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In this paper, we analyze the (im)possibility of the exact distinguishability of orthogonal multipartite entangled
states under restricted local operation and classical communication. Based on this local distinguishability
analysis, we propose a quantum secret sharing scheme (which we call LOCC-QSS). Our LOCC-QSS scheme
is quite general and cost efficient compared to other schemes. In our scheme, no joint quantum operation is
needed to reconstruct the secret. We also present an interesting (2,n)-threshold LOCC-QSS scheme, where any
two cooperating players, one from each of two disjoint groups of players, can always reconstruct the secret.
This LOCC-QSS scheme is quite uncommon, as most (k,n)-threshold quantum secret sharing schemes have the
restriction k � � n

2 �.
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I. INTRODUCTION

Classical secret sharing (CSS) is a cryptographic protocol in
which a dealer splits the secret and distributes shares to various
shareholders. The secret can be reconstructed only when a
sufficient number of shareholders cooperate with each other
by sharing their individual parts of the secret. The CSS scheme
was invented independently by Shamir [1] and Blakley [2] in
1979. The main drawback with all existing CSS schemes is
that they are not perfectly secure from eavesdropper attack. To
defeat the eavesdropper attack perfectly, Hillery et al. [3] and
Cleve et al. [4] simultaneously presented the quantum secret
sharing (QSS) scheme in 1999, whereas Żukowski et al. had
previously mentioned this type of scheme in a different context
[5]. In a (k,n)-threshold QSS scheme, the dealer encodes her
secret (classical or quantum) within a multipartite quantum
state then distributes the shares of the quantum state to n

pairwise distant parties. Any group of k or more parties can
collaboratively reconstruct the secret from their shares, while
no group of fewer than k parties can.

Several works have considered the area of QSS [6–9].
Although these QSS schemes are secure, either they are very
restricted or they require more than one particle measurement,
i.e., joint quantum measurement, to reveal the secret. To
perform a joint quantum operation, one must bring the
relevant subsystems into one place, which is, practically, quite
expensive due to high quantum noise for a large number of
players. Recently, Fortescue et al. [10] and Gheorghiu et al.
[11] proposed two different QSS schemes where they partially
reduced the required quantum communication at the cost of
some classical communication. Still, both of them required
a number of large (joint) quantum operations to reveal the
secret, especially in the multipartite scenario. To deal with
this joint measurement problem completely, here we demon-
strate a simple but very efficient construction of a perfect
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(k,n)-threshold quantum scheme for secret sharing based on
only local quantum operations and classical communication
(here called an LOCC-QSS scheme). In this paper we mainly
concentrate on the implementation of classical secret sharing
by quantum means. There are some works on QSS that deal
with classical secrets, but they are quite restricted and have
loopholes [12–14]. We encode our secret into several pairs
of locally distinguishable orthogonal multipartite entangled
states and distribute different particles to different parties
depending on the context. Only a sufficient number of
cooperating parties can distinguish these pairs of orthogonal
entangled states by local operation and thereby reconstruct
the secret as well. Another restriction for most (k,n)-threshold
LOCC-QSS schemes is that they work only if k � � n

2 � [4,8].
In this context, we provide a restricted (2,n)-threshold LOCC-
QSS scheme, where any two cooperating parties from two
disjoint groups, taken over all parties, can always reconstruct
the secret. This type of feature is quite uncommon and not
present in the existing QSS schemes.

Our LOCC-QSS scheme protocol is largely based on local
distinguishability of a pair of orthogonal entangled states so,
before describing our LOCC-QSS scheme, we first discuss
several local distinguishability problems that are relevant for
our LOCC-QSS scheme. Then we present our LOCC-QSS
scheme for various thresholds and also discuss how our scheme
is perfectly secure from eavesdropper attack. We end with a
conclusion.

II. LOCAL DISTINGUISHABILITY OF
SYMMETRIC STATES

The question of local discrimination of a set of multipartite
orthogonal states is as follows: a number of parties share a
quantum system prepared in one of a known set of mutually
orthogonal quantum states. The goal of all of the parties is
to determine the state in which the quantum system was
prepared using local operations and classical communica-
tion (LOCC) [15–17]. We now discuss several distinguisha-
bility problems related to an orthogonal pair of n-qubit
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symmetric states, i.e., Greenberger-Horne-Zeilinger (GHZ)
[18] and Dicke [19] states, under restricted local operation and
classical communication (rLOCC). Here, rLOCC means only
a subset of the parties is allowed to communicate with each
other.

