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Practical and efficient experimental characterization of multiqubit stabilizer states
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Vast developments in quantum technology have enabled the preparation of quantum states with more than a
dozen entangled qubits. The full characterization of such systems demands distinct constructions depending on
their specific type and the purpose of their use. Here we present a method that scales linearly with the number of
qubits for characterizing stabilizer states. Our approach allows simultaneous extraction of information about the
fidelity, the entanglement, and the nonlocality of the state and thus is of high practical relevance. We demonstrate
the efficient applicability of our method by performing an experimental characterization of a photonic four-qubit
cluster state and three- and four-qubit Greenberger-Horne-Zeilinger states. Our scheme can be directly extended
to larger-scale quantum information tasks.
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I. INTRODUCTION

Multiqubit states are a basic resource for present and future
generations of quantum information science experiments. In
particular, N -qubit stabilizer (or graph) states have well-
proved utility for one-way quantum computation and quantum
information processing [1–4]. As the number of particles
increases, the system and its properties become significantly
more complex. In order to manipulate and exploit such
entangled systems, it is crucial to certify the generated states
with respect to the ideal stabilizer states. The importance of
analyzing these quantum resources has led to a variety of theo-
retical works [5–10]. Each of them shows certain features of the
system, e.g., fidelity, purity, and entanglement robustness, by
using the stabilizer operators or their generators [1]. Here we
present a compact approach which allows us to simultaneously
test the most important properties of the generated graph
states using a minimal number of measurements. Our method
utilizes the multiparty Greenberger-Horne-Zeilinger (GHZ)
theorem [11] for a characterization of the quantum state
by constructing a Bell-type inequality. In this work we
briefly introduce nonclassical structures, defined as the critical
identity products (IDs; discussed in detail in [12,13]) and their
practical applications for generalized proofs of the N -qubit
GHZ theorem, estimation of the fidelity of a state, and
detection of multiparty entanglement. In the laboratory we
experimentally generate a four-qubit cluster state and fully
analyze it through IDs. We proceed in the same way with
experimental three-qubit and four-qubit GHZ states in order
to illustrate the general utility of IDs. We show how our method
relates to other methods.

II. THEORY

In the Hilbert space of N qubits, nonclassical structures
related to entanglement, contextuality, and nonlocality were re-
cently introduced [12], which enable addressing foundational
quantum physics topics as well as the characterization of states
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useful for quantum information applications. The so-called
identity products are the most elementary of these structures
within the N -qubit Pauli group and form the constituents of
the more elaborate nonclassical structures.

Definition 1. IDs are sets of M mutually commuting
observables (Oi , with i = 1, . . . ,M) whose combined product
is ±I (respectively, positive and negative ID).

Each ID can be represented as a table IDMN , where
each row is a different N -qubit observable and each column
corresponds to a different qubit (see Fig. 1). The rows are tensor
products of single-qubit Pauli observables oq ≡ {Xq,Yq,Zq}
and single-qubit identity Iq . When each oq appears an even
number of times in all the columns, we call the full set whole
ID (IDMN

w ); otherwise, we call it partial ID (IDMN
p ).

Definition 2. An ID is maximally entangled if its observ-
ables Oi cannot be simultaneously tensor factorized into two
or more separate IDs. It is furthermore critical if no deletion
of observables and/or qubits from the set can result in a
smaller ID.

This sort of entanglement is defined for a set of mutually
commuting observables rather than for a particular state vector,
which we can think of as the Heisenberg-picture definition of
entanglement (see Appendix A). As we will see, this definition
of entanglement is crucial for irreducible proofs of the GHZ
theorem.

Each ID is representative of a complete class of equiv-
alent IDs under permutations of columns (qubits) and local
transformations of qubits’ coordinate systems. Every complete
class of critical IDs belongs to one or more specific classes of
maximally entangled stabilizer states [14].

A. GHZ theorem

Any class of ID that is whole, negative, and entangled
gives a straightforward proof of the GHZ theorem for a
specific class of maximally entangled N -qubit states and,
consequently, a Bell-type inequality violation. Following the
N -qubit Mermin inequality [15], several different approaches
have been developed to study the nonlocality of multiqubit
states, particularly graph states [16–18]. In all of these works
the inequality is based on stabilizer operators. Remarkably, any
whole negative entangled ID allows a proof that is irreducible
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FIG. 1. (Color online) Critical IDs are minimal sets of mutually
commuting N -qubit observables that relate to specific multiqubit
states. Each row [e.g., light yellow (light gray) circle in (a)] is a
different joint observable, where the implied tensor product symbols
are omitted for compactness, while each column [e.g. dark red (dark
gray) circle in (a)] corresponds to a different qubit. When each single-
qubit Pauli observable appears an even number of times in each
column of a negative ID, the set enables us to prove the GHZ theorem.
The tables represent (a) a whole negative ID related to the three-qubit
GHZ state, (b) a whole negative ID related to the four-qubit linear
cluster state, and (c) a partial positive ID related to the four-qubit
GHZ state.

for a specific class of states and also a generalization of the
original GHZ theorem.

Let us consider a joint eigenstate of a whole negative critical
ID and independent single-qubit measurements {X,Y,Z,I } on
each party. The negativity of the ID guarantees that the overall
product of the expectation values of the multiqubit observables
should be −1 according to quantum mechanics (QM). On
the other hand, the wholeness of the ID guarantees that the
overall product should be +1 in any local hidden-variable
theory (LHVT), so we obtain the GHZ contradiction [19].
Figures 1(a) and 1(b) show two whole negative IDs for the
three- and four-qubit cases, respectively. Note that this type
of ID exists only for N > 2 and requires measuring at most
M = N + 1 observables for a critical ID. Starting from N = 5,
it is possible to find entangled whole negative IDs with M <

N + 1, giving the most compact demonstration of the GHZ
theorem; for example, there exist one ID55

w and two distinct
ID56

w [14]. While the original proofs of the GHZ theorem
depend on the preparation of a particular state, these IDs can
show the proof using any state within a particular subspace.

