6)
is represented as [5]

minimize TrX̂

subject to X̂ � ρ̂m(∀m ∈ IM ), (9)

where X̂ is a semidefinite positive operator on H.

III. MODIFIED OPTIMAL INCONCLUSIVE
MEASUREMENT (MOIM)

It is generally harder to find an OIM with the inconclusive
probability p > 0 than a minimum error measurement. We
can see that the main reason is that an optimal solution of
Eq. (5), �, must satisfy PI(�) = p for a given p. Indeed,
because of this constraint, we must find not only Ẑ but
also a when we try to find an optimal solution of Eq. (8).
Similarly, due to the constraint of PE(�) = γ , it is hard to find
an OEM in many cases as well as an OIM. In this section,
we first consider another optimization problem without these
constraints. We next discuss the relationships between this
problem and optimal problems for finding an OIM and an
OEM. Using these relationships, we can obtain an OIM and
an OEM from an MOIM.

A. Problem formulation

Let us consider the following problem:

maximize PC(�) + αPI(�)

subject to � ∈ M, (10)

where α ∈ R is a constant (R is the entire set of real numbers).
We call an optimal solution of Eq. (10) an MOIM and also
call α an inconclusive degree. Equation (10) is identical to
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Eq. (6) when α � 0, since an optimal solution � must satisfy
PI(�) = 0, i.e., �̂M = 0, in this case. If α can be expressed
as α = 1 − ε with a sufficiently small ε > 0, then an optimal
solution of Eq. (10) is an optimal unambiguous measurement,
if it exists. Moreover, in the case of α � 1, the POVM
� = {�̂m = 0(∀m ∈ IM ),�̂M = 1̂} is an optimal solution of
Eq. (10). Indeed, since PC(�) + PI(�) � 1 and PI(�) � 1,
we find that

PC(�) + αPI(�) � 1 + (α − 1)PI(�) � α, (11)

where the equalities hold when PI(�) = 1.
The following proposition claims that an MOIM is equiv-

alent to a minimum error measurement for a certain state set.
Proposition 1. An MOIM for ρ is equivalent to a minimum
error measurement for ρ ′ = {ρ̂ ′

m : m ∈ IM+1}, with

ρ̂ ′
m = ρ̂m/(1 + α), m ∈ IM,

ρ̂ ′
M = αĜ/(1 + α), (12)

where Ĝ is defined by Eq. (4).
Note that 1/(1 + α) in Eq. (12) is a normalizing constant

such that
∑M

m=0 Trρ̂ ′
m = 1.

Proof. The objective function in Eq. (10) can be represented
as

PC(�) + αPI(�) =
M−1∑
m=0

Tr(ρ̂m�̂m) + Tr(αĜ�̂M )

= (1 + α)
M∑

m=0

Tr(ρ̂ ′
m�̂m). (13)

Thus, maximizing PC(�) + αPI(�) is equivalent to
maximizing the correct probability for ρ ′, that is,∑M

m=0 Tr(ρ̂ ′
m�̂m). �

Since the dual problem of finding a minimum error
measurement is Eq. (9), from Proposition 1, the dual problem
of Eq. (10) can be obtained by minimizing TrX̂ subject
to X̂ � ρ̂ ′

m (m ∈ IM+1). Now, let Ẑ = (1 + α)X̂; then this
problem can be expressed by

minimize TrẐ

subject to Ẑ � ρ̂m(∀m ∈ IM ), Ẑ � αĜ. (14)

We call Ẑ the Lagrange operator of this problem. Equation (14)
is somewhat similar to Eq. (8). However, α in Eq. (14) is a given
constant, while a in Eq. (8) is an unknown variable.

It is easier to obtain an MOIM than an OIM or an
OEM in general, since the constraint in Eq. (10) is less
restrictive. Indeed, an OIM and an OEM must satisfy PI(�) =
p and PE(�) = min(γ,γ̃ ), respectively. We will show the
relationships between the problem of Eq. (10) and optimal
problems for finding an OIM and an OEM in Secs. III B
and III C.