A. Local distinguishability of GHZ states

The canonical representation of an n(�2)-qubit GHZ state
can be written as (up to a global phase and proper basis

transformation)

| GHZ(i1,i2,i3, . . . ,in)〉123...n

= 1√
2

[| 0i2i3 . . . in〉 + (−1)i1 | 1i2i3 . . . i3〉],

where i1,i2,i3, . . . ,in ∈ {0,1}, and the bar over a bit value indi-
cates its logical negation. For n = 2, these states are generally
known as Bell states or two-qubit maximally entangled states.

Let us define a pair of orthogonal distance-r(0 � r � � n
2 �),

n-qubit GHZ states as follows:

|GHZ〉 = 1√
2

[|
r︷ ︸︸ ︷

000 . . . 00

n−r︷ ︸︸ ︷
000 . . . 00〉 + |111 . . . 11111 . . . 11〉],

(1)

| GHZ〉r = 1√
2

[|
r︷ ︸︸ ︷

111 . . . 11

n−r︷ ︸︸ ︷
000 . . . 00〉 − |000 . . . 00111 . . . 11〉],

where r is a non-negative integer. If r > n
2 , then we consider

n − r as the distance for the above pair (1).
Theorem 1. No orthogonal pair of distance-0 n-qubit GHZ

states can be distinguished by any less than n cooperating
parties.

Lemma 1. Classical communication is necessary to distin-
guish any pair of Bell states locally.

Proof. Without any loss of generality, let Alice and Bob
share the following pair of Bell states:

|�±〉 = 1√
2

[|0〉A|0〉B ± |1〉A|1〉B]. (2)

Their goal is to distinguish the above pair of Bell states by
only local operations (LO) on their respective qubits and they
are not allowed to communicate, classically, with each other.

Let Alice and Bob be spatially separated, and share the
known Bell state |�+〉. Bob applies I or σz on his qubit to
communicate the message 0 or 1, respectively, and the desired
state may change to another orthogonal Bell state as

(IA ⊗ IB)|�+〉 = 1√
2

[|0〉A|0〉B + |1〉A|1〉B],

(3)

(IA ⊗ σz
B)|�+〉 = 1√

2
[|0〉A|0〉B − |1〉A|1〉B] = |�−〉.

If Alice (alone) is able to distinguish the above pair without
any communication from Bob, then she can recover Bob’s
message as well, which is impossible as that would imply
signaling.1 �

Proof (of Theorem 1). Without any loss of generality, let
us assume that the orthogonal GHZ pair of distance 0 can
be distinguished by the first m(<n) cooperative parties. A
necessary condition for distinguishability of a pair of n-qubit
states under m-cooperative LOCC (where m parties agree
to do local operations on their respective qubit and share
the measurement outcomes with each other) would be the
following: The pair of states should remain distinguishable

1No message can travel faster than the speed of light in a vacuum.

when m out of n qubits are operated on jointly at one place,
whereas the remaining (n − m) qubits are kept at a different
place and no classical communication is allowed between
these two places. Keeping the condition in mind, the first m

qubits are kept in laboratory A and the remaining (n − m)
qubits are kept together in a different laboratory B. Under this
arrangement, any given pair of kind (9), for a proper choice of
basis, can be written in the following bipartite form:

|GHZ〉 = 1√
2

[|0〉A|0〉B + |1〉A|1〉B],

(4)

|GHZ〉0 = 1√
2

[|0〉A|0〉B − |1〉A|1〉B],

which is equivalent to pair (2). Therefore, using Lemma 1, we
conclude that without any classical communication between
laboratory A and laboratory B, local distinguishability of the
above pair is impossible. Hence, no less than n cooperating
parties can distinguish a pair of orthogonal distance-0 GHZ
states. �

Theorem 2. An orthogonal pair of distance-r(�1) GHZ
states (1) can always be exactly distinguished by any two
cooperating LOCC parties, one from the first r and the other
from the last n − r parties.

