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Quantum walks on translation-invariant regular graphs spread quadratically faster than their classical
counterparts. The same coherence that gives them this quantum speedup inhibits or even stops their spread
in the presence of disorder. We ask how to create an efficient transport channel from a fixed source site (A) to
fixed target site (B) in a disordered two-dimensional discrete-time quantum walk by cutting some of the links.
We show that the somewhat counterintuitive strategy of cutting links along a single line connecting A to B

creates such a channel. The efficient transport along the cut is due to topologically protected chiral edge states,
which exist even though the bulk Chern number in this system vanishes. We give a realization of the walk as a
periodically driven lattice Hamiltonian and identify the bulk topological invariant responsible for the edge states
as the quasienergy winding of this Hamiltonian.
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I. INTRODUCTION

The discrete-time quantum walk (quantum walk for
short) [1], a quantum mechanical generalization of the random
walk, has in the recent years received more and more attention
from both the theoretical and the experimental sides. The
main drive to understand the properties of the quantum
walk comes from its possible use for quantum information
processing, be it quantum search algorithms [2], or even
general-purpose quantum computation [3]. Experiments on
quantum walks range from realizations on trapped ions [4–6]
to cold atoms in optical lattices [7,8] and on light on an
optical table [9–13], but there are many other experimental
proposals [14,15].

The distinguishing feature of quantum walks is that on reg-
ular graphs, they spread faster than their classical counterparts:
The root-mean-square distance of the walker from the origin
increases with the number N of steps as O(N ), rather than
O(

√
N ) as in the classical case. This can be put to good use

for algorithms based on quantum walks [2] that find a marked
state among N states in only O(

√
N ) steps, outperforming

their classical counterparts, the same scaling advantage as of
the Grover algorithm [16], which can also be understood as
a quantum walk. The intuitive explanation for this ballistic
scaling is that a quantum walk can be seen as a stroboscopic
simulator for an effective lattice Hamiltonian, and thus, in a
clean system, its eigenstates are plane waves.

If we understand a quantum walk to be a stroboscopic
simulator for a Hamiltonian, we can expect that static disorder
can impede the spreading of the walk, even bringing it to a
complete standstill, through Anderson localization [17]. This
prediction has been mathematically proven for some types of
one-dimensional quantum walks [18,19] and even observed
in an optical implementation [20]. However, even in one
dimension, some types of disorder lead to a slow, subdiffusive
spreading of the walk rather than complete localization [21];
this phenomenon can also be explained in terms of the effective
Hamiltonian [21,22]. Two-dimensional quantum walks are

also expected to suffer Anderson localization [23], although
in some cases disorder causes diffusion [24].

In this paper we address the following question: Is there
a way to create an efficient transport channel in a two-
dimensional split-step quantum walk (2DQW) that defeats
localization even if static disorder is present? We take a
quantum walk on a square lattice, with two special sites: A,
where the walk is started from, and B, where we want the
walker to ultimately end up, rather than escaping to infinity or
remaining in the vicinity of A. To create a channel, we cut links
on the lattice, thus restricting the movement of the walker. The
first idea, cutting out a narrow island, with A on the one end
and B on the other, is rendered ineffective by static disorder.
We find a somewhat counterintuitive strategy that does work,
however: Cutting the links along a single line connecting A

to B creates a conveyor belt for the walker, transporting it
efficiently and ballistically from A to B even in the presence
of a considerable amount of static disorder.

The way that a cut along a line on the lattice of the quantum
walk forms a robust conveyor belt for the walker is reminiscent
of how electrons are transported along line defects by edge
states in topological insulators [25]. This seems to be a promis-
ing direction for an understanding of the transport mechanism,
since the effective Hamiltonians of quantum walks can be en-
gineered to realize all classes of topological phases in one and
two dimensions [26]. However, the effective Hamiltonian of
the 2DQW is topologically trivial [26]. Thus, if there is a bulk
topological invariant protecting these states from disorder, it is
not covered by the standard theory of topological phases [27].

The topological structure of quantum walks is, in fact, richer
than that of time-independent Hamiltonians, and exploration
of that structure is far from complete. The telltale signs of
extra topology are protected edge states at the edges of bulks
where the topological invariants of the effective Hamiltonian
predict none. An example is 1D quantum walks with chiral
symmetry, where such edge states have been detected in
an optical experiment [28] and have been predicted to exist
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between two bulks with the same effective Hamiltonian [29].
In that case, the extra topological structure responsible for
the protection of these states has been found and can be
described based on time-delayed effective Hamiltonians [30],
scattering matrices [31], or as winding numbers of one part
of the time-step operator [32]. Edge states between two bulks
in the 2DQW have been found numerically [33], but the extra
topological invariants that they indicate are unknown.

In this paper we show that there are chiral (one-way
propagating) edge states along a cut in a 2DQW and identify
the bulk topological invariant responsible for their appearance.
We map the quantum walk to a periodically driven Hamiltonian
and thus identify the invariant as the winding number found
by Rudner et al. [34], which we refer to as Rudner invariant.

The paper is structured as follows. We introduce the type
of 2DQW we consider, together with the prescription of how
to cut links on the graph, in Sec. II. Then, in Sec. III, we
consider two strategies to enhance transport in the 2DQW: In
a clean case, the straightforward, “island cut” approach works
fine, but in the presence of disorder, only the less intuitive,
“line cut” approach gives efficient transport. We show that
there are edge states along the line cut in Sec. IV. In Sec. V
we find the bulk topological invariants responsible for the
edge states. In Sec. VI we consider the effects of disorder on
the edge-state transport.

II. DEFINITIONS

Of the wide variety of 2D quantum walks, we choose
the split-step walk on a square lattice (2DQW), defined in
Ref. [26], for its simplicity: It requires only two internal
states for the walker. In this section we recall the definition of
the 2DQW, introduce the conditional wave-function method
which allows us to treat transport in the quantum-walk setting,
and discuss how to cut links in the quantum walk and how
disorder is introduced.

