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Measurement-device-independent quantum key distribution (MDI-QKD) can remove all the side-channel
attacks from imperfections in the detection side. However, finite-size resources undoubtedly influence its
performance and the achievable finite secret key rates of MDI-QKD are typically lower than that of standard
decoy-state QKD. In this paper, we introduce the efficient decoy-state method with biased basis choice into
the finite-key analysis and propose a decoy-state protocol for MDI-QKD. By applying vacuum + weak decoy-state
method, we analytically derive concise formulas for estimating the lower bound of single-photon yield and the
upper bound of phase error rate in the case of finite resources. The simulations show that proper basis choice
combined with deliberate intensity choice can substantially enhance the performance of decoy-state MDI-QKD
and, without a full optimization program, our protocol can bring a long-distance implementation (168 km on
standard optical fiber) of MDI-QKD with a reasonable data size of total transmitting signals (N = 1015).
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I. INTRODUCTION

Quantum key distribution (QKD), stemming from the first
pioneering proposal presented in 1984 (traditionally known as
the BB84 protocol) [1], allows two remote parties to acquire a
secret key based on quantum mechanics. Since then, QKD
has received considerable attention and great progress has
been achieved in both theory and practice [2]. However, in
practical situations, in a real QKD system there undoubtedly
exist sorts of imperfections such as inefficient authentication
of classical communication, finite-size effect of processing
data, and drawbacks of significant setup. For the first two
kinds of imperfections, a theoretical model can be derived
to characterize their influences and some efforts have been
made to tackle these problems [3–6]. For the imperfections
occurring in the setup, some security loopholes may exist and
quantum hacking strategies can be smartly designed to enable
the eavesdropper to acquire the secret key of the practical
QKD system [7–9]. One countermeasure, although difficult
to implement, is trying to derive an efficient mathematical
model to characterize the system fully and take all the side
channels into account in security proof as comprehensively
as possible [2]. And the other one, is trying to build the
fully device-independent QKD (DI-QKD) system [10,11]. The
security of DI-QKD can be guaranteed by violation of a Bell
inequality [12] without knowing the detailed information of
the practical setups. But, with present-day technologies, the
DI-QKD is impractical and hard to realize sice it inherently
requires a high detection efficiency to overcome the security
loophole.

Measurement-device-independent QKD (MDI-QKD)
scheme [13] is one of the approaches [13–16] that are
intermediate between standard (device-dependent) QKD
and DI-QKD. In MDI-QKD, Alice and Bob both send
pulses to the detection system that can be considered as
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an oracle with input and output trusted. The oracle may be
controlled even by an eavesdropper, say Eve. She typically
performs a partial Bell-state measurement and announces
the results to Alice and Bob for distilling a secret key. Since
MDI-QKD’s security is guaranteed by the entanglement
swapping techniques [14] and does not rely on the detection
party, it can remove all detector side channels. After the
invention of MDI-QKD, it attracts wide concentration and
has been studied from different aspects both in theory and
experiment [17–23].

A single-photon source is preferable for the realization
of MDI-QKD. But an ideal single-photon source is un-
reasonable and still commercially unavailable with current
technology. Practical photon sources such as the weak co-
herent sources (WCS) and the spontaneous-parametric-down-
conversion sources (SPDCS) can be used as the source
for MDI-QKD. Hence, one should apply the decoy-state
method [24–26] to make sure of its unconditional security.
Luckily, many attempts were made at estimating the bound of
key rates such as the situations for WCS [17,18,27], heralded
single-photon source [28], practical SPDCS [29], and the
general imperfect single-photon source [19,30]. Note that
the finite-key analysis has been carried on meticulously in a
deepgoing way for the typical standard QKD [31–38] and the
recent one based on the generalized uncertainty relation [6]
has also been extended to situations like one-sided device-
independent QKD [39], passive decoy-state protocol [40], and
B92 protocol [41]. However, for decoy-state MDI-QKD, the
finite-key analysis by far [42–44] is insufficient, since the
achievable finite secret key rates of the existing results are not
high and close enough to the asymptotic case given the same
experimental data. Thus, efforts have been made to upgrade
the theoretical results so as to obtain a higher key rate of
decoy-state MDI-QKD [45,46]. A concise security bound
against general attacks for typical standard decoy-state QKD
with finite resources was recently presented by Lim et al. [47]
and that for MDI-QKD is extremely urgent to be further
studied.
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In this work, inspired from the proposed efficient decoy-
state BB84 protocol [48,49], we apply a tight finite-key
analysis for the decoy-state MDI-QKD where the basis
is chosen with a biased probability and the intensities of
different types of state are selected properly to optimize
the achievable finite secret key rate. Most importantly, by
combining the analytical method presented in [30] with the
finite-key analysis, the formulas for estimating the single-
photon yield and error rate of decoy-state MDI-QKD are
recalculated, which can be proven to be rigorously concise
in the finite-key case. In addition, we introduce the bound
for estimating the phase error rate [36] into the decoy-state
MDI-QKD with finite resources. And it should be noted that
our security analysis is based on the recent security proof
technique [50]. Hence, we are able to give concise finite-key
security bounds that are valid against the most general attacks.
Furthermore, we compare the performance of our bound with
that obtained in [44] given the same experimental data under
a realistic fiber-based system model. The simulations show
a long-distance implementation (168 km on standard optical
fiber) of MDI-QKD is acceptable with a reasonable data size of
total signals (N = 1015) and verify that our analytical security
bounds for decoy-state MDI-QKD are profoundly concise with
practical postprocessing block sizes.

