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Robust fermionic-mode entanglement of a nanoelectronic system in non-Markovian environments

Jiong Cheng,1,* Wen-Zhao Zhang,1 Yan Han,2,1 and Ling Zhou1,†
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China

2School of Physics and Optoelectronic Technology, Taiyuan University of Technology, Taiyuan 030024, China
(Received 27 September 2014; published 20 February 2015)

A maximal steady-state fermionic entanglement of a nanoelectronic system is generated in finite temperature
non-Markovian environments. The fermionic entanglement dynamics is presented by connecting the exact
solution of the system with an appropriate definition of fermionic entanglement. We prove that the two
understandings of the dissipationless non-Markovian dynamics, namely, the bound state and the modified Laplace
transformation, are completely equivalent. For comparison, the steady-state entanglement is also studied in the
wide-band limit and Born-Markovian approximation. When the environments have a finite band structure, we find
that the system presents various kinds of relaxation processes. The final states can be thermal or thermal-like states,
quantum memory states, and oscillating quantum memory states. Our study provides an analytical way to explore
the non-Markovian entanglement dynamics of identical fermions in a realistic setting, i.e., finite-temperature
reservoirs with a cutoff spectrum.
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I. INTRODUCTION

Entanglement, a particularly striking feature of quantum
mechanics, is thought of as the key ingredient in the field
of quantum-information science [1,2]. The theoretical study
of the entanglement evolution in open quantum systems has
attracted considerable interest [3–5]. Recently, much attention
has been paid to the case when the non-Markovian effect is not
ignorable [6–11]. The dynamical back action of the memory
environments has been experimentally observed [10], which
provides a reliable way to preserve entangled states [11–14].
The physical mechanism of this remarkable phenomenon is
understood as the interplay between the existence of the bound
state and the non-Markovian effect [14–17]. Most recently,
Zhang et al. explored the non-Markovian dynamics from the
modified Laplace transformation [18], which gives an accurate
description of the non-Markovian memory effect.

As a candidate for realizing building blocks of quantum-
information processors, the quantum dot (QD) nanostructure
with tunability of various couplings and energy levels is re-
garded as a promising quantum device [19,20]. Entanglement
in such nanostructures has been studied extensively, ranging
from spin entanglement [21–23], entangling an excitonic
two-level system [24] and tripartite entanglement [25,26], to
entanglement detection or measurement [27–29]. In practice,
however, as the quantum system always interacts with its
environment, quantum decoherence and dissipation is usually
the central impediment for maintaining the electron coherence.
Among the decoherence mechanisms, the non-Markovian
effect of nanostructures plays an important role [30–34]. Since
the non-Markovian entanglement dynamics has been well
understood in the distinguishable particle systems [14–18],
it is therefore natural to ask for an extension to the case
of identical particle systems, especially for nanoelectronic
systems consisting of identical fermions. The corresponding
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non-Markovian fermionic entanglement dynamics of these
systems are still virtually unexplored.

To achieve a comprehensive understanding of the decoher-
ence dynamics, one has to rely on realistic and precise model
calculations. Recently, exact master equations describing the
non-Markovian dynamics for various nanodevices [35,36]
have been developed by means of the Feynman-Vernon
influence functional theory. On the other hand, the standard
definition of entanglement is no longer valid for identical
particles due to the conflicts between the indistinguishability
of the system constituents and the tensor product structure [37]
of the Hilbert space. A multitude of early studies are focusing
on entanglement between fixed numbers of indistinguishable
particles [38–44]. In general, however, the particle numbers of
an open system are not conserved, it is therefore reasonable
to consider the entanglement between fermionic modes in a
similar way as is conventionally done for bosonic modes [45].

In this paper, our main purpose is to present an analytical
evaluation of fermionic entanglement in non-Markovian envi-
ronments, so as to seek a robust way to prepare entangled
states. This is achieved by connecting the exact solution
of the system with an appropriate definition of fermionic
entanglement in the fermionic Fock space. To be specific, we
consider a system of double quantum dots (DQDs) coupled
to two electrodes. By utilizing the Grassmann calculus and
the modified Laplace transformation, we find that the non-
Markovian environments can lead to a maximal steady-state
fermionic entanglement. Our analysis shows that the usual
decoherence suppression schemes implemented in distin-
guishable particle systems can also be achieved for identical
fermions.

The rest of the article is structured as follows: In Sec. II
we consider a general model to describe a two-mode fermion
hopping system subject to noninteracting fermionic environ-
ments. In Sec. III, a fully analytical approach of fermionic
entanglement dynamics is established. Then, in Sec. IV, some
analytical and numerical results are discussed. Finally, we
discuss a more realistic scenario, namely, finite temperature
reservoirs with a cutoff spectrum, and conclude the paper in
Sec. V.

1050-2947/2015/91(2)/022328(8) 022328-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.022328


JIONG CHENG, WEN-ZHAO ZHANG, YAN HAN, AND LING ZHOU PHYSICAL REVIEW A 91, 022328 (2015)

II. MODEL HAMILTONIAN AND THE EXACT
PROPAGATING FUNCTION

We consider a general two-mode fermion hopping system
coupled to noninteracting fermionic environments. The total
Hamiltonian is given by

Ĥs = ε1â
†
1â1 + ε2â

†
2â2 + Gâ

†
1â2 + G∗â†

2â1, (1a)

ĤE =
∑
lk

εlkb̂
†
lk b̂lk, (1b)

ĤI =
∑
j lk

V k∗
j l â

†
j b̂lk + V k

jl b̂
†
lk âj . (1c)

The fermionic creation and annihilation operators â
†
j and

âj satisfy the canonical anticommutation relations (CARs), εj

is the energy for the j th mode, and G is the coupling strength
between the two fermionic modes. Similarly, b̂lk and b̂

†
lk are

the annihilation and creation operators of the kth mode of two
fermionic environments (l = 1,2) with the continuous energy
εlk . The coupling strength between the system and the kth
mode of the environments is given by V k

jl . Physically, such
a system may be realized by DQDs in which each dot has a
single on-site energy level.