A. Walker wave function and time evolution operator

We consider a particle, or walker, on a square lattice, with
two internal states, which we refer to as spin. The wave
function of the walker can be written as

|�〉 =
∑
�r∈D

[�(�r, ↑)|�r, ↑〉 + �(�r, ↓)|�r, ↓〉]. (1)

Here �r = (x,y) is a 2D vector of integers, which la-
bels the nodes of the lattice, taken from D = {(x,y)|x =
1, . . . ,xmax,y = 1, . . . ,ymax}. The walker is initialized at site
A = (xA,yA) as

|�(t = 0)〉 = |A, ↑〉. (2)

The dynamics of the walker takes place in discrete time t ∈ N
and is determined by

|�(t + 1)〉 = U |�(t)〉, (3)

U = SyR2SxR1. (4)

The operator Rj , with j = 1,2, denotes a rotation of the spin
about the y axis,

Rj =
∑
�r∈D

|�r〉〈�r| ⊗ e−iθj (�r)σy . (5)

FIG. 1. (Color online) Layout of the 2D quantum walk, with a
source at A, a detector at the target site at B, and detectors at the
edges. For the conditional wave function, the detectors play the role
of absorbers.

The angles θ1 and θ2 of the first and second rotation can depend
on the position �r = (x,y) of the walker. The operators Sx and
Sy denote spin-dependent translations along links between the
sites on the lattice,

Sx =
∑
�r∈D

|�r + x̂, ↑〉〈�r, ↑| + |�r, ↓〉〈�r + x̂, ↓|, (6)

Sy =
∑
�r∈D

|�r + ŷ, ↑〉〈�r, ↑| + |�r, ↓〉〈�r + ŷ, ↓|, (7)

where x̂ = (1,0) and ŷ = (0,1).

B. Conditional wave function

We want to measure how efficient transport is to a given
site, B = (xB,yB), as opposed to propagation to the boundary
of the system, defined by the sites Cj , as shown in Fig. 1.
We place a detector at site B and at the boundary sites Cj .
After every time step, each detector performs a dichotomic
measurement on the wave function: If the walker is at the
detector, it is detected; if not, it is undisturbed. To calculate the
resulting probability distribution for the transmission times, we
compute the conditional wave function |�(t)〉, conditioned on
no detection events up to time t . To obtain the time evolution
of the conditional wave function, at the end of each time step
the components of the wave function at the sites B and Cj are
projected out,

�(t) =
⎛
⎝1 − |B〉〈B| −

∑
j

|Cj 〉〈Cj |
⎞
⎠ U |�(t − 1)〉. (8)

Note that measurements are performed at each step, but since
the measurement record is kept, the whole process is still
completely coherent.

The norm of the walker’s wave function, 〈�(t)|�(t)〉, is
the probability that the particle is still in the system after
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t steps. Due to the postselection involved in the time step,
Eq. (8), this norm decreases over time as the walker is found
at B (successful transmission) or leaks out at the edges
(transmission failure). The probability of success, i.e., of
detecting the walker at B at time t , is given by

pt =
∑

s=↑,↓
|〈B,s|U |�(t − 1)〉|2. (9)

The arrival probability at time t is the summed probabilities of
absorption up to time t and is given by

Pt =
t∑

t ′=1

pt ′ . (10)

C. Disorder through the rotation angles

We consider the effects of disorder that enters the
system through the angles θ . The rotation angles become
position-dependent, uncorrelated random variables, chosen
from a uniform distribution,

θj (�r) ∈ [θj − δ,θj + δ]. (11)

Here δ is the maximum amplitude of disorder (width of the
distribution), chosen equal for both rotations for convenience.
In this paper we consider time-independent (i.e., static, or
quenched) disorder; i.e., the angles θ depend only on position,
but not on time. The effects of disorder are addressed in
Sec. VI.

D. Cutting links

To enhance transport, we consider modifying the graph
on which the walk takes place by cutting some of the links.
If the link between sites (x,y) and (x + 1,y) is cut, the ↑
component of the wave function is not transported from site
(x,y) to (x + 1,y) during the Sx shift operation and similarly
the ↓ component from (x + 1,y) is not shifted to (x,y). The
analogous definition for cut links holds for the Sy operation
between sites (x,y) and (x,y + 1).

If we were dealing with a lattice Hamiltonian instead of a
lattice time-step operator, cutting a link could be done by just
setting the corresponding hopping amplitude to 0. In the case
of the time-step operator, however, maintaining the unitary
of the time evolution—orthogonal states always have to stay
orthogonal [29]—is more involved. The only sensible unitary
and short-range way to do that is to induce a spin flip instead
of a hop, with possibly an additional phase factor. This extra
phase plays an important role in the 1D quantum walk, where it
affects the quasienergy of the end states [29]. For 2D quantum
walks, however, this extra phase factor is unimportant. For
convenience, we flip the spin using −iσy .

The complete shift operator Sd , with d = x or y, including
the prescription for cutting the links, reads

Sd =
∑
�r∈Ld

(|�r + d̂, ↑〉〈�r, ↑| + |�r, ↓〉〈�r + d̂, ↓|)

+
∑
�r∈Cd

(|�r, ↓〉〈�r, ↑| − |�r + d̂, ↑〉〈�r + d̂, ↓|). (12)

Here Ld is the set of vectors �r such that the link between node
at �r and the node at �r + d̂ is not cut, while its complement Cd

is the set of vectors to nodes �r for which the link connecting
them to node �r + d̂ has been cut, with d̂ denoting the unit
vector in the direction d (i.e., x̂ or ŷ).

III. TRANSPORT IN THE PRESENCE OF A CUT

We now address the following question: Which links should
we cut to optimize the transport from A to B? The first idea
that comes to mind to ensure efficient transport is to cut out a
narrow island from the lattice: At the one end of the island is
A, the source; at the other end B, the site where we want the
walker to be transported to. However, as we see, in the presence
of disorder, there is a much more efficient construction.