The paper is constituted as follows. In Sec. II, we propose
an efficient decoy-state MDI-QKD protocol with biased basis
choice and specify its execution steps. Section. III fixes the
security notions and introduces the formalism for calculating
the achievable finite secret key rates. The main results of this
work, i.e., concise formulas of bounding the yield and bit
error rate for the single-photon events, are shown in Sec. IV.
Section V numerically simulates our bounds and Sec. VI
concludes the paper.

II. PROTOCOL DECLARATION

In this section, we propose a biased decoy-state MDI-QKD
protocol. The protocol uses one-decoy settings and phase-
randomized laser pulses to guarantee its security in the state-
preparation step. We consider the vacuum + weak decoy-state
method in which both Alice and Bob randomly modulate states
with the three intensities μ, υ, and 0 (μ > υ > 0), which
are named as the signal state, decoy state, and vacuum state,
respectively. For different choices of intensity in Alice and
Bob’s modulators, the bases X and Z are selected with different
probabilities.

Note that the error rates in X and Z bases are intrinsically
not symmetric for MDI-QKD [13,18,21]; then one can smartly
set different bases for specific choices of intensity to maximize
the finite secret key rate. If we consider the phase-encoded
MDI-QKD given by Ma et al. [18], the key bit is encoded in
time bin 0 or time bin 1 under the Z basis and encoded into
the relative phases 0 or π between the two time bins by a
phase modulator under the X basis. However, the multiphoton
component in the transmitted phase-randomized pulses may
cause accidental coincidence, which introduces a 1/2 bit error
rate in the X basis [21]. Hence, this will result in a higher
quantum bit error rate with the X basis than that with the Z

basis. It is the same case for the original polarization-based
MDI-QKD protocol [13] where the rectilinear basis serves as

TABLE I. Basis choice strategy for Alice and Bob’s different
intensity modulations.

Alice/Bob 0 υb μb

0 – X or Z X or Z

υa X or Z X or Z X or Z

μa X or Z X or Z Z

the Z basis and the diagonal basis acts as the X basis. Thus,
in our protocol, the final secure key is extracted from the
successful detection events when both Alice and Bob choose
the Z basis. Most importantly, to reduce the cost sacrificed in
the parameter estimation step, the states are prepared only
in the Z basis if Alice and Bob both choose the signal
intensities. When Alice and Bob choose other intensities, the
states are prepared in the X basis and Z basis with probabilities
of qX and 1 − qX, respectively. In the following, we provide a
detailed description of our protocol.

Preparation. For the ith pulses emitted from the
lasers, Alice and Bob modulate the intensities αi ∈ A :=
{μa,υa,0} and βi ∈ B := {μb,υb,0} with the probabili-
ties pai

∈ {pμa
,pυa

,1 − pμa
− pυa

} and pbi
∈ {pμb

,pυb
,1 −

pμb
− pυb

}, respectively. Then, they assign bit values chosen
uniformly from the random generators to prepare the phase-
randomized laser pulses under the basis ki ∈ {X,Z} following
the choice strategy shown in Table I, where the X basis is
chosen with probability qX and the Z basis with 1 − qX. Alice
and Bob then send their pulses to Charlie via the quantum
channel.

