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Sampling arbitrary photon-added or photon-subtracted squeezed states
is in the same complexity class as boson sampling
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Boson sampling is a simple model for nonuniversal linear optics quantum computing using far fewer physical
resources than universal schemes. An input state comprising vacuum and single-photon states is fed through a
Haar-random linear optics network and sampled at the output by using coincidence photodetection. This problem
is strongly believed to be classically hard to simulate. We show that an analogous procedure implements the same
problem, using photon-added or -subtracted squeezed vacuum states (with arbitrary squeezing), where sampling
at the output is performed via parity measurements. The equivalence is exact and independent of the squeezing
parameter, and hence provides an entire class of quantum states of light in the same complexity class as boson
sampling.
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I. INTRODUCTION

Scalable quantum computing [1] is likely to usher in a new
age for computing. Certain problems, such as integer factor-
ization [2], search algorithms [3], and quantum simulation
[4] are believed to be more efficient on quantum computers
than on classical computers. While there are a number of
differing models for realizing scalable quantum computing,
linear optics quantum computing (LOQC) [5,6] appears to be
one of the most promising. Photons are not only relatively
easy to prepare, manipulate, and measure, but also also have
very long decoherence times. Unfortunately, the hurdles for
implementing full universal LOQC remain very challenging
and appear to be impractical with current technologies. Hence,
there is much interest in simpler, more feasible approaches that
could be demonstrated with existing technology.

In this spirit, Aaronson and Arkhipov (AA) introduced
the boson-sampling model [7,8]. While not universal for
quantum computing, boson sampling uses only passive linear
optical elements to efficiently implement a particular sampling
problem, which is strongly believed to be hard on a classical
computer. This makes boson sampling vastly simpler than
full-fledged LOQC because it does away with some of the
more challenging experimental requirements; namely, fast-
feedforward, optical quantum memory, and the need for a
plethora of optical elements.

The mere fact that boson sampling implements a compu-
tationally hard problem by using technologies that are, for
the larger part, available today makes it of great practical
interest. Its relative simplicity and frugal physical resource
requirements may render it the route towards building the
first postclassical quantum computer. Recently, there have
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been numerous elementary experimental demonstrations of
boson sampling using three photons [9–12]. Also, there
have been proposals for scalable implementations of boson
sampling in optical systems and ion traps [13–16]. As a first
application of the model, boson sampling (with a suitably
modified input state) has been shown to yield a practical tool
for difficult molecular computations to generate molecular
vibronic spectra [17].

Recent research efforts include showing certification of
true boson sampling to distinguish it from uniform sampling,
classical sampling, or random-state sampling [18–22]. The
impact of mode mismatch, spectra of the bosons, and spectral
sensitivities of detectors in realistic implementations of boson
sampling have also been studied [23,24]. This has further
paved the way to a theory of interference with partially
indistinguishable particles, where any realistic imperfections
in the source and detectors can be completely characterized
[25,26].

In other theoretical considerations, the surprising discovery
of the complexity of sampling Fock states via linear optics
opened inquiry into the complexity of other linear optical
systems. The obvious open question is “are there other
quantum states of light, other than Fock states, which also yield
computationally hard sampling problems?” To this end, several
other quantum states of light have been shown to implement
likely hard sampling problems similar to AA’s original boson
sampling. Gaussian states, when measured in a Gaussian basis,
are known to be classically simulatable [27,28]. Sampling
Gaussian states in the photon-number basis, however, has
attracted recent interest in light of boson sampling. It has
been shown that sampling some Gaussian states with photon
number counting can be just as hard as boson sampling [14].
More specifically, while thermal state inputs can be simulated
efficiently by a classical algorithm [29], sampling two-mode
squeezed vacuum states can be hard to simulate [14,30].
Photon-added coherent states have been shown to implement
computationally hard sampling problems in the photon number
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basis in the low-amplitude limit [31]. Sampling generalized
Schrödinger cat states (arbitrary superpositions of coherent
states,

∑
i λi |αi〉) have also been considered [32] and shown

to be computationally hard for sampling in the photon-number
basis.