A. The island cut

Perhaps the most straightforward way to ensure that the
walker gets from A to B is to restrict its motion to a narrow
island connecting these two sites, by cutting links as illustrated
in Fig. 2. In a clean system, this strategy achieves the desired
effect. Simulations on large system sizes, shown in Fig. 3(a),
show a high success probability, independent of system size
(island length), with a time required for transport proportional
to the length of the island, indicating ballistic transport.

The simple strategy of cutting out an island to guide the
walker to B no longer works if there is quenched disorder in
the rotation angles. As shown in Fig. 3(b), the time evolution
of the walker’s wave function now shows signs of localization.
With a disorder of δθ = 0.07π , the average distance from the
origin stops growing after some time, independent of system
size.

FIG. 2. (Color online) Layout of the 2D quantum walk, with a
source at A, a detector at the target site at B, and detectors at the
edges. To increase the efficiency of transport from A to B, the first
idea is to cut an island that will form a transport channel, as indicated
by the dotted line. All links crossing the dotted line are cut; a particle
attempting to hop across a cut link will have its spin flipped instead
of hopping.
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FIG. 3. Mean displacement of the quantum walker (continuous
lines) and transmission probability (dotted lines) in the geometry of
the “island” of Fig. 2, for a horizontal island of fixed width of 1
and varying island length of 40 (thick light gray), 80 (medium gray),
and 160 (thin black). Mean rotation angles are set to θ1 = 0.35π ,
θ2 = 0.15π . Without disorder, δ = 0, the wave function spreads
ballistically (a) and the transmission probability reaches a value close
to 1 as the wave packet arrives (b). To illustrate the effects of disorder,
we set δ = 0.2π , and use a single disorder realization, varying only
the distance n between A and B (and, correspondingly, the length of
the island). For a large-enough system (n = 160), the mean distance
from A saturates at around 30 (c), and in this case there is virtually
no transmission [(d) Pt < 10−4 for n = 160 for all times t].

B. The single line cut

There is a somewhat counterintuitive strategy to defeat
localization and ensure efficient transport from A to B even
with static disorder. This involves cutting links along a line
from A to B, as shown in Fig. 4.

FIG. 4. (Color online) Layout of the 2D quantum walk, with a
source at A, a detector at the target site at B, and detectors at the
edges. Links crossing the dotted line are cut: This single line cut
creates a transport channel between A and B. This is an alternative
to the “island” approach of Fig. 2.
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FIG. 5. Mean displacement of the quantum walker [(a) contin-
uous lines] and transmission probability [(b) dotted lines] in the
geometry of the “single cut” of Fig. 4 for a horizontal cut. A single
realization of a disordered quantum walk is taken, with mean rotation
angles θ1 = 0.35π , θ2 = 0.15π , and disorder δ = 0.3π . The A-B
distance n is varied: n = 40 (thick light gray), n = 80 (medium gray),
and n = 160 (thin black). The walker propagates ballistically along
the cut (b) and arrives at B with a high probability (c).

As shown in Fig. 5, in spite of the disorder, the single
cut ensures ballistic propagation of the quantum walker and
greatly enhances the transmission probability: The line of
cut links acts like a conveyor belt for the quantum walker.
Although for the detailed numerics we used cuts that are along
a straight line, numerical examples convincingly show that the
shape of the cut can delay the transport, but not inhibit it. For
an example, see Appendix A.

The rest of this paper is devoted to this conveyor-belt
mechanism. Our principal aims will be to answer the following
two questions. Why does the conveyor mechanism work? How
robust is it?

IV. EDGE STATES ALONG A CUT

In this section we show that the single cut transports the
walker efficiently from the source A to the target site B because
the quantum walk has unidirectional (chiral) edge states along
the cut. We find the edge states along the cut using the effective
Hamiltonian.

The effective Hamiltonian Heff of a quantum walk is defined
as

Heff = ilnU, (13)

where U , as in Eq. (4), is the unitary time-step operator of
the quantum walk without the projectors corresponding to the
measurements. We fix the branch cut of the logarithm to be
along the negative part of the real axis. If we only look at
the quantum walk at integer times t , we cannot distinguish a
quantum walk from the time evolution that would be produced
by the time-independent lattice Hamiltonian Heff , since

|�(t)〉 = Ut |�(0)〉 = e−iHeff t |�(0)〉 for t ∈ N. (14)

Every quantum walk is thus a stroboscopic simulator for its
effective Hamiltonian Heff .

We now consider the quasienergy dispersion relation of a
clean system in the vicinity of (below) a horizontal cut, as
shown in Fig. 6. We make use of translation invariance and
use k to denote the quasimomentum along x, a conserved
quantity. We take system of width 1 (x = 1) and height L

(y = 1, . . . ,L), with modified periodic boundary conditions
along both directions. Along x, twisted boundary conditions
are taken, i.e., periodic boundary conditions with an extra
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Reflecting edge (cut links)

Absorbing edge (measurements)

FIG. 6. (Color online) For the analytical calculation, we consider
a simple geometry with a reflecting edge on top and absorbers on the
bottom. An infinite strip (left) can be treated as a 1D chain with
twisted boundary conditions, i.e., with periodic boundaries along x

with an extra phase of e±ikx for right-left hopping. The top three rows
with dark (blue) background are defined as the edge region.

phase factor of e∓ik for right-left shifts, with k denoting
the quasimomentum in which we are interested. Along y,
we leave the periodic boundary conditions, but cut the link
connecting site (1,L) with (1,1), and we insert an absorber
at (1,1). We diagonalize the time-step operator U on this
system, obtaining the eigenvalues λn = |λn|e−iεn and the
corresponding eigenvectors |�〉n. The magnitudes |λn| � 1
give us information about the lifetime of the states, while the
phases εn can be identified with the quasienergies. Repeating
this procedure for −π < k � π gives us the dispersion relation
of a clean strip with a cut at the top and absorbers at the bottom.