Measurement and sifting. Charlie conducts the partial Bell
state measurement for the received pulse, and informs Alice
and Bob of his measurement result through a public channel.
Alice and Bob then publicly compare their basis for each pulse
via an authenticated classical channel. For the pulse when
they use the same basis and Charlie announces a successful
measurement event, either Alice or Bob applies bit flip, and
record the bit value in y ′

i ∈ {0,1} as a raw key. Then Alice
and Bob are able to gather the pulse satisfying the follow-
ing sets: N00 := {i : (αi = 0) ∧ (βi = 0) ∧ (y ′

i �= φ)}, Xαβ :=
{i : (αi = α) ∧ (βi = β) ∧ (ki = X) ∧ (y ′

i �= φ)} with α ∈
A,β ∈ B except αβ = μaμb and αβ = 00,Zαβ := {i : (αi =
α) ∧ (βi = β) ∧ (ki = Z) ∧ (y ′

i �= φ)} with α ∈ A, β ∈ B ex-
cept αβ = 00. Here, y ′

i �= φ means that the ith pulse brings
a successful measurement event in the Charlie’s side. Then
they check for |N00| � n00, |Xαβ | � nX

αβ for αβ �= μaμb

and αβ �= 00, |Zαβ | � nZ
αβ for αβ �= 00, where n00,n

X
αβ(αβ �=

μaμb, αβ �= 00) and nZ
αβ(αβ �= 00) are postselected for pa-

rameter estimation and raw key generation. They repeat the
preparation and measurement processes until these conditions
are all satisfied. And they record the total number of pulses
sent from Alice and Bob as N .

Parameter estimation. For the pulses prepared under the
Z basis, Alice and Bob randomly choose a set of size nZ =∑

α∈A,β∈B nZ
αβ from Z = ∪α∈A,β∈BZαβ as the raw key pair

(XA,XB), where nZ
00 = n00(1 − qX). Here, nZ is considered as

the postprocessing block size and all intensity levels under the
Z basis are used for raw key generation. Then, they announce
a sample set of size nX = ∑

α∈A,β∈B,αβ �=μaμb,αβ �=00 nX
αβ from
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X = ∪α∈A,β∈BXαβ to estimate the single-photon detections
and calculate the number of bit errors mX

υaυb
, mX

0υb
, and mX

υa0

in the X basis, respectively. Given nZ
αβ , Alice and Bob are

able to estimate the number of single-photon detections sZ
11

in (XA,XB ). Likely, they can estimate the single-photon
detections sX

11 among the tested sample events in the X

basis given nX
αβ . Then, with the observations mX

υaυb
, mX

0υb
,

and mX
υa0, they can compute the number of single-photon bit

errors cX
11 under the X basis. The phase error rate, denoted

as ϕZ := cZ
11/s

Z
11, cannot be directly measured from the raw

key bits. But it can be bounded with the tested bit error
rate cX

11/s
X
11 from the sample events by random sampling

theory. Finally, they check if the estimated phase error rate ϕZ

satisfies the condition ϕZ � ϕtol, where the phase error bound
ϕtol is predetermined. The protocol only aborts if ϕX > ϕtol,
otherwise they proceed to the next step.

Postprocessing. First, an error correction algorithm is
applied to the raw key pair (XA,XB ), which reveals at most
λEC bits of information. Then, by using two-universal hash
functions that consume �log2 (1/εhash)� bits of information,
Alice and Bob conduct an error-verification step to ensure
that their corrected keys are identical. Here, εhash denotes
the probability that a pair of different keys passes the error-
verification step. At last, according to the information that
leaks to the eavesdropper, the privacy amplification step
compresses their keys to some extent for extracting a secret
key pair (SA,SB ) with length 
 = |SA| = |SB |.

It should be noted that our protocol is apparently different
from that of [44]. First of all, in the state preparation step,
the basis is chosen biased with the purpose of maximizing
the finite secret key rate in our protocol, which consumes
a lower number of pulses for parameter estimation than the
one in [44]. Secondly, in the parameter estimation step, all
intensity levels including the vacuum states, decoy states, and
signal states in the Z basis contribute to the raw keys in our
protocol, which brings larger raw keys than the one in [44].
Thus, these fundamental advantages of our protocol can help
us to improve the performance of decoy-state MDI-QKD with
finite resources.