Here we will demonstrate that, in general, boson sampling
using photon-added or -subtracted squeezed vacuum (PASSV)
states and parity measurements yields a computational prob-
lem of equal complexity to Fock-state boson sampling in all
parameter regimes. Importantly, because the mapping is exact,
AA’s robustness result for approximate boson sampling holds.
Note that experimental implementation of PASSV sampling is
not the focus of our result, because doing so is more difficult
than single-photon boson sampling. Our goal is to provide
clarity on the theory of classifying the sampling complexity of
quantum states. In particular, we wish to demonstrate that Fock
states are not unique—on the contrary, there are a plethora of
other quantum states of light which yield sampling problems
with similar complexity to boson sampling. Nevertheless, we
believe it is still important to show that such a device is still
physically realizable.

II. PHOTON-ADDED OR -SUBTRACTED SQUEEZED
VACUUM SAMPLING

In order to show that the complexity of the boson-sampling
model introduced by AA also extends to PASSV sampling,
we prove that it implements the same logical problem, i.e.,
that the output of the device corresponds to the same matrix
permanent sampling problem as in AA boson sampling. The
advantage of this method is that it allows us to avoid the very
lengthy analysis comprising AA’s original complexity proof,
yet we can still apply all of the same results. However, one
must be careful to show equivalence throughout the problem.

Both models employ a similar general setup; m optical
input modes are fed into a passive, linear interferometer and
the resulting output is measured in each mode, with the
joint distribution of the measurement constituting one sample.
However, the details differ in each step (which we will classify
by input, evolution, output, and measurement). To carefully
guide the reader, we first provide the details of each step of both
models head to head, discussing the relevant differences. We
then proceed to show that the two models implement the same
sampling problem, and thus exhibit the same computational
complexity. For consistency and simplicity, we consider the
case of photon-added states throughout the comparison.

A. Contrast with Fock-state boson sampling

We now provide a detailed comparison for each step of the
model.

Input. AA’s Fock-state boson sampling begins by preparing
the first n modes of a passive linear optics interferometer with
single photons and the remaining m − n modes with vacuum
states, where m = �(n2) (i.e., m is asymptotically bounded
below by some positive constant times n2). As conjectured by
AA, this requirement ensures that the probability of more than
one photon arriving at a given output mode is small (sometimes
referred to as the “bosonic birthday paradox”). A stronger
requirement of m = �(n6) will suffice if one does not wish to

adopt this additional conjecture. The input state is thus

|ψ〉AA
in = |11, . . . ,1n,0n+1, . . . ,0m〉

= â
†
1 · · · â†

n|01, . . . ,0m〉, (1)

where subscripts denote mode number and â
†
i is the photonic

creation operator on the ith mode.
In contrast, for PASSV boson sampling we prepare the

first n modes of a similar interferometer with PASSV states
and the remaining m − n modes with squeezed vacuum (SV)
states. We let the squeezing parameter ξ be arbitrary, but ensure
each mode has the same amount of squeezing. In the case of
photon-added states, the input state is thus

|ψ〉SV
in = â

†
1Ŝ1 (ξ ) · · · â†

nŜn (ξ ) Ŝn+1 (ξ ) · · · Ŝm (ξ ) |01, . . . ,0m〉
= â

†
1 · · · â†

n|ξ1, . . . ,ξm〉, (2)

where we have abbreviated Ŝi(ξ )|0i〉 = |ξi〉 and again the
subscript indicates mode number (not separate variables). The
state in Eq. (2) is not normalized, but this can be corrected by
considering the state N |ψ〉SV

in where

N = [
√

1 + sinh2 (ξ )]−n. (3)

Since the normalization does not affect our result, we leave it
out of subsequent equations for simplicity. Here,

Ŝ (ξ ) = exp
[

1
2 (ξ ∗â2 − ξ â†2)

]
(4)

is the squeezing operator and â† and â are the photon creation
and annihilation operators, respectively. In the Fock basis, if
ξ = reiθ , then Ŝ(ξ )|0〉 = |ξ 〉 has the representation [33]

|ξ 〉 = 1√
cosh (r)

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm (r) |2m〉,

(5)

and thus the SV state contains only even-photon-number terms.
From the action of the creation or annihilation operator, a
PASSV state then contains only odd-photon-number terms.
In the limit of vanishing squeezing, the SV state approaches
the vacuum state, limξ→0 |ξ 〉 = |0〉, and the photon-added SV
state approaches the single-photon state, limξ→0 â†|ξ 〉 = |1〉.
Thus, we see that in the limit of vanishing squeezing, photon-
added SV boson sampling reduces to ideal Fock-state boson
sampling.