We show the numerically obtained dispersion relation of the
2DQW on a stripe with an edge in Fig. 7. We omitted states with
short lifetimes, whose eigenvalue of U has magnitude |λ| <

0.9. We used thick (blue) to highlight edge states, defined as
states for which |〈L|�〉|2 + |〈L − 1|�〉|2 + |〈L − 2|�〉|2 >

0.9. Whenever the gaps around ε = 0 and ε = π are open,
one can clearly see edge states traversing these gaps. The edge
states are unidirectional (i.e., chiral) and propagate in the same
direction in the two gaps.

We obtained simple analytical formulas for the dispersion
relations of the edge states along the horizontal cut, for ε ≈ 0
and ε ≈ π , using the transfer matrix method. We relegate the
details to Appendix B and summarize the main results here.
When sin(θ1 + θ2) > 0, the edge states are around k = ε = 0
and k = ε = ±π [as in Figs. 7(a)–7(d)], when sin(θ1 + θ2) <

0, they are around k = ±π,ε = 0 and k = 0,ε = ±π [as in
Figs. 7(f)]. Near the center of the gaps, the edge-states group
velocity reads

v = dε

dk
= sin(θ2 − θ1)sgn[sin(θ1 + θ2)]. (15)

The edge states decay exponentially towards the bulk as
� ∝ e−|y|/ξ , where y is the distance from the edge. Using
the analytical calculations of Appendix B, we obtain the
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FIG. 7. (Color online) Dispersion relation of a 2DQW on a strip
with cut links on top, and absorbers at the bottom. Quasienergies
of long-lived states (magnitude of Floquet eigenvalue higher than
0.9) are shown, with edge states (more than 80% of the weight
on the top three rows) highlighted in thick (blue) lines. The bulk
gap is closed and reopened by setting the rotation angles to (a)
θ1 = 0.35π , θ2 = 0.15π ; (b) θ1 = θ2 = 0.25π ; (c) θ1 = 0.15π , θ2 =
0.35π ; (d) θ1 = 0.65π , θ2 = 0.15π ; (e) θ1 = 0.75π , θ2 = 0.25π ; (f)
θ1 = 0.85π , θ2 = 0.35π .

penetration depth ξ of the edge states into the bulk as

ξ = −
[

ln
1 − |sin(θ1 + θ2|
|cos(θ1 − θ2)|

]−1

. (16)

Although the penetration depth and the magnitude of the
group velocity can depend on the orientation of the edge,
the direction of propagation of these chiral edge states does
not: It constitutes a topological invariant. This topologically
protected quantity as a function of the parameters θ1 and θ2

corresponds to the boldface numbers in Fig. 8, which were

FIG. 8. (Color online) Parameter space of the split-step 2D
discrete-time quantum walk. Along continuous (dotted) lines, the
bulk quasienergy gap around 0 (π ) quasienergy closes: Here these
lines overlap. Each gapped domain supports edge states near a cut, at
both quasienergies 0 and π . The number of these edge states [equal
to the Rudner winding number as per Eq. (20)] is written in bold. The
Chern number, which is always 0 due to the sublattice symmetry, is
shown in normal typeface. The panels (a)–(f) refer to the parameter
sets of Fig. 7.
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obtained using the Rudner invariant, as explained in the next
section.

The direction of propagation (chirality) of the edge states is
topologically protected: It can only be changed if the rotation
angles θj are themselves changed so that the system is taken
across a gap closing point. There are two different scenarios
here, corresponding to gap closings where θ1 − θ2 = nπ [lines
slanting upwards in Fig. 8, e.g., labels (a)–(c) in Figs. 7 and 8],
and where θ1 + θ2 = nπ [lines slanting downwards in Fig. 8,
e.g., panels (d)–(f) in Figs. 7 and 8]. In the first case, during
the gap closing, the number of edge states constituting the
edge mode does not change; their penetration depth, Eq. (16)
stays finite. It is only the edge mode velocity that goes to zero
and then changes sign; see Eq. (15). In the second case, the
velocity of the edge mode does not change as the gap is closed;
it is the number of edge states that goes to zero and then grows
again. In this case, the penetration depth ξ diverges as the gap
is closed. The two scenarios of this paragraph correspond to
edge states at a zigzag or an armchair edge in the Haldane
model [35] (e.g., Fig. 5. of Ref. [36]).

V. TOPOLOGICAL INVARIANT OF THE
TWO-DIMENSIONAL SPLIT-STEP QUANTUM WALK

In a single-particle lattice system with unitary dynamics, the
number of unidirectional (chiral) edge states in the bulk energy
gap cannot be altered by any local changes in the dynamics, as
long as the bulk energy gap is open. Thus, the number of such
edge states constitutes a topological invariant for each bulk
gap. For time-independent lattice Hamiltonians, this invariant
can be obtained from the bulk Hamiltonian as the sum of
the Chern numbers of all the bands with energy below the
gap. The Chern number for the bands of the 2DQW, however,
is always zero, due to a discrete sublattice symmetry of the
time-step operator, as we show in Appendix C. Thus, there has
to be some other bulk topological invariant of the 2DQW. This
extra topological invariant is also indicated by the fact that
edge states appear at an interface between two domains of the
2DQW with the same Chern number [33]. We now identify
this bulk topological invariant.

A. The Rudner invariant in periodically
driven quantum systems

A candidate for the topological invariant of the 2DQW is the
winding number of periodically driven 2D lattice Hamiltonians
found by Rudner et al. [34], which we summarize here.
Consider a periodically driven lattice Hamiltonian,

H (t + 1,kx,ky) = H (t,kx,ky). (17)

The unitary time evolution operator for one complete period
reads

U (kx,ky) = Te−i
∫ 1

0 H (kx ,ky ,t)dt . (18)

Next, define a loop in the following way:

U2(t,kx,ky) =
{

Te−2i
∫ t

0 H (kx ,ky ,2t ′)dt ′ if t < 1
2 ,

e2i(t−1/2)Heff U (kx,ky) if t � 1
2 .