B. ID Bell inequality

We construct the Bell-type inequality, defining first the
corresponding Bell’s parameter α for a given negative IDMN

w

as

α =
M∑
i

λiOi =
M∑

i|λi=1

Oi −
M∑

i|λi=−1

Oi, (1)

where Oi are the observables of the ID and λi are the
eigenvalues of a specific (target) eigenstate of the ID. The
expectation value of α according to QM is 〈α〉QM = M .
In LHVTs, the eigenvalues of each Oq must belong to a
noncontextual value assignment, and because of wholeness
the total number of Oq assigned to the eigenvalue −1 must be
even. Given this constraint, we obtain an upper bound on the
expectation value of α in LHVTs according to

〈α〉LHV T � M − 2, (2)

which we call the ID Bell inequality (see Appendix A for more
details).

C. ID entanglement witness

Any Bell-type inequality can be used to experimentally verify
the correlations within a multiparty state. For the two-qubit
case the Bell parameter related to the Clauser-Horne-Shimony-
Holt (CHSH) inequality [20] is a widely used quantity to
characterize sources of two entangled qubits [21,22]. In a
similar way the N -qubit ID-Bell inequality can be used to
certify sources of multiqubit entangled states.

We can construct a set of general witness operators for each
ID {WID

C }. This is done by constructing 〈α〉 for any particular
class C of states and maximizing over the entire class to obtain
γC = max|ψ〉∈C〈ψ |α|ψ〉. The ID C witness operator is then

WID
C = γCI − α, (3)

which guarantees that 〈WID
C 〉 � 0 for all states in C, while

clearly 〈WID
C 〉 < 0 only for states close to the target state

(assuming γC < M) [23]. This includes the so-called entangle-
ment witnesses [24], by letting C be the set of all biseparable
states, and, more generally, the multipartite Schmidt-number
witnesses [7], by letting C include nonbiseparable states with
different Schmidt numbers than the target state. For these
specific classes, we can use an existing analytic solution [24]
to put an upper bound on γC , �C , as shown in Appendix A.
However, using this method, we obtain a bound that is based
solely on the target state, with no advantage of considering
one ID within the set of stabilizer observables over another. In
some cases maximizing γC directly for a particular ID gives
a stronger discrimination than using �C . A general analytic
method for performing this direct maximization is an open
question, but numerical methods remain feasible for many
cases, such as the ones presented below.

D. ID fidelity estimation

The measured value of the ID Bell parameter 〈α〉exp enables
us to put a lower bound on the fidelity of an experimentally
prepared state |ψ〉 with respect to the intended eigenstate
|κ0〉. For a general IDMN (provided that it contains M − 1
independent generators from the stabilizer group), we consider
the case that |ψ〉 is a pure state expressed in the eigenbasis of
the ID,

|ψ〉 = a|κ0〉 +
V∑

i=1

bi |κi〉, (4)

where |κi〉 are the V − 1 other eigenstates in the basis and
|a|2 + ∑V

i=1 |bi |2 = 1. Using 〈α〉exp, we obtain a lower bound
on the amplitude of |κ0〉 and, consequently, on the fidelity of
state |ψ〉 (see Appendix A for the derivation):

|a|2 � (〈α〉exp − M + 4)/4 ≡ FID. (5)

This can be generalized for mixed states by replacing the left
side of inequality (5) with 〈|a|2〉 ≡ ∑m

j=1 cj |aj |2, which is
the weighted average amplitude of |κ0〉 among the pure states
that make up the density matrix plus noise, ρ = c0I/2N +∑m

j=1 cj |ψj 〉〈ψj |, with |ψj 〉 being equal to (4) and
∑m

j=0 cj =
1. In practice the bound can be used to certify the preparation
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of a specific quantum state using only a maximum of N + 1
measurement settings, without resorting to complete quantum
state tomography (QST) [25], which requires 3N measurement
settings.

We also want to emphasize that the critical IDs are
nonclassical structures by definition. Critical whole negative
IDs combine all the above-mentioned quantum properties at
once. But even noncritical IDs, partial IDs, and/or positive
IDs can show one or more quantum aspects of the considered
eigenbasis. Specifically, any ID that contains N independent
generators, whether it is critical or not, gives us a lower
bound on the fidelity and can also be used for entanglement
discrimination.

III. EXPERIMENT AND RESULTS

We apply the ID method to characterize an experimental
four-qubit cluster state, related to the ID54

w [Fig. 1(b)], where
the cluster state is a specific class of graph states [2]. As a fur-
ther demonstration of the functionality of IDs we also analyze
the three- and four-qubit GHZ states, using the corresponding
ID43

w [Fig. 1(a)] and ID54
p [Fig. 1(c)], respectively. In order

to generate these entangled states we use a photonic setup
(Fig. 2) in a so-called railway-crossing configuration. Due to
its compactness and high stability, this arrangement has been
proven to be very suitable for several experiments [26–29].
The scheme is based on a double spontaneous parametric
down-conversion process (SPDC), bulk optics, and motorized
tomographic elements to achieve reliable measurements over
long periods. Additional half-wave plates (HWPs) allow us to
to switch from the generation of cluster states to GHZ states.

FIG. 2. (Color online) A femtosecond-pulsed UV-laser beam
passes twice through a β-barium borate (BBO) crystal, producing
pairs of polarization-entangled photons. The photons are emitted in
forward and backward directions and are recombined on polarizing
beam splitters (PBSs). Walk-off effects are compensated using HWPs
and half-thick BBOs. Additional HWPs set the entangled pairs to a
selected Bell state. By postselecting fourfold coincidence events we
obtain the desired cluster state or GHZ state. Polarization analysis is
implemented with motorized tomographic optic components.

A. Four-qubit linear cluster state

By aligning to produce |φ−〉 entangled pairs in the forward
direction and |φ+〉 in the backward direction (see Fig. 2 and
Ref. [29] for details), where |φ±〉 = (|00〉 ± |11〉)/√2, we
obtain the state

|Clin〉 = (|0000〉 + |0011〉 + |1100〉 − |1111〉)/2, (6)

which is equivalent to the linear cluster state up to local
unitaries (LU), specifically up to H ⊗ I ⊗ I ⊗ H , where
H = (Z + X)/

√
2 is the Hadamard gate. The polarizing beam

splitters (PBSs) and the two interferometers in the setup, which
are necessary to select the above four terms of the state, reduce
the fourfold count rate to 0.33 Hz.