B. Relationship with an OIM

In this subsection, we derive the relationship between an
MOIM and an OIM by showing the relationship between
the inconclusive degree α in Eq. (10) and the inconclusive
probability p in Eq. (5).

Let us define P ◦
C(p) as

P ◦
C(p) =

{
max

�∈Mp

PC(�), p ∈ R[0,1],

−∞, otherwise,
(15)

that is, P ◦
C(p) is the correct probability of an OIM � with

PI(�) = p in the case of p ∈ R[0,1]; otherwise, P ◦
C(p) = −∞.

We also define F (α) as

F (α) = max
�∈M

PC(�) + αPI(�), (16)

which is equivalent to the optimal value of the objective
function in Eq. (10). Then, the following theorem holds.

Theorem 2. P ◦
C(p) is concave and F (α) is convex. F (α)

is the Legendre transformation of −P ◦
C(p) and vice versa.

Proof. First, we show that P ◦
C(p) is concave. According to the

definition of P ◦
C(p), it suffices to show that P ◦

C(p) is concave
in the range of p ∈ R[0,1]. Let � and �′ be respectively OIMs
with PI(�) = p ∈ R[0,1] and PI(�′) = p′ ∈ R[0,1]. Also, let
Q = {(�̂m + �̂′

m)/2 : m ∈ IM+1}. We can easily verify that
Q is a POVM satisfying

PC(Q) = [PC(�) + PC(�′)]/2 = [P ◦
C(p) + P ◦

C(p′)]/2,

PI(Q) = (p + p′)/2. (17)

From the definition of P ◦
C(p), P ◦

C[PI(Q)] � PC(Q) must
hold. Thus we have that for any p,p′ ∈ R[0,1],

P ◦
C[(p + p′)/2] � [P ◦

C(p) + P ◦
C(p′)]/2, (18)

which means that P ◦
C(p) is concave in the range of p ∈ R[0,1].

Next, we show that F (α) is the Legendre transformation of
−P ◦

C(p). From Eq. (16), we obtain

F (α) = max
�∈M

PC(�) + αPI(�)

= max
p∈R[0,1]

max
�∈Mp

PC(�) + αp

= max
p∈R[0,1]

P ◦
C(p) + αp, (19)

where the third line follows from Eq. (15). This means that
F (α) is the Legendre transformation of −P ◦

C(p).
Since F (α) is the Legendre transformation of the convex

function −P ◦
C(p), F (α) is convex and −P ◦

C(p) is the Legendre
transformation of F (α) [29]. �

We will also show that F (α) = F (0) holds at least in the
range of α � 1/M , and F (α) = α holds with α � 1. From
Eq. (16), F (0) is equivalent to the correct probability of a
minimum error measurement, that is, F (0) = P ◦

C(0). Let X̂ be
an optimal solution of Eq. (9), which is the dual problem for
obtaining a minimum error measurement. Then, TrX̂ = P ◦

C(0)
holds. Since X̂ � ρ̂m holds for any m ∈ IM , we have that for
any α � 1/M ,

X̂ − αĜ � X̂ − Ĝ

M
= 1

M

M−1∑
m=0

(X̂ − ρ̂m) � 0. (20)

Therefore, X̂ is also an optimal solution of Eq. (9), which yields
F (α) = TrX̂ = F (0) for any α � 1/M . Moreover, F (α) = α

holds for any α � 1, since Eq. (11) holds and the equalities
hold when PI(�) = 1.

We also show another proof that −P ◦
C(p) is the Legendre

transformation of F (α) using the optimization problems of
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Eqs. (5) and (10) and their duals. Let Ẑ(α) be an optimal
solution of Eq. (14) as a function of α. The minimum
value of the objective function in Eq. (8), which can be
represented as mina∈R TrẐ(a) − ap, is equivalent to P ◦

C(p),
since Eq. (8) is the dual problem of Eq. (5). [Note that Eq. (5)
has a feasible solution only if p ∈ R[0,1]. However, we can
see that mina∈R TrẐ(a) − ap = −∞ = P ◦

C(p) holds even if
p /∈ R[0,1].] In contrast, since Eq. (14) is the dual problem of
Eq. (10), we have TrẐ(a) = F (a). Thus we obtain

P ◦
C(p) = min

a∈R
F (a) − ap. (21)

The right-hand side equals the Legendre transformation of
F (a) multiplied by −1.