Photon-added SV states may be prepared by mixing
a SV state (obtained from a degenerate parametric down
converter) with a single-photon state on a low reflectivity
beam splitter and postselecting upon detecting the vacuum
state in the reflected mode. Successful postselection heralds
the preparation of the photon-added SV state in the other mode.
Thus, the preparation scheme is nondeterministic but may
be performed offline via trial and error in advance, enabling
efficient state preparation. The preparation scheme is shown in
Fig. 1. Photon-subtracted SV states may be prepared similarly
by sending in a squeezed state and a vacuum state to the inputs
and postselecting on one photon in the reflected mode.

Evolution. In both models, the input state is fed into a
passive linear optics interferometer consisting of beam splitters
and phase shifters, which in general transforms the creation
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FIG. 1. Preparation of a photon-added SV state. A SV state is
mixed with a single-photon state on a low reflectivity beam splitter.
The reflected mode is detected, and upon measuring the vacuum state
we herald the preparation of the photon-added SV state in the other
mode. The process is highly nondeterministic but can be performed
offline in advance.

operators according to a linear map,

Û â
†
i Û

† →
∑

j

Ui,j â
†
j , (6)

where Û is an m × m matrix. For AA boson sampling, ÛAA is
chosen to be a Haar-random, unitary matrix.

Unlike the Fock-state model, for PASSV boson sampling
we consider an interferometer consisting of real beam splitters
which implements an orthogonal matrix (also chosen to be
Haar random); see Fig. 2. Thus, for Fock-state boson sampling
ÛAA ∈ SU(m), whereas for PASSV boson sampling ÛSV ∈
SO(m). Reck et al. showed that for both cases, any m × m

unitary or orthogonal matrix can be implemented with at most
O(m2) optical elements, and an efficient algorithm for finding
the decomposition exists [34].

It is important to discuss the complexity of choosing
an orthogonal matrix instead of a unitary matrix because
one should be concerned with the possibility of choosing a
subset of matrices from SU(m), whose permanent is efficiently
simulatable by a classical computer. If this were the case, the
result would not be interesting, since the novelty of boson
sampling is that it simulates a system which is classically
intractable. We will later prove this is not the case and that, in
fact, the associated complexities are equivalent.

Output. The output state for the Fock-state model after
passing through the interferometer is thus

|ψ〉AA
out = ÛAA|ψ〉AA

in

= ÛAA[â†
1 · · · â†

n|01, . . . ,0m〉]
= [ÛAA(â†

1 · · · â†
n)Û †

AA]ÛAA|01, . . . ,0m〉
= [ÛAA(â†

1 · · · â†
n)Û †

AA]|01, . . . ,0m〉, (7)

where the last equality holds because UAA|0〉 = |0〉, i.e., UAA

represents passive optics elements and hence cannot generate
new photons. Since the unitary transforms the creation opera-
tors according to Eq. (6), the output of the interferometer can

Fock-state boson sampling

PASSV-state boson sampling

Number-resolved or
on/off  photodetection

Parity measurement

FIG. 2. (top) Fock-state boson sampling. We feed an m-mode
linear optics interferometer with n single photons and m − n vacuum
states. Following evolution, the state is sampled via coincidence-
number-resolved photodetection. (bottom) PASSV boson sampling.
We prepare n PASSV states and m − n SV states. Following evolution
we perform coincidence parity measurement.

also be represented as

|ψ〉AA
out =

∑
S

γS |S1, . . . ,Sm〉, (8)

where S is an output configuration of the n photons with Si

photons in the ith mode, and γS is the corresponding amplitude.
Note that γS ∝ Per(US), where US is an n × n submatrix of
ÛAA given as a function of the configuration S. The number
of distinct configurations is

|S| =
(

n + m − 1

n

)
, (9)

which can be easily verified to be the number of ways to
configure n indistinguishable photons into m distinct modes.
This expression grows superexponentially with n from the
earlier requirement that m = �(n2).