The open system (1) can be solved analytically by using
the Feynman-Vernon influence functional theory [46] in the
fermionic coherent state representation [47,48]. The exact
propagating function was derived in [35,36],

J (η′
f ,η∗

f ; t |η′∗
i ,ηi ; 0) = A(t) exp{η∗

f J1(t)ηi + η′∗
i J

†
1 (t)η′

f

+η∗
f J2(t)η′

f + η′∗
i J3(t)ηi}, (2)

where

J1(t) = W(t)U(t), J2(t) = W(t) − I, (3a)

J3(t) = U†(t)W(t)U(t) − I, A(t) = det−1W(t), (3b)

with W(t) = 1
I−V(t) and I is an identity matrix. ηi and ηf

represent two sets of Grassmann variables associated with
initial and final fermionic coherent states, respectively [48,49].
The time-dependent coefficients, namely, U(t) and V(t),
can be fully determined by the Dyson equation and the
nonequilibrium fluctuation-dissipation theorem, respectively,

U̇(τ ) + iMU(τ ) +
∫ τ

0
dτ ′g(τ − τ ′)U(τ ′) = 0, (4a)

V(t) =
∫ t

0
dτ1

∫ t

0
dτ2U(t − τ1)g̃(τ1 − τ2)U†(t − τ2), (4b)

subjected to the initial conditions U(0) = I and V(0) = 0. The
2 × 2 matrices M = ( ε1 G

G∗ ε2
) and the nonlocal time corre-

lation functions read g(τ ) = ∑
l

∫
dω
2π

Jl(ω)e−iωτ and g̃(τ ) =∑
l

∫
dω
2π

Jl(ω)n̄l(ω,T )e−iωτ . The spectral density Jl(ω) de-
pends on the specific structure of the environment and
the system-environment coupling strength V k

jl . Furthermore,

n̄l(ω,T ) = 1
eβl (ω−μl )+1

is the initial Fermi-Dirac distribution
of fermionic reservoir l with chemical potential μ at initial
temperature β = 1/kBT .

The propagating function (2) together with Eq. (4) to-
tally determine the non-Markovian dynamics of the open

system (1). In the following sections, by exactly solving the
reduced density matrix

ρ(η∗
f ,η′

f ; t) =
∫

dμ(ηi)dμ(η′
i)J (η′

f ,η∗
f ; t |η′∗

i ,ηi ; 0)

× ρ(η∗
i ,η

′
i ; 0), (5)

and analyzing the solution of nonequilibrium Green’s func-
tions U(t) and V(t) [18], we will present an accurate way
to take into account non-Markovian memory effects on the
dynamics of fermionic entanglement.

III. EXACT DECOHERENCE DYNAMICS

A. Exact solution of the system

The explicit form of propagating function (2) leads to
an exact master equation [18,35,36]. However, according to
Grassmann calculus [48,49], Eq. (5) is exactly solvable for an
arbitrary initial state ρ(η∗

i ,η
′
i ; 0). This provides us a direct

way to analyze the evolution of the system. On the other
hand, because of the superselection rules, the density matrix
in the fermionic coherent states representation is restricted
to even parity. To be specific, we should consider the case
ρ(η∗

i ,η
′
i ; 0) = ξ ∗

i ρ1ξ
′
i + η∗

i ρ2η
′
i , where the 2 × 2 matrix ρ1 and

ρ2 include complete information of the initial states, while the
two vectors are ξ ′

i = (1,η′
i2η

′
i1)T and ξ ∗

i = (1,η∗
i1η

∗
i2). We first

integrate out η′
i , then Eq. (5) becomes

ρ(η∗
f ,η′

f ; t) = A(t)eη∗
f J2(t)η′

f

∫
dη∗

i dηi e
−η∗

i ηi+η∗
f J1(t)ηi

× [ξ ∗
i ρ1ζ̃ +η∗

i ρ2J
†
1 (t)η′

f +η∗
i ρ2J3(t)ηi], (6)

where ζ̃ = (1,ζ2ζ1)T and the vector ζ = J
†
1 (t)η′

f + J3(t)ηi .
Similarly we can apply the same procedure to ηi , and after
integrating out all the initial degrees of freedom, Eq. (6)
simplifies to

ρ(η∗
f ,η′

f ; t) = ξ ∗
f ρ

f

1 ξ ′
f + η∗

f ρ
f

2 η′
f , (7)

where the coefficient matrices ρ
f

1 and ρ
f

2 are given by

ρ
f

1 = A(t)J̃1{ρ1 + [(ρ1)2,2 det J3 − Tr(ρ2J3)]σ+σ−}J̃ †
1

+A(t){Tr
(
σyJ

T
2 σyJ1ρ2J

†
1

)
− (ρ1)2,2Tr

(
σyJ

T
2 σyJ1σyJ

T
3 σyJ

†
1

)
+ [(ρ1)1,1 − Tr(ρ2J3) + (ρ1)2,2 det J3] det J2}σ−σ+,

(8a)

ρ
f

2 = A(t)J1
[
ρ2 − (ρ1)2,2σyJ

T
3 σy

]
J
†
1

+A(t)[(ρ1)1,1 + (ρ1)2,2 det J3 − Tr(ρ2J3)]J2, (8b)

where J̃i = (1 0
0 det Ji (t)

) and Ji ≡ Ji(t) for i = 1,2,3. The Pauli
matrix and the ladder operators are defined as

σy =
(

0 −i

i 0

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (9)

In the fermionic coherent states representation, the 4 × 4

coefficient matrix (ρ
f

1 0
0 ρ

f

2

) completely determines the exact

decoherence dynamics of the fermionic system. Meanwhile
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the non-Markovian effect is fully manifested in the nonequi-
librium Green’s function U(t) and the nonequilibrium thermal
fluctuation correlation functionV(t). In addition, the derivation
of the reduced density matrix (7) is fully nonperturbative. It is
valid for arbitrary time correlation functions g(τ ) and g̃(τ ).