Next, we discuss the relationship between an MOIM and
an OIM. −P ◦

C(p) is convex and thus semi-differentiable. Let
α−(p) and α+(p) be the left and right derivatives of −P ◦

C(p)
at p, respectively. We show the following proposition.

Proposition 3. There exist the following relationships
between an MOIM and an OIM.

(1) An MOIM �◦ with the inconclusive degree α is an OIM
with the inconclusive probability of PI(�◦).

(2) An OIM with the inconclusive probability of p ∈ R[0,1]

is an MOIM with any inconclusive degree α satisfying
α−(p) � α � α+(p).

Proof. (1) Let �′ be an OIM with the inconclusive
probability of PI(�◦), i.e., PI(�′) = PI(�◦). Since �◦ is
an MOIM, PC(�◦) + αPI(�◦) � PC(�′) + αPI(�′) holds,
which gives PC(�◦) � PC(�′). Thus �◦ is also an OIM with
the inconclusive probability of PI(�◦).

(2) Let �• be an OIM with the inconclusive probability
of p. Let us consider an MOIM with the inconclusive degree
α satisfying α−(p) � α � α+(p). Since −P ◦

C(p) is convex,
the tangent line to the function −P ◦

C(p) with slope α passes
through the contact point [p, − P ◦

C(p)] (the tangent line may
have another contact point). Thus, from Eq. (19), we find that

F (α) = max
p′∈R[0,1]

P ◦
C(p′) + αp′

= P ◦
C(p) + αp

= PC(�•) + αPI(�
•). (22)

Therefore, �• is an MOIM with the inconclusive
degree α. �

Here we say that p corresponds to α if there exists an
OIM � with the inconclusive probability p such that � is
also an MOIM with the inconclusive degree α. We also say
that α corresponds to p if there exists an MOIM � with the
inconclusive degree α such that � is also an OIM with the
inconclusive probability p. From statement (2) of Proposition
3, p corresponds to all α satisfying α−(p) � α � α+(p). This
implies that p corresponds to plural α when α−(p) �= α+(p).
In contrast, α corresponds to all p such that p−(α) � p �
p+(α), where p−(α) and p+(α) are respectively the left and
right derivatives of F (α) at α, which means that α may
correspond to plural p.

Typical behavior of P ◦
C(p) and F (α) is shown in Fig. 1(a),

which is only illustrative and does not relate to any specific
discrimination problem. In this example, P ◦

C(p) is linear in the
ranges of 0 � p � p1 and p2 � p � 1 and is strictly concave

α, p

PC(p)

0

1

p1

F(α)

p2

α1 α2 α3

α1 α2 α3

p1 p2

10

10

10
p

α

(a)

(b)

F(
α )

, P
C
(p

)

FIG. 1. Typical behavior of P ◦
C(p) and F (α).

in the range of p1 < p < p2. P ◦
C(p) is differentiable in the

ranges of 0 < p < 1 except at p = p2. F (α), which is the
Legendre transformation of −P ◦

C(p), is linear in the ranges of
α � α1 and α � α2 and is strictly convex in the range of α1 <

α < α2. F (α) is differentiable except at α = α1 and α = α3.
Figure 1(b) depicts the correspondence between α and p in
this example. This figure shows that, for example, any α with
0 � α < α1 corresponds to p = 0, and α = α1 corresponds
to any p with 0 � p � p1. p = 0 also corresponds to any α

with 0 � α � α1. p at which P ◦
C(p) is not differentiable (i.e.,

p = 0, p2, and 1) corresponds to plural α. α at which F (α) is
not differentiable (i.e., α = α1,α3) corresponds to plural p. α

with α1 < α < α2 and p with p1 < p < p2 have one-to-one
correspondence.