Proof. The proof is very simple. Both cooperating parties
(one from the first r and the other from the last n − r parties)
measure their own qubit in the computational basis (this is
σz) locally, and if both of them get the same result, then their
shared state was |GHZ〉, otherwise the state was |GHZ〉r. �

B. Local distinguishability of Dicke states

The n-qubit symmetric Dicke state of weight m(1 � m <

n) is defined by

|m,n〉 = 1√(
n

m

)
⎡
⎣ (n

m)∑
j=1

Pj (|1112 . . . 1m0m+1 . . . 0n〉)
⎤
⎦ , (5)

where {Pj (|1112 . . . 1m0m+1 . . . 0n〉)} is the set of all possible
distinct permutations of m 1’s and n − m 0’s [20]. For m = 1,
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the state given in (5) is generally called an n-qubit W state.
Let us define the n-qubit generalized Dicke state of weight
m(1 � m < n) by

|m,n〉G =
(n

m)∑
j=1

cjPj (|1112 . . . 1m0m+1 . . . 0n〉), (6)

where
∑ |cj |2 = 1. We define the weight difference between

two n-qubit Dicke states as the distance2 between them. For our
purpose, the distance r is less or equal to n − 2. An orthogonal
pair of distance-r(0 � r � n − 2) generalized Dicke states of
n qubit can be written (under appropriate basis transformation)
as

|m,n〉G =
(n

m)∑
j=1

cjPj (|1112 . . . 1m0m+1 . . . 0n〉),

|m + r,n〉G =
( n

m+r)∑
j=1

c′
jPj (|1112 . . . 1m+r0m+r+1 . . . 0n〉) (7)

with 0 � r � n − 2,

where 0 < (m + r) < n and
∑(n

m)
j=1 |cj |2 = ∑( n

m+r)
j=1 |c′

j |2 = 1.

For r = 0,
∑(n

m)
j=1 c∗

j c
′
j = 0.

Theorem 3. No less than n − r + 1 cooperating parties
can perfectly distinguish any pair of orthogonal n-qubit
generalized Dicke states (7) of distance r (0 < r � n − 2).

Proof. Without loss of generality, let us assume that the first
k(<n − r + 1) cooperating parties can perfectly distinguish
the pair of orthogonal n-qubit generalized Dicke states (7) of
distance r (0 < r � n − 2). Distinguishing these states by the
first k cooperating parties implies distinguishing them with
respect to the bipartition (1,2, . . . ,k) vs (k + 1,k + 2, . . . ,n)
by local operation (LO) only (without any classical communi-
cation between these two partitions). Keeping this in mind, we
put the first k qubits in laboratory A and the remaining (n − k)
qubits in laboratory B. Under this arrangement, any given pair
of type (7), for a proper choice of basis, reduces to the form

|m,n〉G =
∑
i,j

aij |ei〉A|ej 〉B,

(8)
|m + r,n〉G =

∑
i,j

a′
ij |ei〉A|ej 〉B,

where
∑

i,j |aij |2 = 1 = ∑
i,j |a′

ij |2 and {|ei〉A(B)} is an or-
thonormal basis associated with the joint subsystem A(B).
For any r > 0, aij a

′
ij = 0∀i,j . Let us define two subspaces

of the Hilbert space HA (associated with the first joint
subsystem A), Sm = {|ei〉A; if ∃js.t.aij �= 0} and Sm+r =
{|ei〉A; if ∃js.t.a′

ij �= 0}. The proof of Theorem 3 follows
immediately from Lemma 2, stated below.

Lemma 2. The pair of orthogonal bipartite states (8) can
be perfectly distinguished under LO only if Sm ⊥ Sm+r i.e.,
aij a

′
il = 0∀i,j,l.

2Like the GHZ case, here also the distance is nothing else but
the Hamming distance between the strings of bits of the two
corresponding Dicke states.

We now show that Sm �⊥ Sm+r for the pair (8) if k <

n − r + 1. Let us first assume that k � m. Then the product
term |ei∗ 〉A = |1112 . . . 1k〉A ∈ Sm

⋂
Sm+r for some i∗ ∈ {i}.

Similarly, for m < k(<n − r + 1), the product term |ej∗ 〉A =
|1112 . . . 1m0m+10m+2 . . . 0k〉A ∈ Sm for some j ∗ ∈ {i}. Since
k < n − r + 1, i.e., k − m � n − m − r , therefore |ej∗ 〉A ∈
Sm+r as well. Hence, Sm �⊥ Sm+r if k < n − r + 1. This
completes the proof. �

Corollary 1. Any (n − r + 1) cooperating parties can
always perfectly distinguish any pair of orthogonal n-qubit
generalized Dicke states (7) of distance r(>0).