B. Entanglement between fermionic modes

The coefficient matrices in Eq. (8) provide a direct way
to explore the dynamics of fermionic entanglement when
an appropriate definition of entanglement is given. However,
the description of entanglement in fermionic systems is
more complicated [45,50,51] than that in systems consisting
of distinguishable two-level systems, due to the fact that
fermions are indistinguishable and anticommutative. The
usually adopted definition of entanglement depends on the
tensor product structure of the state space of the composite
system. It reflects the particle aspect of first quantization rather
than the collective, global aspect of second quantization. When
we consider fermionic systems, however, such a structure
of the Hilbert space is no longer available. We therefore
adopt the following definition of entanglement for fermionic
systems [45]:

Ē(ρ) = min
pn,||�n〉〉

∑
n

pnS(||�n〉〉). (10)

The double-lined Dirac notation ||.〉〉 denote states in fermionic
Fock space in which states with more than two fermions
can be antisymmetrically constructed. The minimum is taken
over all pure state ensembles ||�n〉〉 that realize the state
ρ = ∑

n pn||�n〉〉〈〈�n|| with
∑

n pn = 1. S(||�n〉〉) is the von
Neumann entropy, which is a function of the eigenvalues
of the reduced states TrA(||�n〉〉〈〈�n||) or TrB(||�n〉〉〈〈�n||).
According to Ref. [45], a general state in the n-mode fermionic
Fock space can be written as

||�〉〉 = f0||0〉〉 +
n∑

i=1

fi ||1i〉〉

+
n∑

j,k

fj,k||1j 〉〉||1k〉〉 + · · · , (11)

where 1i denote an excitation in the mode i, and the coefficients
fj,k form an antisymmetric matrix. In addition ||1j 〉〉 = â

†
j ||0〉〉

and ||1j 〉〉||1k〉〉 = â
†
j â

†
k||0〉〉.

Back to Eq. (7), we note that fermionic coherent state
is defined as the eigenvector of the annihilation opera-
tor [47,48,52,53]

âj |η〉 = ηj |η〉, |η〉 ≡
∏
j

exp(â†
j ηj )|0〉. (12)

Thus it is easy to verify that 〈〈0||η〉 = 1, 〈〈1j ||η〉 =
〈〈0||âj |η〉 = ηj , and 〈〈12||〈〈11||η〉 = 〈〈0||â2â1|η〉 = η2η1.
This means the coefficient matrices (8) also describe the
density matrix in fermionic Fock space, and the fermionic Fock
space and fermionic coherent state representation both provide
an intrinsic description of fermionic states. If we restrict the
fermionic entanglement of formation (EoF) Eq. (10) to the
case that respect superselection rules, then as pointed out in
Ref. [54], the minimization over all states of two fermionic

modes can indeed be carried out. Finally we find the explicit
formula for the fermionic EoF

Ē(ρ) = −1

2

∑
σ=1,2

Tr
(
ρf

σ

)
Kσ , (13)

if (ρf
σ )1,1 = (ρf

σ )2,2, and (ρf
σ )1,2 = 0 then Kσ = 0, otherwise

Kσ = (1 − λσ ) log2
1 − λσ

2
+ (1 + λσ ) log2

1 + λσ

2
, (14)

where

λσ =
(
ρ

f
σ

)
1,1 − (

ρ
f
σ

)
2,2√[(

ρ
f
σ

)
1,1 − (

ρ
f
σ

)
2,2

]2 + 4
∣∣(ρf

σ

)
1,2

∣∣2
. (15)

C. Analysis of Green’s function

In the following, we focus on Green’s function U(t),
which can induce vastly different dissipations and fluctuations
through different forms of the spectral density. According to
Eqs. (3), (4b), and (8), the solution of the Dyson equation (4a)
uniquely determines the evolution of the system. A general
solution to such integrodifferential equation has been derived
recently, utilizing the modified Laplace transformation [18].
It is straightforward to apply these results to the case of
interacting fermions; we then find that the dissipationless
non-Markovian dynamics (in other word it is referred to as
a process of nonthermal stabilization, in which the system still
maintains partially its initial information, and does not reach
thermal equilibrium with the environment) exists only when

det

[
ωI − M −

∫
dω′

2π

J(ω′)
ω − ω′

]
= Jkl(ω) = 0. (16)

Mathematically, this means real roots of the above equation
exist only in the frequency regions where all spectral density
vanishes. From the physical point of view, it can also be
explained by the bound state that is generated between the
system and its environment [15–17]. A bound state is actually
a stationary state with a vanishing decay rate during the time
evolution. If such a bound state is formed, it will lead to a
dissipationless dynamics. To illustrate this point clearly, we
solve the Schrödinger equation

Htot||�E〉〉 = E||�E〉〉. (17)

For simplicity, the environment is assumed to be zero tem-
perature, and only one excitation is presented in the system
initially, then

||�E〉〉 =
2∑

j=1

(
cj â

†
j ||vac〉〉 +

∑
lk

dlkb̂
†
lk||vac〉〉

)
, (18)

where ||vac〉〉 represents the vacuum state of the total system.
Substituting Eq. (1) into Eq. (17), one finds

ε1c1 + Gc2 +
∑
lk

V k
1ldlk = Ec1, (19a)

ε2c2 + G∗c1 +
∑
lk

V k
2ldlk = Ec2, (19b)

εlkdlk + V k∗
1l c1 + V k∗

2l c2 = Edlk. (19c)
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Solving Eq. (19c) and substituting the solution dlk back into
Eqs. (19a) and (19b), we have⎛

⎜⎝ ε1 + ∑
lk

∣∣V k
1l

∣∣2

E−εlk
G + ∑

lk

V k∗
1l V k

2l

E−εlk

G∗ + ∑
lk

V k∗
2l V k

1l

E−εlk
ε2 + ∑

lk

∣∣V k
2l

∣∣2

E−εlk

⎞
⎟⎠

(
c1

c2

)

= E

(
c1

c2

)
. (20)

By solving the eigenvalue equations (20), and introducing the
spectral density

∑
l Jjm(ω) = 2π

∑
lk V k∗

j l V k
mlδ(ω − ωk), one

finds that the bound state exists only when

det

[(
ε1 − E G

G∗ ε2 − E

)
+

∑
l

∫
dω

2π

Jl(ω)

E − ω

]
= 0.

(21)

Not surprisingly, Eqs. (16) and (21) are completely equivalent.
Based on these results, we will present an analytical treatment
of fermionic entanglement in the following sections.