C. Relationship with an OEM

In a similar way as in the previous subsection, we can also
derive the relationship between an MOIM and an OEM. Let
us define P ◦

C
(e)(γ ) as

P ◦
C

(e)(γ ) =
{

max
�∈M(e)

γ

PC(�), γ ∈ R[0,1],

−∞, otherwise.
(23)

P ◦
C

(e)(γ ) is the correct probability of an OEM with the error
margin γ in the case of γ ∈ R[0,γ̃ ]. In the case of γ ∈ R[γ̃ ,1],
P ◦

C
(e)(γ ) = 1 − γ holds since the inconclusive probability is

zero. We also define F (e)(β) as

F (e)(β) = (1 − β)F

(
− β

1 − β

)
+ β, (24)

where F (α) is the function defined by Eq. (16). We can derive
the following theorem.
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Theorem 4. P ◦
C

(e)(γ ) is concave and F (e)(β) is convex.
F (e)(β) is the Legendre transformation of −P ◦

C
(e)(γ ) and vice

versa.
Proof. We can prove this theorem in a similar way to the

proof of Theorem 2. First, we show that P ◦
C

(e)(γ ) is concave.
According to the definition of P ◦

C
(e)(γ ), it suffices to show that

P ◦
C

(e)(γ ) is concave in the range of γ ∈ R[0,1]. Let � ∈ M(e)
γ

and �′ ∈ M(e)
γ ′ be OEMs for γ,γ ′ ∈ R[0,1].

Also, let Q = {(�̂m + �̂′
m)/2 : m ∈ IM+1}. We can easily

see that Q is a POVM satisfying

PC(Q) = [
P ◦

C
(e)(γ ) + P ◦

C
(e)(γ ′)

]
/2,

PE(Q) = (γ + γ ′)/2. (25)

From the definition of P ◦
C

(e)(γ ), P ◦
C

(e)[PE(Q)] � PC(Q)
must hold. Thus we have that for any γ,γ ′ ∈ R[0,1],

P ◦
C

(e)[(γ + γ ′)/2] �
[
P ◦

C
(e)(γ ) + P ◦

C
(e)(γ ′)

]/
2, (26)

which means that P ◦
C

(e)(γ ) is concave in the range of γ ∈ R[0,1].
Next, we show that F (e)(β) is the Legendre transformation

of −P ◦
C

(e)(γ ). From Eqs. (16), (23), and (24), we obtain

F (e)(β) = max
�∈M

(1 − β)

[
PC(�) − β

1 − β
PI(�)

]
+ β

= max
�∈M

(1 − β)PC(�) − βPI(�) + β

= max
�∈M

PC(�) + βPE(�)

= max
γ∈R[0,1]

max
�∈M(e)

γ

PC(�) + βγ

= max
γ∈R[0,1]

P ◦
C

(e)(γ ) + βγ. (27)

Thus F (e)(β) is the Legendre transformation of −P ◦
C

(e)(γ ).
Since −P ◦

C
(e)(γ ) is convex, F (e)(β) is also convex, and thus

−P ◦
C

(e)(γ ) is the Legendre transformation of F (e)(β) [29]. �

IV. MOIM FOR QUBIT STATES

Deconinck et al. show a method for finding a minimum
error measurement for qubit states using the dual problem and
the Bloch sphere representation of qubits [30]. In this section,
we extend their method to an MOIM for qubit states. An OIM
with any inconclusive probability can be obtained from an
MOIM, as described in the previous section. We also consider
an MOIM and an OIM for a three mirror symmetric state set,
as an example.