For PASSV boson sampling, we can use the same technique
as in Eq. (7), such that the output state is

|ψ〉SV
out = ÛSV|ψ〉SV

in

= [ÛSV(â†
1 · · · â†

n)Û †
SV]ÛSV|ξ1, . . . ,ξm〉. (10)
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It was shown by Jiang et al. [30] that, for a pure product state
input to a linear optical network, the output is entangled unless
the input is either a tensor product of coherent states or a tensor
product of squeezed states (with the same squeezing), provided
that the network does not mix the squeezed and antisqueezed
quadratures. The latter condition is equivalent to the network
comprising real beam splitters. This condition is satisfied since
ÛSV ∈ SO(m) and thus

|ψ〉SV
out = [ÛSV(â†

1 · · · â†
n)Û †

SV]|ξ1, . . . ,ξm〉. (11)

The leading operator corresponds to a configuration of n

creation operators as in Eq. (7). The output for a photon-added
SV state input is therefore of the form

|ψ〉SV
out =

∑
S

γ ′
S[(â†

1)S1 · · · (â†
m)Sm ]|ξ1, . . . ,ξm〉, (12)

where

γ ′
S = γS√

S1! · · · Sm!
= Per (US)√

S1! · · · Sm!
, (13)

but in the binary regime γ ′
S = γS . Recall from Eq. (5) that

squeezed states represented in the Fock basis have only even-
photon-number terms. Thus, for a configuration S where mode
i does not have a creation or annihilation operator acting on it,
mode i is a superposition of only even-photon-number states,
whereas if S applies a creation or annihilation operator to mode
i it contains only odd-photon-number terms.

For photon-subtracted SV states the output is of the same
form, replacing â

†
i with âi , but γS will now relate to Û

†
SV

instead of to ÛSV , which is also Haar random and thus has the
same computational complexity. We exclude the case of the
photon-subtracted states when ξ = 0 since â|0〉 = 0.

Measurement. The last step of boson sampling is to measure
the output distribution. For Fock-state boson sampling, this
may be implemented via number-resolved photodetection.
However, since m = �(n2), Si = {0,1} ∀ i in Eq. (8), on-off (or
“bucket”) detectors are sufficient to recover the configuration
S. Repeating the sampling procedure multiple times yields
partial information of the joint photon-number distribution
PS = |γS |2, which was shown by AA to be a computationally
complex sampling problem.

For PASSV boson sampling, we perform a parity measure-
ment capable of distinguishing only between odd and even
photon numbers. Such measurements are characterized by the
measurement operators

	̂+ = |0〉〈0| + |2〉〈2| + |4〉〈4| + · · · ,
(14)

	̂− = |1〉〈1| + |3〉〈3| + |5〉〈5| + · · · .

Most simply, one could implement this measurement us-
ing photon-number-resolving detectors. Measuring an even
photon number at output mode i then implies that there
was no creation or annihilation operator associated with that
mode, whereas measuring an odd photon number implies
that there was. This measurement thus perfectly recovers
the configuration S and hence continued sampling yields the
desired distribution. Since the squeezing parameter ξ has no
effect on the parity of the state, the sampling amplitudes are
completely independent of the squeezing.

More formally, in standard boson sampling we are sampling
from a set of strings si = {s(1)

i , . . . ,s
(m)
i }, where s

(j )
i is the

sampled photon-number in the j th mode associated with string
i, of which there are an exponential number. In the limit of
large m, s

(j )
i ∈ {0,1}. On the other hand, with PASSV boson

sampling we are sampling from the same set of strings, with
the same probability distribution, where now s

(j )
i ∈ {−1,1}.

This proves that PASSV boson sampling implements the
same logical sampling problem as Fock-state boson sampling,
independent of the squeezing parameter.

B. Complexity concerns

We previously mentioned, while discussing the evolution of
the input state, whether choosing an orthogonal matrix has any
implications for the complexity of PASSV sampling. Since we
have now shown that the PASSV model samples permanents
of submatrices in the same way as Fock-state sampling, this is
the only barrier to completing our proof that the two models
are in the same complexity class.

The first consideration is whether or not a Haar-random
matrix in SO(m) might have an efficiently computable exact
or approximate permanent. The exact permanent case is known
to be #P complete even for binary entries, Ui,j ∈ {0,1} [35].
There is also a known algorithm for efficiently approximating
a permanent if the matrix has entries consisting of only non-
negative real numbers. In the same work, it is shown that
for a matrix with even a single negative entry, an efficient
approximation algorithm would allow one to compute an exact
{0,1} permanent efficiently [36]. Although having to compute
a difficult permanent is a necessary but not sufficient condition
for computational hardness, since SO(m) is considered to be
universal for linear optics [37], there is no such complexity
gap between unitary and orthogonal matrices.