IV. ANALYTICAL AND NUMERICAL ILLUSTRATIONS

A. Maximal fermionic entanglement in finite temperature

To be more specific, we consider a system of DQDs coupled
to electrodes (L and R) with all spins polarized in both
the dots and the electrodes. The corresponding Hamiltonian
can be described by Eq. (1) if one ignores the Coulomb
electron-electron interaction inside the dots [35,36,55,56].
In general, the spectral density of the electrodes takes an
energy-dependent Lorentzian form [18,36]

Jkl(ω) = �ld
2
l

(ω − μl)2 + d2
l

δkl, (22)

where l = L(R) for the left (right) electrode, �l is the coupling
strength between the dot and electrode l, dl is the bandwidth
of the effective reservoir spectrum, and μl is the Fermi surface
of the electron reservoir.

The usual Lorentzian spectral density (22) has been widely
used to describe a fermionic environment. The frequency
region of J(ω) covers the entire real axis, according to Eq. (16),
therefore U(t) will present nonexponential (or exponential)
decay during evolution and approach zero ultimately. When
the DQDs reach thermal equilibrium with the electrodes, the
steady-state thermal fluctuations are fully determined by Vs

(superscript s denotes the steady state). Then the general
solution (8) will evolve into a steady state with the simple
form

ρs
1 =

(
1 + detVs − TrVs 0

0 detVs

)
, (23a)

ρs
2 =

(
V s

11 − detVs V s
12

V s
12

∗ V s
22 − detVs

)
. (23b)

This result indicates that the corresponding system dis-
sipates into a thermal-like [57] (or thermal) state, and
its initial state information is completely washed out by
the environment. The corresponding fermionic EoF also

reduces to

Ēs = (
detV s − 1

2 TrV s
)
Ks
2. (24)

From Eqs. (23) and (24), approximately, we find a positive
correlation between Ēs and the ratio of TrVs

detVs , especially, when
Vs

11 = Vs
22 = |V s

12| = 1
2 , a maximal entanglement is generated

Ēs = 1. Obviously, the states of the DQDs in this scenario
should be the Bell states denoted by ||�s

±〉〉 = 1√
2
(â†

1||vac〉〉 ±
â
†
2||vac〉〉). Now the critical problem is how to satisfy the above

conditions of the steady-state Green’s function Vs . To answer
this question, we solve Eq. (4b) in the long-time limit.

According to Ref. [18], the solution of U(t) takes the form

U(t) =
∫

dω

2π

ie−iωt

ωI − M − �(ω) + i J(ω)
2

=
∑

j

Zj e
−irj t , (25)

where matrix J(ω) is the spectral density, and the real part of
the self-energy correction �(ω) is the principal value of the
following integral:

�kl(ω) =
∫

dω′

2π

Jkl(ω′)
ω − ω′ = �ldl(ω − μl)

2d2
l + 2(ω − μl)2

δkl . (26)

The poles rj in Eq. (25) are located in the lower-half complex
plane with the corresponding residues Zj . In view of the
solution (25), we then find the steady-state Green’s function
V s(t → ∞) = ∫

v(ω)dω with

v(ω) = 1

2π

∑
jk

Zk

J(ω)n̄(ω,T )

(ω − rk)(ω − r∗
j )
Z†

j . (27)

In the low-temperature and low Fermi surface limit, when ω >

μ then n̄(ω,T ) → 0, otherwise when ω < μ, J(ω)
(ω−rk )(ω−r∗

j ) <

�
(ω−rk )(ω−r∗

j ) 
 1. This means Vs approaches zero if the

chemical potential μ 
 −�, which is consistent with the
result in Ref. [58]. On the other hand if both of the chemical
potentials of the two electron reservoirs satisfy μl > εl , then
the electrons tend to flow into the DQDs to fill the relatively
lower energy levels of the system, and the coherence of Vs

may be destroyed in this process. Since the entanglement
depends on the coherence of Vs , it is necessary to keep the
chemical potential close to the energy scale of the system so
as to generate a large steady-state entanglement Ēs .

Using the solution of Eq. (27), combined with Eq. (25),
we can easily calculate the steady-state entanglement Ēs in
Eq. (24). The result is plotted in Fig. 1 for the cases of d = 10�

(weakly non-Markovian case) and d = 0.5� (strongly non-
Markovian case). We assume the dot-environment interaction
is stronger than the tunnel coupling (i.e., G < �), in order
to weaken the influences of the direct interaction between
fermionic modes and enhance the non-Markovian memory
effects that impact on the system dynamics. In Fig. 1, we
analyze two conditions where a symmetric chemical potential
μ = 5� and a complete symmetric condition are considered
(corresponding to Figs. 1(a) and 1(b) and Figs. 1(c) and 1(d),
respectively). Comparing with different values of bandwidth d,
we find that the non-Markovian memory effect does contribute
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FIG. 1. (Color online) Density plot of steady-state entanglement
Ēs versus the on-site energy εl and the chemical potential μl . In
(a) and (b), we keep μ1 = μ2 = 5�, but in (c) and (d), we take the
complete symmetric condition where ε1 = ε2 = ε and μ1 = μ2 = μ.
The other parameters are �1 = �2 = �, kBT1 = kBT2 = 0.5�, and
G = 0.5�.

to the increase of the maximum value Ēs
max (points A and B

stand for the maximum value of steady-state entanglement).
This fact is also well supported by the inset of Fig. 2(a). In
addition, our numerical calculations show that this result is still
valid for different ratios of G/�. The main feature of Fig. 1,
on the other hand, is that the maximum Ēs

max appears only
in the parametric region where a symmetric condition μ = ε

is satisfied. This result is consistent with the result discussed
above, which also indicates that the symmetry of the system
and environment can have significant impact on the dynamics
of entanglement. In the following, we thus go to the coherent
manipulation regime, where the two QDs are set to be in
resonance, and the electrodes are symmetric.