A. Geometric representation

Let us consider a qubit state set ρ = {ρ̂m : m ∈ IM}. ρ̂m can
be expressed as

ρ̂m = 1
2 (ξm1̂ + �ρm · �σ ), (28)

where ξm = Trρ̂m and �ρm ∈ R3. �σ = (σ̂x,σ̂y,σ̂z) are the Pauli
matrices. We denote the expression of Eq. (28), which is called
the Bloch sphere representation, as ρ̂m ∼ (ξm, �ρm). (ξm, �ρm) ∈
R4 holds. Similarly, an optimal solution of Eq. (14), Ẑ, and

the operator αĜ can be written as

Ẑ = 1
2 (Zt 1̂ + �Z · �σ ), Zt = TrẐ,

αĜ = 1
2 (α1̂ + α �G · �σ ), �G =

M−1∑
m=0

�ρm, (29)

that is, Ẑ ∼ (Zt, �Z) ∈ R4 and αĜ ∼ (α,α �G) ∈ R4.
Let us define

C(B̂) = {(t,�r) : |t − Bt | � |�r − �B|},
C−(B̂) = C(B̂) ∩ {(t,�r) : t � Bt }, (30)

C+(B̂) = C(B̂) ∩ {(t,�r) : t � Bt }
for an operator B̂ � 0, where B̂ ∼ (Bt, �B). C(B̂) can be inter-
preted as the light cone of (Bt, �B). Similarly, C−(B̂) and C+(B̂)
can respectively be interpreted as the past and future light
cones. For any Â � 0, Ẑ � Â is equivalent to (At, �A) ∈ C−(Ẑ),
where Â ∼ (At, �A) [30]. Thus the optimization problem of
Eq. (14) can be rewritten as the following conic quadratic
program for Ẑ ∼ (Zt, �Z):

minimize Zt

subject to (ξm, �ρm) ∈ C−(Ẑ)(∀m ∈ IM ),

(α,α �G) ∈ C−(Ẑ). (31)

In the same way as in Ref. [30], we represent each
state ρ̂m ∼ (ξm, �ρm)(m ∈ IM ) by a three-dimensional ball
(denoted as Bm) with center �ρm and radius ξm − ξmin, where
ξmin = minm∈IM

ξm. We also represent αĜ ∼ (α,α �G) by a
ball (denoted as BM ) with center α �G and radius α − ξmin (if
α < ξmin, then BM is the empty set). A ball Bm with m ∈ IM

(or BM ) is the intersection of the past light cone C−(ρ̂m) [or
C−(αĜ)] and the hyperplane with time coordinate equal to ξmin.

The problem of Eq. (31) can also be rewritten as the
following proposition.

Proposition 5. We consider an MOIM with the inconclusive
degree α for a qubit state set ρ = {ρ̂m : m ∈ IM}. Let Bm (m ∈
IM ) and BM be balls in R3 corresponding to ρ̂m and αĜ,
respectively. Also, let BZ be the ball of minimum radius R and
center �Z that includes all of the M + 1 balls Bm (m ∈ IM+1),
i.e., Bm ∩ BZ = Bm for any m ∈ IM+1. Then, Ẑ expressed by
Ẑ ∼ (R + ξmin, �Z) is an optimal solution of Eq. (14), where
ξmin = minm∈IM

ξm. Note that this proposition implies that if
α � ξmin, then the problem of finding an MOIM is equivalent to
that of finding a minimum error measurement, since BM is the
empty set. This agrees with the fact that F (α) = F (0) holds
in the range of α � ξmin � 1/M , as described in Sec. III B.
Proposition 5 is somewhat different from Proposition 1 of
Ref. [30], where Bm is the intersection of the future cone
C+(ρ̂m) and the hyperplane with time coordinate equal to
maxm∈IM

ξm. When we consider an MOIM, our expression
is simpler than that in Ref. [30], where the expression should
be changed when α > maxm∈IM

ξm.
From Proposition 5, we can find a Lagrange operator Ẑ of

an MOIM for a qubit state set using a geometric representation.
An MOIM � can be derived from Ẑ in the same way as in
Ref. [30]. The detection operator �̂m satisfies �̂m �= 0 only if
the past light cone C−(Ẑ) includes ρ̂m on its boundary [30].
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B0

B1

B2

(a) α < α0

B1

B2

B1

B2

(b) α0 α < α1 (c) α α1

B0 B0

B3
B3

B3 = BZBZ = BX

BZ

FIG. 2. (Color online) Example of a geometric representation for the problem of finding an MOIM for a three qubit state set ρ = {ρ̂m :
m ∈ I3} (projected on the two-dimensional plane that includes the centers of three balls B0, B1, and B2). Bm (m ∈ I3) (in black), B3 (blue), and
BZ (red, dashed) respectively correspond to ρ̂m, αĜ, and Ẑ. (a) B3 is not tangent to BZ . (b) B3 is tangent to BZ and B3 �= BZ . (c) B3 = BZ .