Proof. If the combined subsystem A, mentioned in the proof
of Theorem 3, contains (n − r + 1) qubits, then all the aij ’s
and a′

ij ’s given in (8) satisfy aij a
′
il = 0,∀i,j,l. The proof then

follows immediately from Lemma 2. �
Corollary 2. Any pair of orthogonal n-qubit generalized

Dicke states (7) of distance 0 can be perfectly distinguished iff
all of the n parties cooperate with each other.

Proof. Proof of the sufficiency part follows from the result
that two orthogonal states of any quantum system, shared
in any proportion between any number of separated parties,
can be perfectly distinguished, as proven in Ref. [15]. The
necessary part follows from Lemma 2, as in this case all of the
aij ’s and a′

ij ’s given in (8) satisfy the relation aij a
′
ij �= 0,∀i,j ,

for all k < n. �

III. QUANTUM SCHEME FOR SECRET SHARING
(LOCC-QSS)

Suppose Alice wants to share a key between n sepa-
rated parties. The sender is Alice and the receivers are
Bob1,Bob2, . . . ,Bobn, and only k or more of the receivers may
cooperate to recover the key, i.e., we have a (k,n)-threshold
secret sharing scheme. To implement this scheme, Alice does
the following steps:

Step 1 (S1). Alice first prepares a large number (say L > n)
of states chosen randomly from a specified pair of orthogonal
n-qubit entangled states according to her requirement. Let
us denote the prepared states by |S(a,bt )〉 to keep details of
each prepared state in each run.3 Here, a represents the state,
randomly chosen from a pair of orthogonal states, that Alice
prepares at time t(=1,2, . . . ,L), where bt = (1t ,2t , . . . ,nt )
represents the positions of all n qubits of a prepared state
|S(a,bt )〉 at time t .

Step 2 (S2). In order to prevent the eavesdropper Eve
or less than k dishonest Bobi from learning the secret,
Alice now prepares, at random, a different sequence, ri =
�i(1,2,3, . . . ,L), for each Bobi , and sends the it th qubit
(i = 1,2, . . . ,n; t = 1,2, . . . ,L) to Bobi according to the
ri sequence order, where �i is an arbitrary permutation of
the sequence (1,2,3, . . . ,L). Note that Alice only sends the
qubits and not the information about �i . Hence, except Alice,
no one has the information about �i . It is also interesting
to note that the lth qubit of ri and the lth qubit from rj

in general may not be associated with the same entangled
state, |S(a,bt )〉, as ri �= rj , for i �= j . After receiving their
associated sequence of qubits (i.e., ri for the ith party), all of

3Run t is associated with the prepared state |S(a,bt )〉 at time t .
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the receivers now share Ln-qubit entangled states |S[a,r(bt )]〉.
Here, r(bt ) = [�1(t),�2(t), . . . ,�n(t)]. Only Alice has any
information about |S[a,r(bt )]〉.

Step 3 (S3). Alice now randomly selects some run,
say {tj }uj=1(⊂ {1,2, . . . ,L}), and also computes n arbitrarily
chosen permutations, pi of {1,2, . . . ,u}, only known to herself.
She then prepares list Ci = {[σi(tpi (j )),�i(tpi (j ))]}uj=1 for Bobi

(for i = 1,2, . . . ,n) and sends it to him. It is important to
mention that Alice starts to send lists Ci only if all of the
receivers confirm the receipt of all their L qubits.

After receiving the list Ci , Bobi measures his �i(tpi (j ))th
qubit in the σi(tpi (j )) basis and sends the measurement outcome
vi(tpi (j )) to Alice. The details of measurement settings σi(tj )
are discussed later, case by case.

Step 4 (S4). By analyzing the measurement results and
associated measurement settings, Alice can easily detect the
eavesdropper and, if there is one, she aborts the protocol and
starts again with a new set of resources.

Step 5 (S5). If no eavesdropper is detected, Alice announces,
to the respective parties, all qubit positions of an unmeasured
state |S[a,r(bt )]〉. Alice selects this |S[a,r(bt )]〉 according to
her secret a(= 0/1). The mapping between classical bit value
and orthogonal entangled pair is fixed and is communicated,
securely, from Alice to all Bobs in advance. If Alice’s secret
is more than one bit, then she reveals the qubit positions of a
sequence of unmeasured states |S[a,r(bt )]〉.

We now discuss, in detail, the choice of measurements (i.e.,
S3 and S4) and the choice of states (S1) for different threshold
scenarios.