1. Test of GHZ theorem

Each of the ID54
w measurements is acquired for 4800 s.

We obtain 〈α〉exp = 3.24 ± 0.05, which shows a violation of
the ID Bell inequality by 4.8σ and consequently proves the
GHZ theorem for a four-qubit entangled state [Fig. 3(a)]. More
detailed results are reported in Appendix B. The uncertainty,
like all others reported below, is due to Poissonian counting
statistics and constitutes a lower limit for the errors.

2. ID entanglement witness

In order to certify the cluster state through ID entan-
glement witnesses, one constructs γC for any general pure
quantum state. From the analytic method [24] we find that
to discriminate against all biseparable states Bi, as well as
the four-qubit GHZ and W states, �{Bi,GHZ,W } = 3 (which
also coincides with αLHV T = 3), while to rule out certain
other maximally entangled four-qubit states �4qC = 4 [30].

FIG. 3. (Color online) (a) Measured expectation values for
the ID54

w (on the left) and results of the maximization of
γC for different four-qubit entangled states (on the right).
|C 〉=(|0000〉+|0101〉+|1010〉−|1111〉)/2 and |C 〉=(|0000〉+|0110〉+|1001〉−|1111〉)/2 are
reached by exchanging the order of qubits in the linear cluster state.
In the dashed box we report the experimental result of the ID-Bell
parameter. (b) Measured expectation values for the ID43

w (on the left)
and results of the maximization of γC for three-qubit entangled states
(on the right). In the dashed box we report the experimental result of
the ID-Bell parameter.
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The measured value of 〈α〉exp enables us to obtain a negative
value for 〈WID

{Bi,GHZ,W }〉 but not for 〈WID
4qC〉. In some cases

we can find better (more negative) values of 〈WID〉 for some
specific classes of states by using numerical maximization of
〈ψ |α|ψ〉 to put an upper bound on γC . A detailed analysis is
reported in Appendix B. In Fig. 3(a) we show a few results of
γC obtained via numerical maximization. We consider product
states, the GHZ state |GHZ4〉, the W state |W4〉, and also
different types of cluster states since the linear cluster |Clin〉 is
not fully symmetric under the exchange of qubits. In particular,
exchanging the order of the qubits, we evaluate γC for the Z

cluster |C 〉 and the shear cluster |C 〉. The analytic method
gives �{C ,C } = 3.

For four qubits there are an infinite number of entanglement
classes that are inequivalent to one another under stochastic
local operations and classical communication (SLOCC) [31].
All of these classes can be given in terms of a relatively
small number of continuous entanglement monotones [32],
but a general classification for more qubits is not known.
A more comprehensive calculation is required to obtain the
upper bound, γC for such states. In any event our results for
〈WID〉 certify the four-party entanglement and rule out other
particular maximally entangled four-qubit states.

3. Fidelity estimation

Using Eq. (5) for the ID54
w and 〈α〉exp, we estimate FID =

0.56 ± 0.01. Here we want to point out that the stabilizer
group of the cluster state contains eight different ID54

w’s that
are equivalent by definition, and thus each of them allows for
a quantum state estimation. All of these sets report similar
values of FID (see Appendix B for the complete data). In
order to verify the validity of this bound we reconstruct the
full density matrix through QST with an acquisition time of
600 s for each measurement setting. The extracted quantum
state fidelity is FQST = 0.629 ± 0.007.

B. Three-qubit GHZ state

Measuring one of the cluster state qubits and performing
LU transformations, we produce the three-qubit GHZ state:

|GHZ3〉 = (|000〉 + |111〉)/
√

2. (7)

In the experiment we project the second qubit from Eq. (6)
onto the diagonal state |−〉 = (|0〉 − |1〉)/√2 and apply a
Pauli-X operation and a Hadamard gate on the first qubit as
postprocessing. The state is characterized by the ID43

w. We
analyze it following the same procedure used for the cluster
state. The GHZ theorem is proven by a violation of the ID
Bell inequality of 3.1σ . The ID Bell parameter is 〈α〉exp =
2.6 ± 0.2. We report the γC values for the entanglement
witness in Fig. 3(b), with �C = 2 for biseparable states. The
obtained 〈α〉exp is not sufficient to rule out the three-qubit |W3〉;
nevertheless, it can still confirm the three-party entanglement
of the generated state. The fidelity values obtained from the ID
and QST are FID = 0.64 ± 0.05 and FQST = 0.672 ± 0.015.
Note the relative error for the fidelity bound is higher than
that for the cluster case since the data are determined from the
tomography measurements and so are acquired in less time
(600 s). See Appendix B for detailed data.

C. Four-qubit GHZ state

Aligning the two entangled pairs in the setup (Fig. 2) to a
|φ+〉 state and a |ψ+〉 state, with |ψ+〉 = (|01〉 + |10〉)/√2,
the fourfold coincidences correspond to the four-qubit GHZ
state up to two local unitary Pauli-X operations:

|GHZ4〉 = (|0000〉 + |1111〉)/
√

2. (8)

We experimentally implement these LU transformations by
using HWPs for the third and fourth qubits of the state.
The state is described by the ID54

p [see Fig. 1(c)], which is
critical and partial. This implies that the ID analysis cannot
include a proof of the GHZ theorem. However, the ID54

p is
still maximally entangled. It generates the complete stabilizer
group of the GHZ state, so it can be exploited to test the
fidelity of the state and as an entanglement witness. We
obtain a bound of the fidelity of FID = 0.71 ± 0.01 and
reconstruct the exact fidelity via QST with the result FQST =
0.701 ± 0.008. The analytic bound for the ID witness, �C = 3,
and 〈α〉exp = 3.84 ± 0.05 combine to form a negative 〈WID〉
over the class of biseparable states. Additionally, the numerical
maximization technique reports a maximum of γC = 3 for
several maximally entangled four-qubit states (see Appendix B
for the numerical results), allowing 〈α〉exp to discriminate these
from the generated state.