Note again that an OIM and an error margin measurement can
respectively be derived from Theorems 2 and 4 once we find
an MOIM.

Here we consider a three qubit state set ρ = {ρ̂m : m ∈ I3}.
We can restrict ourselves to the two-dimensional plane that
includes the centers of three balls B0, B1, and B2. Note that
this plane also includes the center of the ball B3 since �G =∑2

m=0 �ρm holds. Figure 2 shows Bm (m ∈ I3) (in black), B3

(blue), and BZ (red, dashed). The radius of B3 increases as α

increases. Let BX be the minimum circle including three balls
B0,B1, andB2.BX corresponds to the Lagrange operator X̂ of a
minimum error measurement. Also, let α0 be the inconclusive
degree α such that B3 satisfies B3 ⊂ BX and is tangent to BX.
Let α1 be the minimum α such that B3 includes three balls
B0, B1, and B2. In the case of α < α0, since BX includes B3,
BZ = BX holds [Fig. 2(a)]. In the case of α0 � α < α1, BZ is
tangent to B3 and increases as α increases [Fig. 2(b)]. In the
case of α � α1, since B3 is the minimum ball that includes
four balls Bm (m ∈ I4), BZ = B3 holds [Fig. 2(c)].

In the case of M � 4, we can also consider a similar
geometric representation as that of Ref. [30]. Deconinck
et al. show an efficient algorithm for finding a minimum
error measurement for a qubit state set with any M [30].
This algorithm can be applied to find an MOIM since, from
Proposition 1, this problem can be reduced to the problem of
finding a minimum error measurement.

B. Example of three mirror symmetric state set

We consider the problem of finding an MOIM for a three
state set ρ = {ρ̂m : m ∈ I3} that has certain symmetries. Let
{|0〉 , |1〉} be an orthonormal basis and assume that ρm can be
expressed as

ρ0 = (1 − 2ξ )[η01̂ + (1 − η0) |0〉],
ρ1 = ξ [η11̂ + (1 − η1)(cos θ |0〉 + sin θ |1〉], (32)

ρ2 = ξ [η11̂ + (1 − η1)(cos θ |0〉 − sin θ |1〉],
where ξ ∈ R[0,1/2], ηk ∈ R[0,1](k ∈ {0,1}), and θ ∈ R. Assume
sin θ �= 0. We call such a state set a three mirror symmetric
state set, which is a slight generalization of that described in

Ref. [31]. Indeed, in the case in which ρ̂m is a pure state for
any m ∈ I3, i.e., η0 = η1 = 0, our definition is the same as
that in Ref. [31]. Let �ρm = (xm,ym,zm). We can easily find
that x0 = y0 = y1 = y2 = 0, z0 � 0, x2 = −x1 �= 0, z2 = z1,
and ξ2 = ξ1. Thus a set of three balls {B0,B1,B2} is symmetric
about the plane x = 0, and their centers are on the plane y =
0. Moreover, �G can be represented as �G = (0,0,Gz), where
Gz = z0 + 2z1.

Assume that we know the Lagrange operator of a minimum
error measurement, X̂ ∼ (Xt, �X) [i.e., an optimal solution of
Eq. (9)], which can be obtained using the method described in
Ref. [30]. Using (Xt, �X), we will find the Lagrange operator of
an MOIM, Ẑ ∼ (Zt, �Z), with any inconclusive degree α. From
the symmetries of ρ, �X and �Z can respectively be represented
as �X = (0,0,Xz) and �Z = (0,0,Zz).