(19)

This corresponds to going forward in time until t = 1/2
with the full Hamiltonian and then backwards in time with

the effective Hamiltonian, as in Eq. (13), whose branch cut
is chosen at ε = π . Thus, U2(t = 0) = U2(t = 1) = 1 and
U2(t = 1/2) = U .

The winding number associated with U2 is

W [U2] = 1

8π2

∫
dtdkxdkyTr

(
U−1

2 ∂tU2

× [
U−1

2 ∂kx
U2,U

−1
2 ∂ky

U2
])

. (20)

As Rudner et al. [34] show, the periodically driven system will
have a number W of chiral edge states in addition to those
predicted by the Chern numbers of the bands. These edge
states appear in each gap, including the gap around ε = π [if
there is a gap there; if not, the branch cut of the logarithm in
Eq. (13) needs to be shifted to be in a gap].

B. Rudner invariant from an equivalent lattice Hamiltonian

Rudner’s invariant is defined for periodically driven lattice
Hamiltonians, not quantum walks. To define this invariant
for the 2DQW, we need to realize it as a time periodic
Hamiltonian. We construct such a realization analogously to
the 1D case [32].

We consider a square lattice of unit cells, each containing
two sites, denoted by solid circles • and open circles ◦, as
shown in Fig. 9. These sites are identified with states of the
walker as

c†x,y,•|0〉 = |x,y, ↑〉 c
†
x,y,◦|0〉 = −i|x,y, ↓〉. (21)

We take a nearest-neighbor hopping Hamiltonian on this
lattice, without any on-site terms,

H (t) =
∑
x,y

[
u(t)ĉ†x,y,•ĉx,y,◦ + v(t)ĉ†x,y,•ĉx−1,y,◦

+w(t)ĉ†x,y,•ĉx,y−1,◦ + H.c.
]
. (22)

We distinguish between three kinds of hoppings. Intracell
hoppings, along the black lines in the gray unit cells in Fig. 9,
have amplitudes u(t). Horizontal intercell hoppings, along the
dotted red lines in Fig. 9, have amplitudes v(t). Finally, vertical
intercell hoppings, along the dashed blue lines in Fig. 9, have
amplitudes w(t).

To realize the 2DQW, we use a nonoverlapping sequence of
pulses where at any time, only one type of hopping is switched
on. A pulse of intracell hopping u of area π/2, followed by
a pulse of intercell hopping v, of area −π/2, realizes the

FIG. 9. (Color online) (Left) The lattice on which the 2DQW is
realized as a continuously driven Hamiltonian. Gray shaded unit
cells include two sites each. The three types of hoppings allowed
are intracell (black), horizontal intercell (red), and vertical intercell
(blue). (Right) The drive sequence for the lattice Hamiltonian.
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operation Sx ; if the pulse of u is followed by a pulse of w

of area −π/2, we obtain Sy . The pulse sequence realizing a
time step of the 2DQW then consists of six pulses, shown in
Fig. 9, and summarized using the Heaviside function χ (x) =
[sgn(x) + 1]/2 as

G(t) = 6χ

(
t + 1

12

)
χ

(
1

12
− t

)
, (23)

u(t) = θ1G

(
t − 1

12

)
+ π

2
G

(
t − 3

12

)

+ θ2G

(
t − 7

12

)
+ π

2
G

(
t − 9

12

)
, (24)

v(t) = −π

2
G

(
t − 5

12

)
, (25)

w(t) = −π

2
G

(
t − 11

12

)
. (26)

For this continuously driven Hamiltonian, we calculate
the Rudner invariant numerically, discretizing the integral of
Eq. (20), and find quantized values to a great precision. The
results are shown in Fig. 8. We checked numerically that these
invariants correctly predict the edge states at reflective edges
and also reproduce the edge states between different bulk
phases of Ref. [33].

C. Cut links as a bulk phase: The four-step 2D discrete-time
quantum walk

To obtain a more complete picture of the conveyor-belt
mechanism, it is instructive to view the line where the links
are cut as the limiting case of a long thin domain of a more
general quantum walk with modified parameters. To obtain this
more general quantum walk, we start from the continuous-
time periodically driven Hamiltonian, Eq. (22). There is a
straightforward way to cut the link in the x (y) direction:
Simply omit the pulse of v(t) [w(t)] from the sequence. This
leads us to consider periodically driven systems composed of
pulses of arbitrary area, as represented in Fig. 10,

u(t) =
(

θ1 + π

2

)
G

(
t − 1

8

)
+

(
θ2 + π

2

)
G

(
t − 5

8

)
, (27)

v(t) =
(

φ1 − π

2

)
G

(
t − 3

8

)
, (28)

w(t) =
(

φ2 − π

2

)
G

(
t − 7

8

)
. (29)

FIG. 10. (Color online) The four-step quantum walk is set on
a Lieb lattice (left). The driving sequence of the corresponding
continuously driven Hamiltonian consists of nonoverlapping pulses
of arbitrary area (right).

FIG. 11. (Color online) Parameter space of the four-step 2DQW
as defined in Eq. (30). Gapped domains, with Rudner winding
numbers W (boldface) and Chern numbers (normal typeface), are
separated by lines, along which the bulk quasienergy gap around
ε = 0 (continuous lines) or around ε = π (dotted lines) closes. Since
sublattice symmetry of the walk is broken by the extra rotations
through angles φ1,φ2, the gaps can close independently, and the Chern
number can take on nonzero values. The angles shown on the left are
φ+ = |φ2 + φ1|, φ− = |φ2 − φ1|, assuming both of these are less than
π . In the example shown, φ1 = −π/10 and φ2 = π/5.

We can interpret this pulse sequence as a continuous-time
realization of a discrete-time quantum walk. This is the four-
step walk, defined by

U = Sy e−iφ2σy Sy e−iθ2σy Sx e−iφ1σy Sx e−iθ1σy . (30)

This walk is easiest represented on a Lieb lattice, as shown in
Fig. 10. At the beginning and end of each cycle, the walker
is on one of the (gray) lattice sites with coordination number
4, while during the time step, it can also occupy the (red and
blue) sites with coordination number 2.