IV. COMPARISON OF DIFFERENT METHODS

An interesting question is how IDs compare to other
approaches used for state characterization of multiqubit states
based on incomplete data.

Concerning the nonlocality proof, we emphasize that the ID
Bell inequality is composed of a minimal and irreducible set of
mutually commuting observables for a specific state. This is in
contrast to previous works [28,33] where the joint observables
are not maximally entangled, implying that nonlocality could
still be proven by preparing a state with fewer entangled qubits
and using fewer parties. While our nonlocality test does not
rule out hybrid hidden-variable models of entanglement or
nonlocality [34], it does simultaneously discriminate against
less entangled states within the Hilbert space formalism, as
well as some different maximally entangled N -qubit states.
The Bell inequality for graph states proposed in Ref. [16]
involves the complete stabilizer group (SG), which is always
maximally entangled but is not as compact as an ID, scaling
exponentially with N rather than linearly.

Several witnesses were introduced to discriminate specific
entangled states [7,8,24] providing analytic solutions, which
require minimal experimental effort. Nevertheless, there was
no generalization for the whole class of stabilizer states,
only distinct derivations per subclass. For example, Ref. [8]
proposes a reduced witness for N -qubit cluster (GHZ) states
which requires N (N + 1) measurement settings. The ID
witness requires at most N + 1 measurement settings for every
stabilizer state, and for many specific cases it needs less than N

settings (e.g., the ID54
w can be measured with four settings and

the ID54
p with only three). Each of these methods is minimal

in some particular way, and both are robust against noise. An
additional method for entanglement discrimination, discussed
in detail in [10], is to select subsets of stabilizer observables
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FIG. 4. (Color online) Comparison of fidelities obtained with
different methods for the four-qubit linear cluster, four-qubit GHZ
state, and three-qubit GHZ state. The QST (red/first bar for every
state) and SG (blue/second bar) approaches scale exponentially,
while the ID (yellow/third bar), GoSG (green/fourth bar), and Wit
(purple/fifth bar) approaches scale linearly with the number of qubits.
Within the error bars the IDs set lower bounds, in agreement with the
QST results. The SG fidelities tend to overestimate the QST ones. The
GoSG and Wit bounds, like the IDs, are consistent with the rest of
the methods. Note that FGoSG < 0.5 for the four-qubit linear cluster,
so it is not sufficient to certify that the state can violate a Bell-type
inequality. The error bars derive from Poissonian statistics and thus
correspond to a lower limit.

that are optimal for discriminating against a particular state,
although a general method for obtaining these sets for N

qubits is lacking. Unlike critical IDs, these subsets are usually
not suitable as general entanglement witnesses because they
do not simultaneously discriminate against other particular
states or less entangled states. Reference [10] also gives a
general method for discriminating between N -qubit stabilizer
states using their complete stabilizer groups, but this method
scales exponentially. The minimal ID witness sets can be
simultaneously used to discriminate against particular states
and, in some cases, also to achieve the optimal discrimination
against particular states (as with the four-qubit GHZ state using
the ID44

p in the Appendix B).
A fidelity estimation with incomplete data is obtained using

the SG of the state [6,35,36]. This method, based on 2N

measurement settings, still scales exponentially, just like the
QST. Comparing the QST (from [25]) and SG analyses for our
experimental data in Fig. 4 (first two bars), we see that the SG
fidelity results in a higher value than the QST fidelity for states
with noise. The QST approach is considered to underestimate
the real value of the fidelity [37], whereas the SG approach,
based on the assumption of ana priori known ideal state,
might jeopardize the actual applicability of the characterized
state if the resulting fidelity overestimates the real value.
Alternatively, a lower bound of the fidelity can be found
using the generators of the stabilizer group (GoSG) [9,38],
the above-mentioned witnesses (Wit) [39], or the IDs. These
techniques scale linearly and provide thoroughly fair bounds
for practical applications. Nevertheless, the Wit’s derivation
is not general for stabilizer states like the ID and the GoSG
approaches are. We analytically compare the last two methods
in Appendix A, showing the IDs give stronger (equally fair)
bounds on the fidelity within an experimental environment. We
calculate the fidelity for the experimentally generated stabilizer

states using these estimations and summarize the result in
Fig. 4.

We remark that the real value of the IDs approach is
to capture all the different quantum features of a state at
one time. We can exploit this generality to calculate the
minimum fidelity required for an experimental demonstration
of multiqubit nonlocality using IDs. Simply setting 〈α〉exp =
〈α〉LHV T = M − 2 and inverting expression (5), we obtain
〈|a|2〉nonlocal > 1/2. This verifies the already-proved limit of
50% fidelity, which is necessary for violation of any Bell-type
inequality based on the GHZ theorem [40,41]. In most cases
it is also the bound for discriminating less than maximally
entangled states.

V. CONCLUSION

We have reported the characterization of an experimental
four-qubit cluster state and a three-qubit GHZ state with the use
of critical whole negative IDs. Our efficient method requires
only N + 1 measurements for an N -qubit state and is of high
practical value because it provides simultaneously a quantum
state fidelity bound, an entanglement witness, and a nonlocality
proof. For these reasons, IDs provide convenient laboratory
tests of generated entangled resource states and certify that
they are eligible for quantum science applications. Since the
ID’s observables belong to a single stabilizer group, they can
even be implemented within stabilizer-based protocols such
as quantum error correction and measurement-based quantum
computing.

Entangled IDs, even if they are not critical, whole, or
negative, can still be used to estimate the fidelity of a multiqubit
state and to construct witness operators, as we have shown
with the generated four-qubit GHZ state. Additionally, special
sets of IDs give rise to irreducible proofs of the N -qubit
Kochen-Specker theorem [12,42], demonstrating the conflict
between noncontextual hidden variable theories and QM. All
of these connections emphasize the fundamental relationships
between entanglement, contextuality, and nonlocality in quan-
tum physics.