For simplicity, we only consider the case in which a
minimum error measurement � satisfies �̂m �= 0 (∀m ∈ I3);
otherwise, we can also find Ẑ in the same way as described
below. We can use Eq. (31) to compute Ẑ as well as Proposition
5. Figure 3 shows the Bloch sphere representation of ρ in
the cross section of the two-dimensional plane x = y = 0.
Note that ρ̂0 is on the plane x = y = 0, while ρ̂1 or ρ̂2 is not.

t

z

Xt

t1

zXz

t0

GzXt0

z = Gzt

FIG. 3. (Color online) Bloch sphere representation of a three
mirror symmetric state set in the cross section of the two-dimensional
plane x = y = 0 (in the case of Xz � GzXt ).

022331-6



FINDING OPTIMAL MEASUREMENTS WITH . . . PHYSICAL REVIEW A 91, 022331 (2015)

Since �̂m �= 0 (∀m ∈ I3), the past light cone C−(X̂), which is
indicated by hatched shading in Fig. 3, includes ρ̂0, ρ̂1, and ρ̂2

on its boundary. Moreover, since αĜ ∼ (α,(0,0,Gzα)), αĜ is
on the line x = y = 0, z = Gzt (in blue). Let us denote the
t coordinates of the two cross-points on x = y = 0 between
the line z = Gzt and the boundary of the cone C(X̂) as t0 and
t1 (t0 � t1), which are the solutions of the following equation:

|t − Xt | = |Gzt − Xz|. (33)

In the case of α � t0, since C−(X̂) includes αĜ, X̂ � αĜ

holds. Thus Ẑ = X̂ holds in this case. In the case of α > t0,
the way of computing Ẑ depends on whether Xz � GzXt or
not.

1. Case of Xz � Gz Xt

First, we consider the case of α > t0 and Xz � GzXt . We
can see that Ẑ ∼ (Zt, �Z) is the point of minimum Zt such that
C−(Ẑ) includes ρ̂0 and αĜ since such C−(Ẑ) also includes ρ̂1

and ρ̂2. If α > t1, then since C−(αĜ) includes ρ̂0, Ẑ = αĜ

holds. If t0 < α � t1, then since ρ̂0 and αĜ are tangent to
C−(Ẑ), Ẑ is on the cross section of the boundaries of the future
light cones C+(ρ̂0) and C+(αĜ). It follows that Ẑ is also on the
boundaries of C+(X̂). The trajectory of Ẑ is shown in Fig. 3
in red dashed line. After some algebra, Ẑ can be written as
follows:

(Zt,Zz) =
⎧⎨
⎩

(Xt,Xz), α � t0,

(Zt (α),Zz(α)), t0 < α � t1,

(α,αGz), otherwise,

Zt (α) = Xt + α − t0

t1 − t0
(t1 − Xt ), (34)

Zz(α) = Xz + α − t0

t1 − t0
(t1Gz − Xz).

From Theorem 2, the correct probability of an OIM, P ◦
C(p),

can be obtained by performing the Legendre transformation of
F (α) = Zt , which is given by Eq. (34), with respect to α

followed by multiplying −1. P ◦
C(p) can be expressed by

P ◦
C(p) =

{−t0p + Xt, 0 � p � p0,

−t1p + t1, p0 < p � 1,

p0 = t1 − Xt

t1 − t0
. (35)

The correct probability of an OEM, P ◦
C

(e)(γ ), can also be
obtained by performing the Legendre transformation of F (e)(β)
of Eq. (24) with F (α) = Zt followed by multiplying −1.

2. Case of Xz < Gz Xt

Next, we consider the case of α > t0 and Xz < GzXt . Since
C−(αĜ) includes ρ̂0, if C−(Ẑ) includes αĜ, then C−(Ẑ) also
includes ρ̂0. Thus Ẑ ∼ (Zt, �Z) is the point of minimum Zt

such that C−(Ẑ) includes ρ̂1, ρ̂2, and αĜ. Moreover, Ẑ = αĜ

holds if α � α1, where α1 is the minimum inconclusive degree
α such that C−(αĜ) includes ρ̂1 and ρ̂2.