The four-step walk has two topological invariants: the
Chern number C and the Rudner winding number W . Its Chern
number can be nonzero, because at the end of the time step the
walker can also return to its starting point, and so it does not
have the sublattice property detailed in the Appendix C. We
find that, depending on the angles φ1,φ2,θ1,θ2, the invariants
can take on the values −1,0, + 1, as shown in Fig. 11. In
particular, the trivial insulator, with C = W = 0, is realized
in the areas in parameter space defined by nπ − |φ1 − φ2| <

θ1 − θ2 < nπ + |φ1 − φ2|, for n = 0 (including U = −1) and
n = ±1 (including U = 1). The phase with all links cut
corresponds to θ1 = θ2 = −φ1 = −φ2 = −π/2; in this case,
the time evolution operator does nothing to the state.

VI. ROBUSTNESS OF THE CONVEYOR BELT
IN THE PRESENCE OF DISORDER

We now investigate how the transport along the cut is
affected by static disorder in the rotation angles θ1 and θ2,
as defined in Eq. (11).
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FIG. 12. (Color online) Wave function for a particular disorder
realization and the cut for a system size given by M = 10. The values
of rotation angles are θ1 = 0.35π, θ2 = 0.15π, δ = 0.1π . The cut is
represented by the black line. The starting point for the wave function
is just above the black line on the left. The final point at which the
wave function gets absorbed is represented by the orange dot on
the right-hand side. On the top plot the wave function is plotted for
t = 0. The middle plot is for t = 2M = 20 when a good fraction of
the walker is on the conveyor. In the bottom plot the wave function
is plotted for t = 10M = 100, long after the bulk of the walker has
been absorbed by the orange point B.

A. Effects of static disorder

We choose a system of dimensions (4M × 2M). The walker
is initialized at the position A = (M,M). The position of the
final (absorbing) point B is chosen to be (3M − 1,M − 1).
The cut cuts all the links between sites (x,M) and (x,M − 1)
for M � x � 3M . Thus, there is a path of cut links connecting
the initial and final sites. For M = 10 the system is plotted for
three different times in Fig. 12, thereby showing the initial
wave function, the wave function as it propagates along the
conveyor, and the state after the majority of the wave function
has been absorbed. The boundaries of the system are absorbing
boundaries. This geometry is chosen such that the walker
cannot reach the absorbing boundary too quickly.

We quantify the efficiency of the transport along the cut
by looking at the arrival probability Pt , as in Eq. (10) and
the total survival probability, i.e., the norm of the conditional
wave function, 〈�(t)|�(t)〉. If these add up to 1, no part
of the walker is absorbed by the boundary. If the walker
is transported ballistically along the defect, we expect the
total arrival probability to suddenly increase by an appreciable
amount at the time t = 2M/v, where v is the transport velocity
of the walker, given in the clean limit by Eq. (15). A delay
in the onset of the arrival at the final point B indicates a
slowdown of the transport. On the other hand, if the total
survival probability decreases without the probability at the
final point B increasing, this also indicates a loss of transport
efficiency. It indicates that diffusion towards the boundary
increases in importance, whereas ballistic transport along the
cut decreases in importance. For different disorder strengths δ

we have plotted the results of such a calculation in Fig. 13.
One may obtain an overview of the behavior as a function of

θ1, θ2, and δ by simply looking at the total survival probability
and the total arrival probability for t � 2M (long enough so
that the walker should have arrived at the final point B). This
allows us to see whether the transport along a conveyor is
efficient for a range of parameters.

In Fig. 14 we have plotted the final arrival probability
for θ1 = π

4 , different values of θ2, and a range of disorder
strengths. We see that if disorder is strong enough, the ballistic
transport along the defect is suppressed, and thus no part of the
walker arrives at point B. A naive expectation is that disorder
can start to affect the edge states only if it is large enough
that different topological invariants can be present in different
parts of the system. This occurs for disorder strengths

δ > δmax =
{∣∣ 1

2 (θ2 − π/4)
∣∣ , θ2 < π

2 ,∣∣ 1
2 (3π/4 − θ2

∣∣ , θ2 � π
2 .

(31)

The curve δmax(θ ) is plotted as the dashed black line in
Fig. 14: For θ2 ≈ ±π/2, the numerical data are more or less
in agreement with the naive expectation.

The arrival probability also reduces to zero as θ2 approaches
θ2 = π

4 and θ2 = 3π
4 , independent of the disorder. At the point

θ2 = π
2 , we have sin(θ1 − θ2) = 0 and thus the group velocity

along the conveyor is zero; cf. Eq. (15). Since the walker has
to traverse a distance of 2M and the simulation time only runs
up to tmax, the walker will not arrive if v < vcrit = 2M/tmax.
For Fig. 14 vcrit = 0.19. From Eq. (15) it then follows that the
arrival probability should be zero even in the clean limit when
θ2 is within a distance δθ crit

2 = 0.06π of θ2 = π
4 . These points

are marked as magenta diamonds in Fig. 14. This estimate
agrees well with the position at which the arrival probability
vanishes in Fig. 14.

Around the point θ2 = 3π
4 , on the other hand, the group

velocity does not vanish. Instead, according to Eq. (16) the
penetration depth of the edge state into the bulk ξ diverges.
Thus, the overlap of the initial state of the quantum walk
with the conveyor vanishes, as initially the quantum walker
is localized to a single lattice site. Also the overlap of the
conveyor state with the final absorbing point disappears.
Together with Eq. (16) this implies that the arrival probability
P∞ around θ2 = 3π

4 will vanish as

P∞ = 2 δθ2
z , (32)
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FIG. 13. (Color online) (Top) Arrival and survival probabilities
for θ1 = 0.35π, θ2 = 0.15π , M = 30, and different amounts of
rotation-angle disorder δ. Solid lines are cumulative arrival proba-
bilities at point B and dashed lines are the remaining wave-function
amplitudes, thus the probability of survival up to time t . The solid and
dashed lines of the same color and thickness correspond to the same
system. We have averaged over 100 different disorder realizations.
(Bottom) Plot showing the arrival probability as a function of time
for a different system sizes and different disorder strengths. The time
axis is scaled with the system size. The curves for different system
sizess collapse on one another, showing that the propagation along
the cut is ballistic. The plot also shows that we may choose a system
size of M = 30 in order to further investigate the system.

where δθz = θ2 − 3π
4 . We have numerically checked this

behavior for the clean system and find that Eq. (32) provides
a good fit without any adjustable parameters. So we observe
qualitatively quite different behavior around the points θ2 = π

4
and θ2 = 3π

4 . For θ2 = π
4 , P∞ vanishes abruptly and stays zero

over a finite range of θ2, namely, between the two magenta
diamonds in Fig. 14. On the other hand, P∞ vanishes gradually
around θ2 = 3π

4 and is only strictly zero at one point.