Furthermore, in the sense that these nonclassical phenom-
ena are exactly the set of resources we wish to exploit, the full
family of IDs is also the complete set of elemental resources
for quantum information processing within the N -qubit Pauli
group.
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APPENDIX A: THEORY

1. Derivation of the ID Bell inequality

In the following we show how to derive the ID Bell
inequality given in Eq. (2) in the main text.

We rewrite the ID Bell parameter for a given negative
IDMN

w as

α =
M∑
i

λiOi =
M∑

i|λi=1

Oi −
M∑

i|λi=−1

Oi, (A1)

where Oi are the joint observables of the IDMN
w and λi

(i = 1, . . . ,M) are the eigenvalues of the ID eigenstate. If a
local hidden-variable theory (LHVT) is to agree with quantum
mechanics (QM), then every term Oi in α must be positive
overall. This means that each Oi with λi = 1 in Eq. (A1) must
contain an even number of single-qubit Pauli observables oq

assigned the value −1 and each Oi with λi = −1 must contain
an odd number of those. Suppose that there are n terms in∑M

i|λi=1 Oi that contain two −1 values each, m terms that
contain four −1 values each, l terms with six, etc. Likewise,
there are r terms in

∑M
i|λi=−1 Oi that contain a single −1 value

each, s terms that contain three −1 values each, t terms with
five, etc. We also note that because the ID is negative, the value
γ = r + s + t + · · · , which is the overall number of terms in
the first summation, is always odd. Using these definitions, we
can write the total number of −1 values appearing in α as

η = (2n + 4m + 6l + · · · ) + (r + 3s + 5t + · · · )

= (2n + 4m + 6l + · · · ) + (2s + 4t + · · · ) + γ. (A2)

In the rightmost side of this equation, it is easy to see that
the numbers in the parentheses are even, and then because γ

is odd, η must also be odd. Because the ID is whole, only
even values of η are possible in an LHVT, and this causes at
least one term Oi in α to be negative. From this we obtain an
upper bound, 〈α〉lhvt � M − 2, which is finally our ID Bell
inequality.

2. Derivation of the ID fidelity bound

For a general IDMN
w (provided that it contains M − 1

independent generators), we consider first the case that |ψ〉
is a pure state expressed in the eigenbasis of the ID,

|ψ〉 = a|κ0〉 +
V∑

i=1

bi |κi〉, (A3)

where |κi〉 are the V − 1 eigenstates in the basis different from
|κ0〉 and V is the number of all the possible states in the basis.
Of course |a|2 + ∑V

i=1 |bi |2 = 1. Then, the expectation value
of α

〈α〉exp = |a|2〈κ0|α|κ0〉 +
V∑

i=1

|bi |2〈κi |α|κi〉. (A4)

We recall that the maximum value of 〈α〉QM is M . Also,
because the product of all eigenvalues is fixed for the
observables of an ID, any eigenstate |κi〉 of the same ID with
different values for λi necessarily causes at least two terms in
〈α〉 [Eq. (A1)] to be −1, resulting in a maximum of M − 4

for that eigenstate. If we allow the presence of noise, Eq. (A4)
becomes

〈α〉exp � M|a|2 +
V∑

i=1

(M − 4)|bi |2 = 4|a|2 + M − 4, (A5)

which we can rewrite as

|a|2 � (〈α〉exp − M + 4)/4. (A6)

This is the experimental lower bound on the probability
amplitude of |κ0〉 within the experimental state |ψ〉. It
corresponds to a lower bound on the fidelity of a particular
state for M = N + 1 and the fidelity that the state lies within
a particular subspace for M < N + 1.

Next, we generalize the above derivation to the case of
mixed states. For a general convex combination of m pure
states plus noise,

ρ = c0
I

2N
+

m∑
j=1

cj |ψj 〉〈ψj |, (A7)

where
∑

cj = 1, we can expand each |ψj 〉 as in Eq. (A3),
|ψj 〉 = aj |κ0〉 + ∑V

i=1 bij |κi〉, and follow the same argument
to obtain

〈αexp〉 �
m∑

j=1

cj (4|aj |2 + M − 4). (A8)

Given that we have no experimental access to cj , we must
allow the constant term to take its maximum value, and then
we obtain

〈|a|2〉 � (〈αexp〉 − M + 4)/4, (A9)

where 〈|a|2〉 ≡ ∑
cj |aj |2 is the weighted average amplitude

of |κ0〉 among the pure states that make up ρ and the noise
component (for which the amplitude of |κ0〉 is assumed to
be a0 = 0). Therefore the most general interpretation of our
inequality is that it places a lower bound on the average
amplitude of |κ0〉 within a mixed state ρ and thus that we
have obtained a lower bound on the fidelity of the prepared
state. This also allows for the possibility that our N qubits
are entangled with additional ancillary qubits that we do not
control since measuring them is then analogous to measuring
some convex mixture of N -qubit pure states.

3. Comparing the fidelity bounds obtained
using IDs and generators

Let us now compare the fidelity bounds obtained with our
ID-based method and the generator-based method (GoSG) of
Ref. [9]. In that work the authors provide a general equation for
any set of N generators which gives the fidelity to be bounded
below by

FGoSG =
(∑

n

an − N + 2

)/
2, (A10)

while our ID-based method gives a lower bound of

FID =
(∑

m

am − M + 4

)/
4, (A11)
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where Ai are observables and ai = 〈Ai〉 are their experimen-
tally obtained expectation values.

Their method makes use of the N specific generators of a
graph state, for which all eigenvalues λn = 1. Every set of N

independent generators gives an IDMN (with M = N + 1) by
adding one more observable AM to the set,

AM = λM

∏
n

An, (A12)

with λM being equal to the sign of the resulting ID, such that
0 � ai � 1.

Putting all of this together we can construct a quantitative
comparison of our two bounds for the same set of N generators
and the Mth observable needed for our method.