We now consider the case of t0 < α < α1. Figure 4 shows
Bm (m ∈ I4) and BZ in the cross section of the plane (y,t) =

B0

z

x

B1B2

B3

BZ

Zz Zt − ξmin

α − ξminαGz

FIG. 4. (Color online) Bloch sphere representation of a three
mirror symmetric state set in the cross section of the plane (y,t) =
(0,ξmin) (in the case of Xz < GzXt ).

(0,ξmin). The ball BZ is tangent to B1, B2, and B3. Let us
denote the maximum z coordinate of the points in the ball B3

as qz. Since the ball B3 has radius α − ξmin and center (x,z) =
(0,αGz), qz = α(1 + Gz) − ξmin holds. Since qz is also the
maximum z coordinate of the points in the ball BZ , the radius
of the ball BZ , Zt − ξmin, is equal to qz − Zz. Thus Zt can be
expressed using Zz as

Zt = qz − Zz + ξmin = α(1 + Gz) − Zz. (36)

Here we will compute Zz. Since BZ is tangent to B1, the
distance between the center of BZ , i.e., (x,z) = (0,Zz), and the
center ofB1, i.e., (x,z) = (x1,z1), is equivalent to the difference
between the radiuses of BZ and B1, i.e., Zt − ξ1, which yields√

x2
1 + (z1 − Zz)2 = Zt − ξ1. (37)

Substituting Eq. (36) into Eq. (37) and solving Zz yields

Zz = x2
1 + z2

1 − [α(1 + Gz) − ξ1]2

2[z1 − α(1 + Gz) + ξ1]
. (38)

Using Eqs. (36) and (38), we can compute Ẑ ∼ (Zt, �Z) for
t0 < α < α1.

In the same way as in the case of Xz � GzXt , the analytical
expression of P ◦

C(p) can be obtained by performing the
Legendre transformation of Zt with respect to α followed by
multiplying −1, although it is somewhat complicated (here we
do not show it explicitly). The correct probability of an OEM,
P ◦

C
(e)(γ ), can also be obtained in the same way.
Figure 5(a) depicts an example of P ◦

C(p) and F (α) in
the case of ξ = 1/3, η0 = η1 = 0, and θ = 0.26π . In this
case, t0 ∼ 0.52 and α1 ∼ 0.74 hold. F (α) = Xt ∼ 0.67 in the
range of 0 � α � t0 and F (α) = α in the range of α � α1.
P ◦

C(p) is linear in the ranges of 0 � p � p1 and p2 � p � 1,
where p1 = p+(t0) ∼ 0.06 and p2 = p−(α1) ∼ 0.48 [p−(α)
and p+(α) are respectively the left and right derivatives of
F (α)]. P ◦

C(p) is strictly concave in the range of p1 < p < p2.
Figure 5(b) shows the correspondence between α and p,
which indicates that α = t0 corresponds to any p with 0 �
p � p1, and α = α1 corresponds to any p with p2 � p � 1.
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FIG. 5. P ◦
C(p) and F (α) for a three mirror symmetric state set with

ξ = 1/3, η0 = η1 = 0, and θ = 0.26π , which satisfies Xz < GzXt .

α with t0 < α < α1 and p with p1 < p < p2 have one-to-one
correspondence.

V. CONCLUSION

We proposed an approach for finding an optimal inconclu-
sive measurement (OIM). In our approach, we first obtain a
modified optimal inconclusive measurement (MOIM), which
maximizes the weighted sum of the correct and inconclusive
probabilities, and then find a corresponding OIM. We showed
that the problem of finding an MOIM can be reduced to the
problem of finding a minimum error measurement for a certain
state set. We also showed that the correct probabilities of an
OIM and an optimal error margin measurement can be derived
by performing the Legendre transformation of the maximum
weighted sum of the correct and inconclusive probabilities. It
follows from these results that an OIM with any inconclusive
probability can be obtained if an MOIM with any inconclusive
degree is computed. We finally showed how to solve the
problem of finding an OIM for qubit states.
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