In Fig. 2, we explore the fermionic EoF via the time-
dependent transient dynamics as well as the asymptotic
limit with different values of the bandwidth, temperature,
and interdot tunnel coupling. For the bandwidth d � 2�,
Ē monotonically increases with time (neglecting the small
oscillation) in a short-time scale, which is a result similar
to the Markovian dynamics. When the bandwidth d < 2�,
Ē approaches a steady value in the long-time limit after
several rounds of oscillation, which indicates a significant
backaction effect that induces the short-time oscillation of
the entanglement. The asymptotic value Ēs , as depicted in the
inset of Fig. 2(a), shows a small variation versus the bandwidth.
In the present case, this means the bandwidth only has an
important influence on the transient dynamics, and becomes
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FIG. 2. (Color online) Entanglement evolution of the DQDs with
Lorentzian spectral density, where (a): kBT = G = 0.5�, (b): d =
2�, G = 0.5�, and (c): kBT = d = 0.5�. Insets show the asymptotic
dynamics of Ē with different bandwidths and temperatures. The
initial state is â

†
1||vac〉〉. The other parameters are ε = μ = 2�. Here

we consider the complete symmetric condition, so all the subscripts
are omitted.

less important in the asymptotic limit. To show the effect
of temperature on the entanglement dynamics, we plot the
fermionic EoF in Fig. 2(b) at various temperatures. Note that
T has negligible impact on the transient dynamics t � 1/�,
but manifests its action in the long-time scale. According to
the inset, one can also see that the steady-state entanglement
is sensitive to the temperature, and the magnitude of Ēs

decreases with the rising temperature. In the weak interdot
tunnel coupling region G � 0.1� shown in Fig. 2(c), Ē

monotonically increases with time then approaches a steady
value. With further increasing of G, a rapid oscillation of Ē

is observed in a short-time scale due to the enhancement of
energy exchange of the DQDs. The asymptotic behavior of Ē

suggests that Ēs is sensitive to G, and it increases with the
increasing of G.

In addition, Fig. 2(c) shows that the required time to
reach the steady state is getting longer when G/� increases.
Physically, this phenomenon can be expected from the total
Hamiltonian of the system, i.e., Eqs. (1). The interdot coupling
G plays a role in exchanging the population of the two
fermionic modes. When the system evolves, the entanglement
exhibits oscillation, and the amplitude and periods of the
oscillation are determined by G. The larger G, the larger
amplitude and shorter periods [see Fig. 2(c)]. On the other
hand, the asymptotic behavior of the system dynamics can
be attributed to the dot-environment interaction �. It reflects
the mutual time scale that arises from the environment. The
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FIG. 3. (Color online) Steady-state entanglement Ēs versus the
interdot tunnel coupling G. The DQDs are set to be in resonance with
ε = μ = 2� and the temperature kBT = 0.5�.

competition between these two parameters determines the
required time that the system needs to reach the steady state.
Mathematically, the system decoherence dynamics is primarily
determined by the retarded Green’s function U(t), and it
approaches zero ultimately because the poles in Eq. (25) should
satisfy Imrj < 0. Thus the asymptotic dynamics is determined
by Zj e

−irj t with the biggest imaginary part of rj . One can
expect that max{Imrj } increases with the increasing of G

�
.

This is proved by our numerical result shown in the inset of
Fig. 2(c).

Based on the analytical and numerical analysis above, we
then find the main factors that restrict the steady-state entangle-
ment, which can be summarized as the symmetric condition,
the interdot tunnel coupling, and the initial temperature. In
Fig. 3, as expected, Ēs reaches a maximum value in the strong
interdot tunnel coupling region. At this moment, the bandwidth
also plays an important role. Comparing with Fig. 2(a), we
find that the non-Markovian effect becomes significant when
the interdot tunnel coupling is approximately in the region
� � G � 4�. In the system under consideration, G is a
critical element in the generation of entanglement because
it is the direct interaction between the two QDs. If G 
 �,
a very weak interdot tunnel coupling should be the main
limiting factor in entanglement generation. On the contrary,
the system-environment interaction becomes negligible when
G � �, thus the non-Markovian effect manifests itself only
in the region where G is comparable to �.

B. Comparison to Markovian dynamics

In the previous sections, we have shown the generation
of maximal fermionic entanglement for DQDs coupled to
non-Markovian reservoirs. We found that the contribution of
the non-Markovian effect to the generation of entanglement
cannot be ignored. For comparison, we should discuss the
corresponding results in the Markovian approximation.

It is worth noting that one usually takes the wide-band limit
(d → ∞) of Eq. (22) to analyze various quantum transport
and quantum decoherence phenomena [59], which leads to the
disappearance of the dominating memory structure of U(t). In
such a case, the spectrum of the reservoir takes a flat spectrum
Jkl(ω) = �lδkl , and the nonlocal time correlation functions are
reduced to

gWBL (τ ) = �δ(τ ), g̃WBL (τ ) = �

∫
dω

2π
n̄(ω,T ) e−iωτ .

The correlation function gWBL (τ ) is a delta function, which
means that the memory structure of UWBL(t) is completely
washed out. However, for g̃WBL (τ ), the memory effect still re-
mains. The solutions of the nonequilibrium Green’s functions
then reduced to

UWBL(t) = exp

{
−

(
iM + �

2

)
t

}
, (28a)

VWBL(t) =
∫

dω

2π

e−iωtI − e−(iM+ �
2 )t

�
2 + i(M − ωI)

n̄(ω,T )�

× eiωtI − e(iM− �
2 )t

�
2 − i(M − ωI)

. (28b)

In the Born-Markovian dynamics, on the other hand, the
coupling strength between the system and the environment
is very weak, and the characteristic correlation time of the
environment τE = d−1 is sufficiently shorter than the mutual
time scale τM = �−1, i.e., τE 
 τM . In this case, it is believed
that no memory effect exists. Thus the differential equations
of UBM(t) and VBM(t) at time t should not depend on their past
history. This requires the integrodifferential equations

U̇(τ ) + iMU(τ ) +
∫ τ

0
dτ ′g(τ − τ ′)U(τ ′) = 0,

V̇(τ ) + iMV(τ ) +
∫ τ

0
dτ ′g(τ − τ ′)V(τ ′)

=
∫ t

0
dτ ′g̃(τ − τ ′)U(τ ′),

reduced to differential equations [35]. The corresponding
correlation functions should be delta functions

gBM (τ ) = �δ(τ ), g̃BM (τ ) = n̄(ε,T )�δ(τ ).