FID − FGoSG =
(∑

m

am − M + 4

)/
4

−
(∑

n

an − N + 2

)/
2

=
[

(aM − 1) +
(

N −
∑

n

an

)]/
4. (A13)

Clearly, the difference vanishes when both methods give
perfect fidelity. However, in the case that the measurements
are imperfect, −1 � aM − 1 � 0 and 0 � N − ∑

n an � N .
If we let all of the am take the same average value (call it
a0 < 1), then this reduces to

FID − FGoSG = (N − 1)(1 − a0)/4 > 0, (A14)

which shows that our bound is usually better. Of course in
practice this will depend on the specific values of am, and
indeed, in the bizarre case where aM = 0 and an = 1, we get
FID = 0.75 and Fg = 1, and their bound is actually better by
1/4. So, generally speaking, the best practice will be to take
the better of these two bounds for a given set of measured
values am, and their method gives a better bound when

N −
∑

n

an < 1 − aM (A15)

or ∑
n

en < eM, (A16)

where ei = 1 − ai is the error of each measurement. Interest-
ingly, it is truly arbitrary which of the observables Am in an ID
is chosen to be AM , which means we can examine all M choices
and take the best of the M + 1 different bounds obtained from
the measured set am. FID is better for the case when the average
errors of the all measurements are comparable, but if the error
of any one measurement is worse than all the others combined,
then FGoSG is the superior bound, effectively allowing us to
ignore the one particularly bad measurement. The relative
quality of the good and bad measurements required to satisfy
this condition increases linearly with N , and thus it becomes
increasingly unlikely that we can throw away a measurement
in this way. Therefore in a realistic experimental setting, as N

increases, FID quickly becomes the superior bound.

4. Derivation of the ID entanglement witness

Here we give the derivation of the analytic solution for the
upper bound �C on γC for ID witness observables. We begin
by rewriting Eq. (A6) as

〈α〉exp � 4|〈κ0|ψ〉|2 + M − 4, (A17)

where |κ0〉 is the particular eigenstate whose eigenvalues are
used to define α for this ID. Next, we let C be the class of
all possible bipartitions {Bl} of the N -qubit system. Following
the derivation in [24], we obtain

max
|ψ〉∈Bl

〈α〉exp � M − 4 + 4[max
m

{νm}]2 ≡ βl, (A18)

where {νm} are the Schmidt coefficients of |κ0〉 with respect
to the bipartition Bl . We therefore find that �C = maxl βl .
In many cases the individual βl have values lower than �C ,
so this method can be used to discriminate more strongly
against some bipartitions Bl than others. There is also a more
general analytic solution for γC that rules out some other
nonbiseparable types of states with different Schmidt numbers.

As in other cases [7,8], we can also obtain a relation between
these analytic entanglement witnesses and our measure of
fidelity of the quantum state:

FID = (
γC − 〈

WID
C

〉 − M + 4
)
/4. (A19)

When |ψ〉 is another stabilizer state, an upper bound can
also be determined analytically, as shown in [10]. For our
purposes, this method works by considering which observables
from the ID and the state’s stabilizer act nontrivially on the
same qubits. For the ID54 cases presented here, �C gives a
bound equal to or better than that of this method; the only
exception is the case of using ID54

p (related to the four-qubit
GHZ state) to discriminate against the shear cluster |C 〉 (where
it gives γ = 2 while �C = 3 and the numerical result γ = 1
is still better). For the ID44

p, �C = 4 is useless because that
method maximizes over two terms in a sum independently,
ignoring their mutual constraints. In this case, the method
of [10] can still be applied to analytically obtain the γC = 0
results in Table II (see Appendix B), but for all of the other
cases in that table, it gives γ = 4, and the numerical results
are still better. This is partly because their general method is
tailored to discriminating between graph states with connected
graphs and neglects less entangled states.

As indicated above, in many cases we can obtain better val-
ues for γC by directly maximizing over 〈ψ |α|ψ〉 numerically.
Obviously, no general solution is known for all possible classes
of states C, but numerical techniques can be used to obtain
maxima for many particular cases, allowing us to discriminate
against them, sometimes quite strongly.

We should point out that these witness techniques implicitly
assume the Hilbert space formalism of quantum mechanics. A
more general type of witness can be constructed that rules
out any hidden-variable theory without pairwise correlations
between every pair of qubits in the state [34]. Such witnesses
require one to measure a set of observables that do not all
mutually commute, so we cannot obtain this result within any
stabilizer-based protocol.
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5. Noise tolerance of ID entanglement witness

As has been done in the other cases [7], we can compute
the general tolerance of our ID witness observables to white
noise. To compute the tolerance, we solve Tr[WIDρ(pN )] <

0 for pN , where ρ(pN ) = pN/2NI + (1 − pN )|ψ〉〈ψ | is the
standard depolarizing noise channel and |ψ〉 is the state we
intend to witness. For an IDMN with M = N + 1,

pN <
M − γ

M
. (A20)

More generally, the eigenbasis of an IDMN is composed of
projectors |ψ〉〈ψ | of rank r = 2N−M+1, and the noise tolerance
is given by

pN <
r(M − γ )

r(M − γ ) + γ
. (A21)

These tolerances are valid regardless of what method is used
to obtain γ .

6. Entanglement in the Heisenberg picture

For N � 4, there exist maximally entangled IDs with fewer
than N independent generators that lie at the intersection of
the stabilizer groups of multiple locally inequivalent classes
of entangled states. Therefore we do not find a one-to-
one correspondence between the classification of locally
inequivalent entangled graph states (Schrödinger picture)
and the classification of entangled locally inequivalent IDs
(Heisenberg picture). This mismatch leads to the existence of
maximally entangled subspaces (belonging to IDs) that can
contain a continuum of locally inequivalent states (including
several locally inequivalent graph states). Indeed, the code
spaces already employed in quantum error correction are of
exactly this type, although the general utility of maximally
entangled spaces is more subtle and interesting.

To get a sense of the structure that emerges here, we can
look at the four- and five-qubit cases. For four qubits, there
are three locally inequivalent cluster states (as discussed in the
main paper); nevertheless, there exists a critical ID44 with an
eigenbasis of rank-2 subspaces that contain all three types of
cluster states.

For five qubits, there are four classes of maximally
entangled stabilizer states up to local unitaries and reordering
of qubits. These are the five-qubit GHZ state, cluster state,
pentagon state, and one other that we will call the cluster-B
state.