More concretely, it has been shown that SU(m) ⊂ SO(2m)
[38], i.e., for a 2m-mode interferometer, the set of all
orthogonal transformations includes all unitary m-mode trans-
formations as a subgroup. Thus, the complexity of sampling
the output from a boson-sampling device implementing an
arbitrary matrix from SO(2m) is at least as hard as sampling
matrices from SU(m), and for only a linear cost in the
number of modes. Since trivially SO(2m) ⊂ SO(2m + 1), the
same complexity extends to an odd number of modes as
well. Note that this also carries the implication that Fock-
state boson sampling itself remains hard under orthogonal
transformations.

We can now conclude that PASSV boson sampling is in
the same complexity class as the Fock-state boson sampling
proposed by AA. Suppose that A is some complexity class
containing Fock-state boson sampling. Since the output of
PASSV boson sampling is completely independent of the
squeezing parameter ξ , we may assume without loss of
generality that ξ = 0. In this limit, however, |ξi〉 = |0i〉 and
thus, by construction, any instance of PASSV boson sampling
reduces to an instance of Fock-state boson sampling since
SO(m) ⊂ SU(m). Thus, the class A also contains PASSV
boson sampling. Conversely, suppose B is some complexity
class containing PASSV boson sampling. Again choosing
ξ = 0, the inclusion SU(m) ⊂ SO(2m) similarly implies B

also contains Fock-state boson sampling.
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III. DISCUSSION

Our result can be distilled to a relatively simple idea which
is most evident in light of Eq. (7), where the ket acts as
a “background” signal whose form is invariant under the
evolution of ÛSV . Since the leading operator in Eq. (11)
takes exactly the same form as Eq. (7), we would like the
ket to also be independent of the choice of ÛSV under
some measurement, while still being distinguishable from a
state which has an added or subtracted photon. It may be
possible to use the same technique to characterize other states
which implement a logically equivalent classically intractable
sampling problem. A desirable goal would be to prove an even
more experimentally friendly set of states and measurements
that implements the same problem.

One criticism of PASSV boson sampling is that the use
of photon-number-resolving detectors to implement the parity
measurement is experimentally harder than on-off detection.
While this is true, one does not need to distinguish between
arbitrarily large even- and odd-photon-number Fock states.
For any given ξ and error rate, one can truncate the maximum
number of necessarily distinguishable Fock states. Indeed,
PASSV boson sampling can be regarded as a generalization of
Fock-state boson sampling, since in the limit of small squeez-
ing (ξ → 0), the SV reduces to a vacuum state and an on-off
detector suffices. For large squeezing, additional experimental
hurdles may arise in reducing squeezing parameter error and
in the increased sensitivity of squeezed states to noise. We do
not address these issues here. Rather, despite PASSV states
being more difficult to experimentally prepare, our goal is to
theoretically demonstrate the nonuniqueness of Fock states for
computationally hard sampling problems.

After having spent some effort showing that orthogonal
matrices are sufficiently complex for PASSV sampling, a
natural question is whether or not choosing a unitary matrix
could change the complexity of the sampling problem. Because
Eq. (11) no longer holds, we cannot establish a straight-
forward relationship between the output probabilities and
submatrix permanents. Conventional wisdom seems to suggest
that the problem would not become easier. In the limit of

zero squeezing, we know there is no complexity divide
because PASSV sampling reduces to Fock-state sampling.
Thus, if a complexity divide did exist, then we would expect
a complexity phase transition at ξ = 0. It may be possible
to construct a more complicated measurement scheme which
produces the same sampling probabilities.

We have shown a direct mapping between Fock-state boson
sampling and PASSV boson sampling. An open question in
the field is “what classes of quantum states of light yield
hard sampling problems with linear optics?” This result, in
conjunction with previous results on photon-added coherent
states and generalized Schrödinger cat states, demonstrates
that there is a large class of non-Fock states, which yield
sampling problems of equal computational complexity.

Importantly, unlike previous work on non-Fock-state boson
sampling, PASSV boson sampling operates in all parameter
regimes. Thus there are no bounds on the amount of squeezing
and no approximations are made.

While PASSV boson sampling may be experimentally
more challenging than Fock-state boson sampling, this result
certainly confirms that there is nothing unique about the
computational complexity of Fock states. In fact, there is a
plethora of other quantum states exhibiting similar sampling
complexity, and computational complexity appears to be a
ubiquitous property of sampling quantum states of light.

We hope that future research will enable us to fully
characterize what it is that makes a quantum optical system
computationally hard, and what classes of states are required
for computational complexity.
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