Here we can see that the difference between WBL and BM is
that g̃WBL (τ ) �= g̃BM (τ ). It therefore leads to the different results
of VWBL(t) and VBM(t). The true Markov limit is reached with
the reduced Green’s function

VBM(t) =
∫ t

0
dτUWBL(t − τ )n̄(ε,T )�U†

WBL(t − τ ). (29)

In Fig. 4, we plot the steady-state entanglement in the (a)
wide-band limit and (b) Born-Markovian approximation. In
the wide-band limit, the Dyson equation (4a) reduces to a
time-convolutionless differential equation. Thus no memory
effect remains in UWBL, i.e., UWBL = UBM, but it is still
manifested in VWBL, which explains why Fig. 4(a) manifests
a similar behavior to Fig. 1(a). In the Born-Markovian
approximation, however, as shown in Fig. 4(b), the steady-state
entanglement vanishes on the purple line ε1 = ε2, but appears
and becomes stronger in the neighboring areas around ε1 ≈
ε2 ≈ 5�. In other words, the complete symmetric condition
of the parameters has a destructive effect on the steady-
state entanglement. This result is quite surprising, as the
Born-Markovian approximation leads to conclusions that are
almost completely opposite of what we obtained in the non-
Markovian region. In this case, it is not a good approximation.
Actually the unexpected result is a natural consequence of
Eq. (29), because VBM(t) reduces to a diagonal matrix in the
complete symmetric case, i.e., VBM(t) = (I − e−�t )n̄(ε,T ) =
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FIG. 4. (Color online) Density plot of steady-state entanglement
Ēs versus the on-site energy εl . The corresponding results of the
wide-band limit (WBL) and Born-Markovian approximation (BM)
are plotted in (a) and (b), respectively. We keep μ1 = μ2 = 5�, and
the other parameters are the same as given in Fig. 1.

1−e−�t

eβ(ε−μ)+1 I. Finally, the DQDs reach thermal equilibrium with
the electrodes, Vs

BM = n̄(ε,T ), and apparently, it is a standard
thermal state.

C. Lorentzian spectrum with a sharp cutoff

The usual Lorentzian spectral density gives rise to nonexpo-
nential or exponential decay of the retarded Green’s function
U(t). In this case, the initial state information is washed out
completely, and the system may reach a steady state with
the environment. Now we discuss the scenario when the
environmental densities of states have a finite bandwidth. This
corresponds to adding a sharp cutoff in the usual Lorentzian
spectral density [18,60]

Jkl(ω) = �ld
2
l

(ω − μl)2 + d2
l

�(�l − |ω − μl|)δkl. (30)

When � → ∞, Eq. (30) is reduced to the pure Lorentzian
spectral density described by Eq. (22) as we discussed in the
previous section. The occurrence of the dissipationless non-
Markovian dynamics requires the spectrum to have at least one
zero-value region. For a cutoff spectrum, it is found that the
system-bath coupling plays a critical role in the decoherence
dynamics of a quantum system [60]. One question naturally
follows for the cutoff Lorentzian-type spectrum (30): How
do the spectral parameters affect the dynamic characteristic
of the system? To answer this question one needs to understand
the root structure of the criteria in Eq. (16). Outside the band,
the Laplace transformation of the self-energy takes the form

�kl(ω) =
∫

dω′

2π

Jkl(ω′)
ω − ω′

= Jkl(ω)

2π

[
ln

(
μl − �l − ω

μl + �l − ω

)

+ 2(ω − μl)

dl

arctan

(
�l

dl

)]
. (31)

Note that �(ω) approaches infinity on its boundary, and
goes to zero asymptotically, i.e., �(μl ± �l) = ±∞ and
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FIG. 5. (Color online) Schematic plots of the root structure of
Eq. (16), i.e., det[ωI − M − �(ω)] = 0. The purple-shaded regimes
on the real axis ω correspond to the bandwidth region J(ω) �= 0. The
green-dashed curve is the parabola ω2 − (ε1 + ε2)ω + ε1ε2 − G2.

�(±∞) = 0. For large values of ω, the criteria det[ωI − M −
�(ω)] ≈ ω2 − (ε1 + ε2)ω + ε1ε2 − G2. Thus, it is a parabola
kind of curve with some gaps. One can change the values
of ε or G to adjust the horizontal or vertical position of
the curve. Meanwhile the central position and the length of
the gaps are determined by μ and �. The corresponding
schematic plots are shown in Fig. 5. There are basically
zero or more effective roots for det[ωI − M − �(ω)] = 0,
which are denoted by the black points. We have excluded
the roots that are very close to the edge of the band gaps,
because the long-time dissipationless dynamics depends on
the residues of the Laplace transformation of U(t) [18], which
are inversely proportional to det′[ωI − M − �(ω)]. Thus the
roots near the edge have no contribution to the dissipationless
dynamics. The difference in the number of effective roots may
induce vastly different dissipation dynamics. There are three
different relaxation processes [57] for the spectral density in
Eq. (30), and the final states can be concluded to be thermal
or thermal-like states for scenario (a), quantum memory states
for scenario (b), and oscillating quantum memory states for
scenarios (c) and (d).

V. CONCLUSION

In conclusion, we have derived the exact solution of
the reduced density matrix of a nanoelectronic system in
finite-temperature non-Markovian reservoirs. The fermionic
EoF is evaluated analytically by connecting the exact solution
with an appropriate definition of fermionic entanglement
in the fermionic Fock space. This provides us a potential
way to extend the non-Markovian entanglement dynamics
of distinguishable particles to the case of indistinguishable
fermion systems. The system decoherence dynamics can
be well described not only by the bound state between
the system and its reservoirs, but also by the modified
Laplace transformation of Green’s function. Our analysis
shows that these two ways of description are completely
equivalent for fermionic systems. Through our analytic and
numerical calculations, we found that a maximal fermionic
steady-state entanglement can be created in finite-temperature
non-Markovian environments. In the Born-Markovian
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approximation, the steady-state entanglement decreases and
vanishes when the symmetric condition is considered. Our
results pave the way to decoherence control of identical
fermion systems, which deserves further investigation.
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Walczak, J. Phys. A: Math. Gen. 38, L79 (2005).
[55] S. A. Gurvitz and Ya. S. Prager, Phys. Rev. B 53, 15932 (1996).
[56] P. Y. Yang, C. Y. Lin, and W. M. Zhang, Phys. Rev. B 89, 115411

(2014).
[57] H. N. Xiong, P. Y. Lo, W. M. Zhang, F. Nori, and D. H. Feng,

arXiv:1311.1282v1.
[58] H.-N. Xiong, W.-M. Zhang, MatisseWei-Yuan Tu, and D. Braun,

Phys. Rev. A 86, 032107 (2012).
[59] Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. (Oxford

University, Oxford, 2002).
[60] C. Y. Cai, L. P. Yang, and C. P. Sun, Phys. Rev. A 89, 012128

(2014).