The GHZ stabilizers do not contain any ID55’s, so the
five-qubit GHZ-type entanglement does not belong to any
maximally entangled subspaces of IDs. The pentagon and
cluster state share a common negative ID55

w, and thus there is a
maximally entangled two-dimensional subspace that contains
both of these types of states, and all states in this space
provide proof of the GHZ theorem. There are also critical
ID55’s that are common to the cluster and cluster-B states,
but none of these are whole and negative; thus while they do
define maximally entangled spaces, they do not provide proof
of the GHZ theorem. There are also numerous spaces that
span locally inequivalent versions (permutations of qubits) of
a given entangled state, just as in the four-qubit cluster case.

TABLE I. Numerical upper bounds on γC (max|ψ〉∈C〈α〉) for ID54
w .

All the quantum states, which differ from the target state |Clin〉, have
the analytic bound �C = 3, except for particular bipartitions (marked
with an asterisk) where �C = 2. In some cases the numerical values
result are even lower.

State type γC State type γC

|ψ1〉|ψ2〉|ψ3〉|ψ4〉∗ 2 |ψ3〉|GHZ124〉 3
|ψ1〉|ψ2〉|�34〉 3 |ψ4〉|GHZ123〉 3
|ψ1〉|ψ3〉|�24〉∗ 2 |ψ1〉|W234〉 2.6667
|ψ1〉|ψ4〉|�23〉∗ 2 |ψ2〉|W134〉 2.6667
|ψ2〉|ψ3〉|�14〉∗ 2 |ψ3〉|W124〉 2.3610
|ψ2〉|ψ4〉|�13〉∗ 2 |ψ4〉|W123〉 2.3610
|ψ3〉|ψ4〉|�12〉 2 *|GHZ1234〉 3
|�12〉|�34〉 3 |W1234〉 3
|�13〉|�24〉∗ 1 |C 〉 3
|�14〉|�23〉∗ 1 |C 〉 3
|ψ1〉|GHZ234〉 3 |Clin〉 5
|ψ2〉|GHZ134〉 3

From the above, we can see that the Bell and GHZ states
look more or less the same in both the Heisenberg and
Schrödinger pictures, but the same is not true for the other
types of states. The other types are simply cardinal states
within complete maximally entangled subspaces that remain
intact under local unitary evolution.

APPENDIX B: ANALYSIS

1. Four-qubit linear cluster state

a. ID entanglement witness

We present here the method we used to obtain numerical
bounds for γC for the ID54

w in order to discriminate against
states other than |Clin〉.

We break the analysis into pieces based on each LU-
inequivalent class of an N -qubit state. This significantly
reduces the number of parameters needed to explore the
general state space. For four qubits, a general pure state has 30

TABLE II. (a) Representation of ID44
p . (b) Numerical upper

bounds on γC for ID44
p . The analytic method always fails for this

case (i.e., �C = 4). The method proposed in Ref. [10] gives all cases
with γC = 0 but fails (i.e., γ = 4) for all other cases.

(a) (b)

State type γC State type γC

Z Z Z I |ψ1〉|ψ2〉|ψ3〉|ψ4〉 1 |ψ3〉|GHZ124〉 2
X X I Z |ψ1〉|ψ2〉|�34〉 2 |ψ4〉|GHZ123〉 2
Y I X X |ψ1〉|ψ3〉|�24〉 2 |ψ1〉|W234〉 2
I Y Y Y |ψ1〉|ψ4〉|�23〉 2 |ψ2〉|W134〉 2

|ψ2〉|ψ3〉|�14〉 2 |ψ3〉|W124〉 2
|ψ2〉|ψ4〉|�13〉 2 |ψ4〉|W123〉 2
|ψ3〉|ψ4〉|�12〉 2 |GHZ1234〉 0
|�12〉|�34〉 0 |W1234〉 2
|�13〉|�24〉 0 |C 〉 4
|�14〉|�23〉 0 |C 〉 4

|ψ1〉|GHZ234〉 2 |Clin〉 4
|ψ2〉|GHZ134〉 2
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FIG. 5. Different types of cluster states.

free parameters. If we begin with a particular entangled state,
then we can explore the entire entanglement class using only
LU operations, and this reduces the number of free parameters
to at most 12 (which is a significant reduction in terms of com-
putational resources needed to calculate the bounds). We use
the MATLAB OPTIMIZATION TOOLBOX function FMINSEARCH.M
to perform the multivariate maximization. This function finds
local maxima based on an initial guess. We therefore proceed
with a sort of ad hoc “Monte Carlo” maximization technique
by making a large number of initial guesses and taking the best
local maximum from among these runs. In order to get conver-
gent results from this method, we actually compute an upper
bound γC � maxC

∑M
i |〈Oi〉|. This function has far fewer local

maxima in C than 〈α〉. We report in Table I the obtained upper
bounds of γC for several quantum states. We considered a fully
separable state |ψ1〉|ψ2〉|ψ3〉|ψ4〉, product states of two-qubit
Bell states |�ij 〉 (i,j = {1,2,3,4}), partial separable states,
GHZ states |GHZ〉, W states |W 〉, and different types of
cluster states, |C 〉 = (|0000〉 + |0101〉 + |1010〉 − |1111〉)/2
and |C 〉 = (|0000〉 + |0110〉 + |1001〉 − |1111〉)/2.

Although we lack general numerical results for N � 4, we
conjecture that the negativity of WID(which is equivalent to
the violation of the ID Bell inequality) can happen only with
the specific stabilizer state that corresponds to α (up to LU
transformations) or states that include it as a large enough part
of a superposition and/or mixed state.

Within the cluster stabilizer group there are 196 different
entangled IDs belonging to 8 specific isomorphism classes
with M = 5 or M = 4 and distinct features. From each of
these we can obtain an ID fidelity and an ID entanglement

FIG. 6. (Color online) Reconstructed density matrix (real part) of
the four-qubit cluster state (FQST = 0.629 ± 0.007). The imaginary
part is not shown since its components are below 0.05.

TABLE III. Measured expectation values for all operators in the
stabilizer group of |Clin〉. For FGoSG we used the operators ZZII ,
IIZZ, IZXX, XXZI .