A. The (n,n)-threshold LOCC-QSS scheme

S1. Alice prepares the states, each chosen at random from
a pair of distance-0 orthogonal n-qubit GHZ states,

|GHZ〉 = 1√
2

[|000 . . . 00〉 + |111 . . . 11〉],
(9)

|GHZ〉0 = 1√
2

[|000 . . . 00〉 − |111 . . . 11〉].

S3. In order to fix the choice of measurement for a selected
run from {ts}us=1, Alice randomly chooses an n-tuple binary
vector Ots from

{O} ≡ {O(0) = (01020304 . . . 0n)}
⋃

{O(ij ) = O(ji)

= (0102 . . . 0i−11i0i+1 . . . 0j−11j 0j+1 . . . 0n); ∀i �= j},

and, for the tpi (s)th run from the list Ci =
{[σi(tpi (s)),�i(tpi (s))]}us=1, either selects observable σi(tpi (s)) =
σx = (0 1

1 0) or observable σi(tpi (s)) = σy = (0 −i

i 0 ),
depending on whether the ith bit value of the binary
vector Ots is 0 or 1, respectively. Here, Ots refers both to the
binary vector and to its associated local operator. Alice now
sends list Ci to Bobi , and Bobi measures his �i(tpi (s))th qubit
in the σi(tpi (s)) basis and sends the measurement outcome,
vi(tpi (s)), to Alice for all such [σi(tpi (s)),�i(tpi (s))] ∈ Ci .

The elements of {O} are the stabilizers4 (or antistabilizers)
of the pair of states given in (9) and they satisfy the following
eigenvalue relation:

Ots

∣∣S[
a,r

(
btp(s)

)]〉 = λ(a,ts)
∣∣S[

a,r
(
btp(s)

)]〉
, ∀Ots ∈ {O},

(10)

where λ(a,ts) is an eigenvalue with λ(a,ts) ∈ {±1} and
r(btp(s) ) = [�1(tp1(s)),�2(tp2(s)), . . . ,�n(tpn(s))]. Therefore, the
product of all individual local outcomes vi(tpi (s)) for the
observable Ots must be equal to the corresponding eigenvalue
for the state |S[a,r(btp(s) )]〉 i.e., λ(a,ts) = �n

i=1vi(tpi (s)).
S4. For each selected run ts , Alice checks whether or not the

products of local results satisfy the corresponding eigenvalue
equation:

Ots |GHZ〉 =
{+1|GHZ〉 if Ots = O(0)
−1|GHZ〉 otherwise, and Ots |GHZ〉0

=
{−1|GHZ〉0 if Ots = O(0)
+1|GHZ〉0 otherwise.

This protocol is secure in two ways. First, the eavesdropper
does not have any information about the sequence of qubits, so
she cannot create a measurement outcome to satisfy all of the
above relations. Second, the above relations hold specifically
for unique states (up to local unitary equivalence), so the
action of an eavesdropper at any stage will be detected, as
this uniqueness will be compromised.

Theorem 1 tells us that the pair (9) can only be distinguished
if all parties cooperate, otherwise the secret key cannot be
recovered.

Example 1. In a (3,3)-threshold LOCC-QSS scheme, the
desired pair of the states which Alice prepares in step S1 is

|GHZ〉 = 1√
2

[|000〉 + |111〉],
(11)

|GHZ〉0 = 1√
2

[|000〉 − |111〉],

and the set of 3-tuple binary vectors for step S3 is

{O} ≡ {O(0),O(12),O(13),O(23)}
≡ {(010203),(111203),(110213),(011213)}
≡ {σxσxσx,σyσyσx,σyσxσy,σxσyσy}. (12)

(i) Alice prepares L number of states chosen randomly from
the pair (11).

(ii) Alice now prepares, at random, three different ri =
�i(1,2,3, . . . ,L), i = 1,2,3, for each Bobi , and sends the it th
qubit (i = 1,2,3; t = 1,2, . . . ,L) to Bobi according to the ri

sequence order, where �i is an arbitrary permutation of the
sequence (1,2,3, . . . ,L).