VII. CONCLUSIONS

In this work we have shown that in the 2D split-step
discrete-time quantum walk, a cut on the underlying lattice
creates a transport channel for the walker that is robust against
time-independent disorder. The mechanism for the transport
is given by edge states that form in the vicinity of the cut.

FIG. 14. (Color online) The arrival probability at point B after
322 time steps, averaged over 100 disorder configurations for θ1 = π

4
as a function of θ2 and δ. The system has the same geometry as
in Fig. 12, but is three times larger, having M = 30. In the plot
the azimuthal angle represents θ2 and the radius is related to δ by
r = 1 − 2δ/π , such that the largest possible value of δ = π/2 is
taken at the center at r = 0, at which point θ1 and θ2 are irrelevant.
The black dashed line marks the regime at which δ becomes large
enough for both types of topological invariants to be locally present
in the system. Beyond that line transport begins to be suppressed.
The magenta diamonds mark the points at which the group velocity
becomes too small for the walker to arrive within the simulation time.

We derived analytical formulas for some properties of the
edge states and found the bulk topological invariant that
predicts their emergence. This invariant is the winding of the
quasienergy [34].

The edge states we found are resistant to a moderate amount
of time-independent disorder, but, as we have seen, above
a certain threshold they no longer exist. It is an interesting
challenge to study the details of this transition. In other words,
how does disorder destroy the topological phase? An important
step in this direction is understanding the effect of disorder on
the 2DQW without edges, our results on which are published
elsewhere [24].

There are quite promising perspectives for detecting the
type of edge states we found in quantum-walk experiments. In
fact, edge states due to the Chern numbers have already been
seen in a continuous-time quantum-walk experiment: There,
the walker was a pulse of light coupled into an array of waveg-
uides etched into a block of dielectric, a “photonic topological
insulator” [37]. Modifying the pattern of the waveguides would
allow for a direct realization of the 2DQW. A more direct
realization, which would also allow the study of interactions,
would be on ultracold atoms trapped in an optical lattice [8].

ACKNOWLEDGMENTS

We acknowledge useful discussions with Mark Rudner,
Carlo Beenakker, and Cosma Fulga. We also acknowledge
the use of the Leiden computing facilities. This research was

022324-9



JANOS K. ASBOTH AND JONATHAN M. EDGE PHYSICAL REVIEW A 91, 022324 (2015)

supported by TAMOP 4.2.4. A/1-11-1-2012-0001 “National
Excellence Program—Elaborating and operating an inland
student and researcher personal support system,” subsidized
by the European Union and cofinanced by the European
Social Fund. This work was also supported by the Hungarian
National Office for Research and Technology under Contract
No. ERC_HU_09 OPTOMECH, by the Hungarian Academy
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APPENDIX A: PROPAGATION AROUND A MORE
COMPLICATED CUT

In order to illustrate that the quantum walker can also follow
a cut which is not as simple as the one investigated in Secs. III
and VI, we have created a more complicated structure. This
involves multiple corners and also intersections of different

cuts. In Fig. 15 we investigate the propagation around a star-
shaped figure, choosing as a starting point one of the corners
of the star and as the end point another corner. We show the
wave function for six different time slices. We can clearly see
that the quantum walker propagates around the star.

APPENDIX B: EDGE-STATE DISPERSION RELATIONS

In this section we derive the edge-state dispersion relations
of edge states of a 2DQW below a horizontal cut, using the
transfer matrix. We consider the 2DQW on a semi-infinite
plane of integer lattice points, i.e., x,y ∈ Z and y < 0, with
boundary conditions given by the cut along x, above the line
y = 0. We assume translation invariance along x, i.e., along
the cut. In that case the quasimomentum along x is a good
quantum number, we denote it by k. Eigenstates of the walk
can be taken in a plane-wave form,

�k(x,y,s) = eikx�s
y, (B1)

FIG. 15. (Color online) Illustration of the conveyor mechanism around a star-shaped figure for a single disorder realization. We have plotted
the wave function at different times t , starting at t = 0 and ending at t = 150, at which point the majority of the wave function amplitude has
been absorbed by the final point, marked in orange. Note that the color scale changes between the different panels. θ1 = 0.45π, θ2 = −0.05π ,
and δ = 0.1π were chosen, as, according to Eq. (15), these maximize the propagation velocity along the cut. In the bottom panel we have
plotted the arrival probability, which for large times approaches Pt = 0.7.
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with s =↑ or s =↓. Since the shift along x can be written as
Sx = e−ikσz , the eigenvalue equation of the walk reads

U = SyV (k), (B2)

V (k) = e−iθ2σy e−ikσze−iθ1σy . (B3)

Note that apart from detV = 1, we also have

V ↓↓∗ = V ↑↑ = c+ cos k − ic− sin k, (B4)

V ↓↑ = −V ↑↓∗ = s+ cos k + is− sin k, (B5)

where we use the shorthand

s± = sin(θ1 ± θ2), (B6)

c± = cos(θ1 ± θ2). (B7)