Observable Expectation value Observable Expectation value

ZZII 0.93 ± 0.01 Y Y I Z − 0.65 ± 0.02
IIZZ 0.78 ± 0.02 Y Y Z I − 0.65 ± 0.02
ZIXX 0.61 ± 0.02 XYXY 0.47 ± 0.02
IZXX 0.59 ± 0.02 XYYX 0.52 ± 0.02
IZYY − 0.58 ± 0.02 YXXY 0.52 ± 0.02
ZIYY − 0.58 ± 0.02 YXYX 0.60 ± 0.02
XXZI 0.66 ± 0.02 ZZZZ 0.75 ± 0.02
XXIZ 0.62 ± 0.02 IIII 1 ± 0.03

witness. As an example we show in Table II(a) one such
positive partial ID44

p. The corresponding ID witness allows
us to discriminate much more strongly against some entangled
states with the numerical maximization method than with the
analytic solution for the same witness [see Table II(b)]. Of
particular interest are the cases where γC = 0 since we can
discriminate against these states with perfect noise tolerance:
any 〈α〉exp > 0 is sufficient.

We show the graphs that generate each of the three LU-
inequivalent four-qubit cluster states in Fig. 5. The graphs in
Figs. 5(b) and 5(c) are obtained by exchanging the order of
qubits in the linear cluster state |Clin〉 = (|0000〉 + |0011〉 +
|1100〉 − |1111〉)/2.

2. Quantum state tomography

We reconstruct the density matrix of the generated cluster
state through complete quantum state tomography. The real
part is shown in Fig. 6. The components of the imaginary part
are below 0.047 and are hence not presented here.

The error is estimated running a 100-cycle Monte Carlo
simulation with Poissonian noise added to the experimental
counts.

FIG. 7. All eight equivalent ID54
w whose joint eigenstate is |Clin〉.
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TABLE IV. Measured expectation values for all
operators in the stabilizer group of |GHZ3〉. The first
four values are used to obtain a FID = 0.64 ± 0.04.
ZZI , IZZ, and XXX are the generators used for
FGoSG.

Observable Expectation value

XXX 0.81 ± 0.07
YXY − 0.61 ± 0.09
XYY − 0.59 ± 0.09
YYX − 0.54 ± 0.10
ZZI 0.61 ± 0.09
ZIZ − 0.64 ± 0.09
IZZ 0.88 ± 0.05
III 1 ± 0.12

3. Stabilizer group

The stabilizer group operators and their respective expec-
tation values are reported in Table III.

a. Equivalent IDs

We show in Fig. 7 the eight equivalent ID54
w’s within the

stabilizer group of |Clin〉. We calculate the relative bounds of
fidelity for each of these IDs, obtaining results in the range
{0.51 ± 0.01,0.56 ± 0.01}.

4. Three-qubit GHZ state

a. Stabilizer group

The stabilizer group operators and their respective expec-
tation values are reported in Table IV. Note that these results
are extrapolated from the quantum state tomography setting of
the cluster state and after projection of the second qubit of the
cluster state onto the state |−〉 = (|0〉 − |1〉)/√2.

FIG. 8. (Color online) Reconstructed density matrix (real part) of
the three-qubit GHZ state (FQST = 0.672 ± 0.015). The imaginary
part has components below 0.07 and is not shown.

FIG. 9. (Color online) Reconstructed density matrix (real part)
of the four-qubit GHZ state (FQST = 0.701 ± 0.008). The imaginary
part is not shown since its components are below 0.03.

TABLE V. Numerical upper bounds on γC for ID54
p . For bisep-

arable states, the analytic bound is �C = 3, while in some cases the
numerical result is lower.

State type γC State type γC

|ψ1〉|ψ2〉|ψ3〉|ψ4〉 3 |ψ3〉|GHZ124〉 3
|ψ1〉|ψ2〉|�34〉 2 |ψ4〉|GHZ123〉 3
|ψ1〉|ψ3〉|�24〉 2 |ψ1〉|W234〉 2.3333
|ψ1〉|ψ4〉|�23〉 1 |ψ2〉|W134〉 2.3333
|ψ2〉|ψ3〉|�14〉 1 |ψ3〉|W124〉 2.3333
|ψ2〉|ψ4〉|�13〉 2 |ψ4〉|W123〉 2.3333
|ψ3〉|ψ4〉|�12〉 2 |W1234〉 3
|�12〉|�34〉 3 |Clin〉 3
|�13〉|�24〉 3 |C 〉 3
|�14〉|�23〉 1 |C 〉 1
|ψ1〉|GHZ234〉 3 |GHZ1234〉 5
|ψ2〉|GHZ134〉 3

TABLE VI. Measured expectation values for the observables
in the stabilizer group of |GHZ4〉. The acquisition time for each
measurement setting was 4800 s.

Stabilizer Expectation value Observable Expectation value

ZZII 0.87 ± 0.02 YYYY 0.56 ± 0.03
IIZZ 0.88 ± 0.02 XXYY − 0.51 ± 0.03
ZIZI 0.90 ± 0.02 XYXY − 0.56 ± 0.03
IZIZ 0.90 ± 0.02 XYYX − 0.60 ± 0.03
ZIIZ 0.85 ± 0.02 YXXY − 0.48 ± 0.03
IZZI 0.85 ± 0.02 YXYX − 0.51 ± 0.03
ZZZZ 0.85 ± 0.02 YYXX − 0.53 ± 0.03
XXXX 0.54 ± 0.03 IIII 1 ± 0.03
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b. Quantum state tomography

We present in Fig. 8 the density matrix of the experimental
three-qubit GHZ state, reconstructed through complete quan-
tum state tomography.

5. Four-qubit GHZ state

a. ID entanglement witness

We report in Table V the numerical values of γC for the
ID54

p calculated via the same maximization procedure used

for the four-qubit cluster case. The analytic bound is γC = 3
for all bipartitions.

b. Quantum state tomography

We present in Fig. 9 the density matrix of the experimental
four-qubit GHZ state, reconstructed through complete quan-
tum state tomography.

c. Stabilizer group

The stabilizer group operators and their respective expec-
tation values are reported in Table VI.
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