(iii) Alice randomly selects some run, say {ts}us=1(⊂
{1,2, . . . ,L}), and also computes three arbitrarily chosen
permutations, pi of {1,2, . . . ,u}, only known to herself. She
then prepares list Ci = {[σi(tpi (s)),�i(tpi (s))]}us=1 for Bobi (for
i = 1,2,3) and sends it to him. Here, (tp1(s)tp2(s)tp3(s)) ∈ {O},

4O is called a stabilizer (antistabilizer) of the state |�〉 if O|�〉 =
+(−)|�〉.
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given in (12), for s = 1,2, . . . ,u. Therefore, if tpi (s) = 0 for
some i = 1,2,3, and s = 1,2, . . . ,u, then the corresponding
observable σi(tpi (s)) = σx , and if tpi (s) = 1, then σi(tpi (s)) = σy .

After receiving the list Ci , Bobi measures his �i(tpi (s))th
qubit in the σi(tpi (s)) basis and sends the measurement outcome
v(tpi (s)) to Alice.

(iv) Alice checks whether or not the product of lo-
cal results λ(a,ts) = v(tp1(s))v(tp2(s))v(tp3(s)) satisfies the
corresponding eigenvalue equation (10) for each se-
lected run ts with Ots = [σ1(tp1(s))σ2(tp2(s))σ3(tp3(s))] and
r(btp(s) ) = [�1(tp1(s)),�2(tp2(s)),�3(tp3(s))] ∀s = 1,2, . . . ,u. If
|S[a,r(btp(s) )]〉 = |GHZ〉, then

λ(a,ts) =
{+1 if Ots = O(0)
−1 otherwise,

and if |S[a,r(btp(s) )]〉 = |GHZ〉0, then

λ(a,ts) =
{−1 if Ots = O(0)
+1 otherwise.

By analyzing the measurement results and associated measure-
ment settings, Alice can easily detect the eavesdropper and, if
there is one, she aborts the protocol and starts again with a new
set of resources.

(v) If no eavesdropper is detected, then Alice announces,
to the respective parties, all qubit positions of an unmeasured
state |S[a,r(bt )]〉. Alice selects this |S[a,r(bt )]〉 according to
her secret a(=0/1), e.g., |GHZ〉0 represents the secret a = 0
and |GHZ〉 represents a = 1.

Now, according to Theorem 1, cooperation from all three
parties is necessary to distinguish the pair (11). Hence, to
recover the secret, all three parties need to cooperate.

B. The restricted (2,n)-threshold LOCC-QSS scheme

S1. Alice prepares the states, each chosen at random from
a pair of distance-r orthogonal n-qubit GHZ states, as given
in Eq. (1).

S3. Same as step S3 described in Sec. III A.
S4. The product of local results of each measurement

satisfies the following eigenvalue relations:

Ots |GHZ〉 =
{+1|GHZ〉 if Ots = O(0)
−1|GHZ〉 otherwise,

Ots |GHZ〉r =
⎧⎨
⎩

+1|GHZ〉r if Ots = O(ij ) with i,j � r, ∀i �= j,

or i,j � r, ∀i �= j,

−1|GHZ〉r otherwise.

Here, also, the above relations uniquely define the states and hence the protocol is secure in the same two ways as described in
Sec. III A.

According to Theorem 2, any two cooperating parties, i.e., one from the first r parties and the other from the remaining n − r

parties, can distinguish the pair (1) perfectly. Hence, they are also able to recover the key.
Example 2. In a restricted (2,3)-threshold LOCC-QSS scheme, the desired pair of the states which Alice prepares in step S1

can be

|GHZ〉 = 1√
2

[|000〉 + |111〉], |GHZ〉1 = 1√
2

[|110〉 − |011〉], (13)

and the set of 3-tuple binary vectors for step S3 is given in (12). The rest of the steps are similar to those mentioned in the
previous example of a (3,3)-threshold LOCC-QSS scheme in Example 1, except for some technical points in step (iv):

(iv) Here, if |S[a,r(btp(s) )]〉 = |GHZ〉, then

λ(a,ts) =
{+1 if Ots = O(0)
−1 otherwise,

and if |S[a,r(btp(s) )]〉 = |GHZ〉1, then

λ(a,ts) =
{+1 if Ots = O(ij ) with i �= j, and i,j � 1,

−1 otherwise.

According to Theorem 2, the first party and any one from
the other two parties can distinguish the pair (13) perfectly
and, consequently, they are also able to decode the key.

C. The (k,n)-threshold LOCC-QSS scheme

S1. Alice prepares the states, each chosen at random from
a pair of distance-r(>0) orthogonal n-qubit Dicke states, as
given in Eq. (7), with cj = c and c′

i = c′ both fixed real
constants. Note that we already discussed the (n,n)-threshold

LOCC-QSS scheme in Sec. III A, so here we consider the case
when k < n.