022328-8

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevA.65.012101
http://dx.doi.org/10.1103/PhysRevA.65.012101
http://dx.doi.org/10.1103/PhysRevA.65.012101
http://dx.doi.org/10.1103/PhysRevA.65.012101
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevA.78.062301
http://dx.doi.org/10.1103/PhysRevA.78.062301
http://dx.doi.org/10.1103/PhysRevA.78.062301
http://dx.doi.org/10.1103/PhysRevA.78.062301
http://dx.doi.org/10.1088/1367-2630/15/10/103020
http://dx.doi.org/10.1088/1367-2630/15/10/103020
http://dx.doi.org/10.1088/1367-2630/15/10/103020
http://dx.doi.org/10.1088/1367-2630/15/10/103020
http://dx.doi.org/10.1103/PhysRevA.87.052328
http://dx.doi.org/10.1103/PhysRevA.87.052328
http://dx.doi.org/10.1103/PhysRevA.87.052328
http://dx.doi.org/10.1103/PhysRevA.87.052328
http://dx.doi.org/10.1103/PhysRevA.83.062310
http://dx.doi.org/10.1103/PhysRevA.83.062310
http://dx.doi.org/10.1103/PhysRevA.83.062310
http://dx.doi.org/10.1103/PhysRevA.83.062310
http://dx.doi.org/10.1103/PhysRevA.83.032102
http://dx.doi.org/10.1103/PhysRevA.83.032102
http://dx.doi.org/10.1103/PhysRevA.83.032102
http://dx.doi.org/10.1103/PhysRevA.83.032102
http://dx.doi.org/10.1103/PhysRevLett.104.100502
http://dx.doi.org/10.1103/PhysRevLett.104.100502
http://dx.doi.org/10.1103/PhysRevLett.104.100502
http://dx.doi.org/10.1103/PhysRevLett.104.100502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.100.090503
http://dx.doi.org/10.1103/PhysRevLett.100.090503
http://dx.doi.org/10.1103/PhysRevLett.100.090503
http://dx.doi.org/10.1103/PhysRevLett.100.090503
http://dx.doi.org/10.1103/PhysRevA.87.022312
http://dx.doi.org/10.1103/PhysRevA.87.022312
http://dx.doi.org/10.1103/PhysRevA.87.022312
http://dx.doi.org/10.1103/PhysRevA.87.022312
http://dx.doi.org/10.1103/PhysRevA.81.052330
http://dx.doi.org/10.1103/PhysRevA.81.052330
http://dx.doi.org/10.1103/PhysRevA.81.052330
http://dx.doi.org/10.1103/PhysRevA.81.052330
http://dx.doi.org/10.1103/PhysRevA.50.1764
http://dx.doi.org/10.1103/PhysRevA.50.1764
http://dx.doi.org/10.1103/PhysRevA.50.1764
http://dx.doi.org/10.1103/PhysRevA.50.1764
http://dx.doi.org/10.1038/nature02772
http://dx.doi.org/10.1038/nature02772
http://dx.doi.org/10.1038/nature02772
http://dx.doi.org/10.1038/nature02772
http://dx.doi.org/10.1103/PhysRevA.78.060302
http://dx.doi.org/10.1103/PhysRevA.78.060302
http://dx.doi.org/10.1103/PhysRevA.78.060302
http://dx.doi.org/10.1103/PhysRevA.78.060302
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.76.085335
http://dx.doi.org/10.1103/PhysRevB.76.085335
http://dx.doi.org/10.1103/PhysRevB.76.085335
http://dx.doi.org/10.1103/PhysRevB.76.085335
http://dx.doi.org/10.1103/PhysRevB.85.155127
http://dx.doi.org/10.1103/PhysRevB.85.155127
http://dx.doi.org/10.1103/PhysRevB.85.155127
http://dx.doi.org/10.1103/PhysRevB.85.155127
http://dx.doi.org/10.1103/PhysRevA.89.012327
http://dx.doi.org/10.1103/PhysRevA.89.012327
http://dx.doi.org/10.1103/PhysRevA.89.012327
http://dx.doi.org/10.1103/PhysRevA.89.012327
http://dx.doi.org/10.1103/PhysRevA.88.042302
http://dx.doi.org/10.1103/PhysRevA.88.042302
http://dx.doi.org/10.1103/PhysRevA.88.042302
http://dx.doi.org/10.1103/PhysRevA.88.042302
http://dx.doi.org/10.1103/PhysRevB.89.115322
http://dx.doi.org/10.1103/PhysRevB.89.115322
http://dx.doi.org/10.1103/PhysRevB.89.115322
http://dx.doi.org/10.1103/PhysRevB.89.115322
http://dx.doi.org/10.1103/PhysRevLett.95.160402
http://dx.doi.org/10.1103/PhysRevLett.95.160402
http://dx.doi.org/10.1103/PhysRevLett.95.160402
http://dx.doi.org/10.1103/PhysRevLett.95.160402
http://dx.doi.org/10.1103/PhysRevB.80.161309
http://dx.doi.org/10.1103/PhysRevB.80.161309
http://dx.doi.org/10.1103/PhysRevB.80.161309
http://dx.doi.org/10.1103/PhysRevB.80.161309
http://dx.doi.org/10.1103/PhysRevB.84.033301
http://dx.doi.org/10.1103/PhysRevB.84.033301
http://dx.doi.org/10.1103/PhysRevB.84.033301
http://dx.doi.org/10.1103/PhysRevB.84.033301
http://dx.doi.org/10.1103/PhysRevB.72.235320
http://dx.doi.org/10.1103/PhysRevB.72.235320
http://dx.doi.org/10.1103/PhysRevB.72.235320
http://dx.doi.org/10.1103/PhysRevB.72.235320