The boundary conditions on the edge states for y → −∞
is that their wave functions should be normalizable. To put
this into an equation, we first find a suitably defined transfer
matrix. We consider an eigenstate |�〉 of U with quasienergy
ε, for whose components we have

e−iε�
↑
n+1 = V ↑↑�↑

n + V ↑↓�↓
n , (B8a)

e−iε�
↓
n−1 = V ↓↑�↑

n + V ↓↓�↓
n . (B8b)

The transfer matrix is defined by(
�

↑
y+1

�
↓
y

)
= M(ε)

(
�

↑
y

�
↓
y−1

)
. (B9)

Substituting into (B8) gives us

M(ε) = cos ε + i sin εσz + ReV ↑↓σx − ImV ↑↓σy

V ↓↓ . (B10)

For the eigenstate |�〉 to be normalizable, the vector
(�↑

−1,�
↓
−2) must be an eigenvector of the transfer matrix M

with eigenvalue whose absolute value is higher than 1. The
eigenvalues of M are

m± = cos ε ±
√

|V ↑↓|2 − sin2 ε

V ↓↓ . (B11)

If ± cos ε > 0, the normalizable edge state corresponds to
the eigenvalue of the transfer matrix m±, and we need(

�
↑
−1

�
↓
−2

)
∝

(
V ↑↓

±
√

|V ↑↓|2 − sin2 ε − i sin ε

)
. (B12)

We next consider the boundary condition on the top of the
ribbon, y = 0. Here, because of the cut link, realized by −iσy ,
we have

�
↓
0 e−iε = (V ↑↑�

↑
0 + V ↑↓�

↓
0 ). (B13)

This is easiest to solve if we choose

�
↓
0 = V ↑↑, �

↑
0 = e−iε − V ↑↓. (B14)

Using Eqs. (B8), we obtain

�
↓
−1 = eiε + V ↓↑. (B15)

Combining the two boundary conditions, Eq. (B12) with
Eqs. (B14) and (B15) above, we have

e−iε + V ↓↑∗

eiε + V ↓↑ = −V ↓↑∗

±
√

|V ↓↑|2 − sin2 ε − i sin ε
, (B16)

for ± cos ε > 0. The absolute values of the left- and the right-
hand sides of this equation are both 1, so this is really an
equation for the phases.

1. The gap around quasienergy ε = 0

Consider ε = 0; then Eq. (B16) reads

1 + α∗

1 + α
= − α∗

|α| , (B17)

with

α = s+ cos k + is− sin k. (B18)

Solving this equation for arg(α), we obtain argα = π , which
implies

k = π if s+ > 0, (B19)

k = 0 if s+ < 0. (B20)

The edge-state wave functions decay exponentially towards
the bulk, as |�s

y | = |�s
0|e−|y|/ξ . To obtain their penetra-

tion length for ±s+ > 0, we substitute cos ε = 1, sin k = 0,
cos k = ±1, into Eq. (B11) and get

ξ = −
(

ln
1 − |s+|

|c+|
)−1

. (B21)

To obtain the group velocities, we solve Eq. (B16) around
ε ≈ 0. If s+ > 0 (s+ < 0), then we have k ≈ 0 (k ≈ π ). In
both cases, if we use k to denote the small distance from 0 or
π , we find to first order in the small parameters ε and k

V ↑↓ = ∓s+ ± iks−, (B22)√
|V ↑↓|2 − ε2 = ±s+. (B23)

So Eq. (B16) transforms to

1 + iε ∓ s+ ± iks−
1 − iε ∓ s+ ∓ iks−

= ∓s+ ± iks−
∓s+ − iε

. (B24)

To first order in the small parameters, this gives us

ε

k
= ∓s−. (B25)

2. The gap around quasienergy ε = π

The edge states in the quasienergy gap around ε = π are
the sublattice partners of the edge states around ε = 0. Due to
the sublattice symmetry of the quantum walk, any eigenstate
of the walk at quasienergy ε with wave function �(x,y) has a
sublattice partner with quasienergy ε + π and wave function,

��(x,y) = eiπxeiπy�(x,y). (B26)

Thus, for a fixed value of the rotation-angle parameters θ1 and
θ2, edge states in the gap at ε ≈ π have the same penetration
depth and group velocity as those at ε ≈ 0, and are around
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k = π (k = 0) when those in the gap around ε = 0 are around
k = 0 (k = π ).

3. Summary: Group velocity and penetration depth

To summarize, at the middle of both of the gaps around
ε = 0 and ε = π , the edge states have the group velocity

dε

dk
= sgn(θ1 + θ2) sin(θ2 − θ1) (B27)

and penetration depth

ξ = −
[

ln
1 − |sin(θ1 + θ2|
|cos(θ1 − θ2)|

]−1

. (B28)

APPENDIX C: SUBLATTICE SYMMETRY OF A
QUANTUM WALK AND CHERN NUMBERS

To understand the sublattice symmetry of the split-step
quantum walk, assign each site on the lattice one of four
sublattice indices,

f (x,y) = 2(y mod 2) + (x + y) mod 2, (C1)

and use the corresponding sublattice projection operators,

�j =
∑

x,y:f (x,y)=j

|x,y〉〈x,y|, (C2)

where j ∈ {0,1,2,3}. One time step U changes the sublattice
index by 2, as can be checked explicitly. Thus, a walker started
at x0,y0 on sublattice j will be on sublattice j + 2 mod 2 after
an odd number of time steps and return to sublattice j after an
even number of time steps. Now define the sublattice operator
� as

� = �0 + �2 − �1 − �3. (C3)

This operator acts on a wave function �(x,y) as

��(x,y) = eiπxeiπy�(x,y). (C4)

When acting on a plane wave, � shifts its wave number by
(π,π ). On the other hand, acting on an eigenstate of the walk,
it shifts the quasienergy by π , since

�U� = −U → �Heff� = Heff + π. (C5)

This means that every band with Chern number C has a
sublattice symmetric partner that is shifted in energy by π with
the same Chern number C. Since the sum of all Chern numbers
has to be 0, in a two-band model, such as the split-step walk,
this precludes the existence of a band with a nonzero Chern
number.
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