S3. All n-qubit Dicke states |m,n〉 given in Eq. (5)
are eigenstates of σ⊗n

z with eigenvalue (−1)m, where σz =
(1 0
0 −1). For even n, the Dicke state | n

2 ,n〉 is also an eigenstate

of σ⊗n
x and σ⊗n

y with eigenvalue 1 [21]. Therefore, if n is even,
Alice chooses (for more security) the pair of states such that
the pair contains the state | n

2 ,n〉.
To detect an eavesdropper for a (k,n)-threshold LOCC-

QSS scheme with even n, Alice chooses (randomly) the
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same measurement settings [i.e., σ1(tp1(s)) = σ2(tp2(s)) =
· · · = σn(tpn(s))] from {σx,σy,σz} for all Bobi for the run ts ,
whereas for odd n, Alice prepares L, (n + 1)-qubit states
|S(a,bt )〉 instead of n-qubit states. She keeps one qubit from
each of |S(a,bt )〉 and behaves like player Bob(n+1) from steps
S2 to S4. But she does not take any part to reveal the key
(secret), i.e., in step S5.

S4. If there is no eavesdropping, then the product of all local
measurement results must satisfy the following eigenvalue
relations:

σzσz . . . σz|m,n〉 = (−1)m|m,n〉,

σxσx . . . σx

∣∣∣∣n2 ,n

〉
=

∣∣∣∣n2 ,n

〉
(when n is even), (14)

σyσy . . . σy

∣∣∣∣n2 ,n

〉
=

∣∣∣∣n2 ,n

〉
(when n is even).

Note that if one of the Dicke states in the pair (7) is of
the form | n

2 ,n〉, then we have the restriction r < n
2 and all

three conditions of (14) are useful to detect eavesdropping,
whereas in the other case,5 the security depends only on the
first condition of (14). According to Theorem 3, to distinguish
the pair (7) perfectly, cooperation between k = n − r + 1 or
more parties is necessary and, thus, the secret key is only
revealed if k � � n

2 � or more parties cooperate. If | n
2 ,n〉 is one

of the states, then the desired condition becomes k > n
2 + 1.

Example 3. The (5,6) threshold is a nontrivial case of a
(k,n)-threshold LOCC-QSS protocol where one of the states
of the desired pair is of the form | n

2 ,n〉. In this (5,6)-threshold
scheme, the pair of states which Alice prepares in step S1 is

|1,6〉 = 1√
6

[|100000〉 + |010000〉 + |001000〉

+|000100〉 + |000010〉 + |000001〉], (15)

|3,6〉 = 1√
20

[∑
P (|111000〉)

]
,

and the set of 6-tuple observables for step S3 is given by {O} =
{σxσxσxσxσxσx,σyσyσyσyσyσy,σzσzσzσzσzσz}. The rest of the

5That is, pair (7) does not contain a state of the form | n

2 ,n〉.

steps are similar, with four parties instead of three parties, as
mentioned in the previous two examples except the step (iv):

(iv) Here, if |S[a,r(btp(s) )]〉 = |1,6〉, then

λ(ts) = −1 if Ots = σzσzσzσzσzσz,

and if |S[a,r(btp(s) )]〉 = |3,6〉, then

λ(a,ts) = +1,∀Ots ∈ {O}.

Therefore, in virtue of Theorem 3, we conclude that any five
of the six parties can reconstruct the secret.

IV. CONCLUSION

In this paper, we explore various interesting cases of quan-
tum secret sharing schemes based on local distinguishability
of orthogonal multipartite entangled states. To reconstruct the
secret, a group of single-qubit quantum operations is sufficient
for our schemes. Therefore, our schemes are cost efficient
as well as quite competent compared to other existing QSS
schemes, where several multiparty quantum operations are
required to reveal the secret. Multipartite joint quantum oper-
ations are fairly expensive when the individual parties are in
different places and the quantum cost increases exponentially
as the number of parties increases. We also demonstrate an
unusual (2,n)-threshold scheme where the set of players is
partitioned into two disjoint groups and where the key can be
recovered if any two players cooperate, on condition that the
two players do not belong to the same group. This setup is
quite nonstandard for a quantum secret sharing scheme and
we hope that this result will encourage researchers to develop
the field further.
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