http://dx.doi.org/10.1103/PhysRevB.72.245328
http://dx.doi.org/10.1103/PhysRevB.72.245328
http://dx.doi.org/10.1103/PhysRevB.72.245328
http://dx.doi.org/10.1103/PhysRevB.72.245328
http://dx.doi.org/10.1103/PhysRevB.76.115301
http://dx.doi.org/10.1103/PhysRevB.76.115301
http://dx.doi.org/10.1103/PhysRevB.76.115301
http://dx.doi.org/10.1103/PhysRevB.76.115301
http://dx.doi.org/10.1103/PhysRevB.83.125426
http://dx.doi.org/10.1103/PhysRevB.83.125426
http://dx.doi.org/10.1103/PhysRevB.83.125426
http://dx.doi.org/10.1103/PhysRevB.83.125426
http://dx.doi.org/10.1103/PhysRevLett.106.233601
http://dx.doi.org/10.1103/PhysRevLett.106.233601
http://dx.doi.org/10.1103/PhysRevLett.106.233601
http://dx.doi.org/10.1103/PhysRevLett.106.233601
http://dx.doi.org/10.1103/PhysRevB.78.235311
http://dx.doi.org/10.1103/PhysRevB.78.235311
http://dx.doi.org/10.1103/PhysRevB.78.235311
http://dx.doi.org/10.1103/PhysRevB.78.235311
http://dx.doi.org/10.1088/1367-2630/12/8/083013
http://dx.doi.org/10.1088/1367-2630/12/8/083013
http://dx.doi.org/10.1088/1367-2630/12/8/083013
http://dx.doi.org/10.1088/1367-2630/12/8/083013
http://dx.doi.org/10.1142/S0129055X05002364
http://dx.doi.org/10.1142/S0129055X05002364
http://dx.doi.org/10.1142/S0129055X05002364
http://dx.doi.org/10.1142/S0129055X05002364
http://dx.doi.org/10.1103/PhysRevA.64.054302
http://dx.doi.org/10.1103/PhysRevA.64.054302
http://dx.doi.org/10.1103/PhysRevA.64.054302
http://dx.doi.org/10.1103/PhysRevA.64.054302
http://dx.doi.org/10.1103/PhysRevA.64.042310
http://dx.doi.org/10.1103/PhysRevA.64.042310
http://dx.doi.org/10.1103/PhysRevA.64.042310
http://dx.doi.org/10.1103/PhysRevA.64.042310
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevB.63.085311
http://dx.doi.org/10.1103/PhysRevB.63.085311
http://dx.doi.org/10.1103/PhysRevB.63.085311
http://dx.doi.org/10.1103/PhysRevB.63.085311
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1103/PhysRevA.67.024301
http://dx.doi.org/10.1103/PhysRevA.67.024301
http://dx.doi.org/10.1103/PhysRevA.67.024301
http://dx.doi.org/10.1103/PhysRevA.67.024301
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevA.87.022338
http://dx.doi.org/10.1103/PhysRevA.87.022338
http://dx.doi.org/10.1103/PhysRevA.87.022338
http://dx.doi.org/10.1103/PhysRevA.87.022338
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/PhysRevA.59.1538
http://dx.doi.org/10.1103/PhysRevA.59.1538
http://dx.doi.org/10.1103/PhysRevA.59.1538
http://dx.doi.org/10.1103/PhysRevA.59.1538
http://dx.doi.org/10.1103/PhysRevA.76.022311
http://dx.doi.org/10.1103/PhysRevA.76.022311
http://dx.doi.org/10.1103/PhysRevA.76.022311
http://dx.doi.org/10.1103/PhysRevA.76.022311
http://dx.doi.org/10.1063/1.3282845
http://dx.doi.org/10.1063/1.3282845
http://dx.doi.org/10.1063/1.3282845
http://dx.doi.org/10.1063/1.3282845
http://dx.doi.org/10.1103/PhysRevA.62.033821
http://dx.doi.org/10.1103/PhysRevA.62.033821
http://dx.doi.org/10.1103/PhysRevA.62.033821
http://dx.doi.org/10.1103/PhysRevA.62.033821
http://dx.doi.org/10.1103/PhysRevA.71.022109
http://dx.doi.org/10.1103/PhysRevA.71.022109
http://dx.doi.org/10.1103/PhysRevA.71.022109
http://dx.doi.org/10.1103/PhysRevA.71.022109
http://dx.doi.org/10.1088/0305-4470/38/6/L02
http://dx.doi.org/10.1088/0305-4470/38/6/L02
http://dx.doi.org/10.1088/0305-4470/38/6/L02
http://dx.doi.org/10.1088/0305-4470/38/6/L02
http://dx.doi.org/10.1103/PhysRevB.53.15932
http://dx.doi.org/10.1103/PhysRevB.53.15932
http://dx.doi.org/10.1103/PhysRevB.53.15932
http://dx.doi.org/10.1103/PhysRevB.53.15932
http://dx.doi.org/10.1103/PhysRevB.89.115411
http://dx.doi.org/10.1103/PhysRevB.89.115411
http://dx.doi.org/10.1103/PhysRevB.89.115411
http://dx.doi.org/10.1103/PhysRevB.89.115411
http://arxiv.org/abs/arXiv:1311.1282v1
http://dx.doi.org/10.1103/PhysRevA.86.032107
http://dx.doi.org/10.1103/PhysRevA.86.032107
http://dx.doi.org/10.1103/PhysRevA.86.032107
http://dx.doi.org/10.1103/PhysRevA.86.032107
http://dx.doi.org/10.1103/PhysRevA.89.012128
http://dx.doi.org/10.1103/PhysRevA.89.012128
http://dx.doi.org/10.1103/PhysRevA.89.012128
http://dx.doi.org/10.1103/PhysRevA.89.012128