III. SECURITY DEFINITION AND SECRET KEY LENGTH

After the above protocol, a secret key pair (SA,SB ) with
length 
 is obtained. It is necessary to guarantee the security
of the final key with quantified secrecy. First of all, we shall
clarify the security criteria, which lays the foundation of our
analysis. In this paper, we employ the notion of composable
security based on trace distance into our analysis, which is
initially proposed by Renner [51].

Definition 1 (composable security definition). The key pair
(SA,SB) that outputs from the protocol is considered to be
ε-secure if it is both εcor-correct and εsec-secret. εcor-correct
is satisfied only if Pr(SA �= SB) � εcor, i.e., the probability of
SA �= SB will not exceed εcor. εsec-secret is satisfied only if
ppass

2 ‖ρSE − US ⊗ ρE‖1 � εsec, where S represents either of
the keys SA and SB, ρE is the system that the eavesdropper
owns, ρSE is the classical-quantum state describing the joint
state of S and E, US is the uniform mixture of all possible

values of S, and ppass is the probability that all steps of the
protocol are successfully conducted.

The proof technique based on the uncertainty principle for
the smooth entropy [50] can provide us an efficient method for
the finite-key analysis [6]. Likely, for the protocol that we give
in this paper, it can also be used as a tool for deriving the finite
secret key length 
. For simplicity, we directly introduce the
results of [44,47] into our protocol. The differences are that
the key is generated from the Z basis and all of the detection
events in the Z basis contribute to the final key in our protocol.
Furthermore, we assume that Alice and Bob use forward
classical communication [18] for error correction and privacy
amplification. Then, the protocol is ε-secure, if an upper bound
on 
 can be derived as [44,47]


 � nZ
0 + nZ

1 [1 − h(ϕZ)] − λEC − log2
2

εcor
− 6 log2

21

εsec
,

(1)

where h(x) = −x log2(x) − (1 − x) log2(1 − x),εcor = εhash,

εcor + εsec � ε, nZ
0 = e−μanZ

0μb
+ e−υanZ

0μb
+ e−μanZ

0υb
+

e−υanZ
0υb

with nZ
0μb

,nZ
0υb

being the number that there is no
photon from Alice’s side and a successful measurement event
occurs, and nZ

1 = ∑
α �=0∈A,β �=0∈B n

Z,αβ

11 with n
Z,αβ

11 being the
number of single-photon events in the Z basis when Alice and
Bob send pulses of the intensity α and β, respectively. ϕZ is
the phase error rate with respect to the single-photon events.
λEC = f

∑
α �=0∈A,β �=0∈B mZ

αβ is the number of bits consumed
in the error correction step with f being the efficiency and
mZ

αβ being the number of bit errors in the Z basis when Alice
and Bob send pulses of the intensity α and β, respectively.

IV. PARAMETER ESTIMATION IN THE
FINITE-KEY CASE

In this section, our major task is to estimate the terms nZ
1

and ϕZ in Eq. (1) using the decoy-state method. We note that
the analytical security bounds derived by Yu et al. [30] can
achieve a better secret key rate compared to existing ones.
However, their result is confined to the infinite-key case. What
we shall do next is to derive the bounds for the finite-key case
following the approach proposed in [30].

A. Single-photon detections

The key point of the decoy-state method is that the trans-
mitted state over the channel appears the same to the eaves-
dropper no matter how Alice and Bob choose the intensity
level. Denote sZ

nm as the successful detections in the Z basis
when Alice sends n-photon state and Bob sends m-photon
state. Then, we can find that nZ = ∑∞

n,m=0 sZ
nm. Let αβ be

a two-pulse source when the pulse pair is prepared if the
intensity α ∈ A is chosen at Alice’s side and the intensity
β ∈ B is chosen at Bob’s side. By exploiting the structure of
the conditional probabilities with Baye’s rule pZ

αβ|nm [44], we
can further classify the successful detection events according
to different two-pulse sources. Specifically, the number of
successful detections given source αβ in the asymptotic limit,
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which is denoted as ñZ
αβ , can be expressed by

ñZ
αβ =

∞∑
n=0,m=0

pZ
αβ|nmsZ

nm, ∀α ∈ A,β ∈ B, (2)

where

pZ
αβ|nm = pα,β,Zanbm

τZ
nm

, τZ
nm =

∑
α∈A,β∈B

pα,β,Zanbm (3)

In the above equation, pZ
αβ|nm is the conditional probability

of choosing the source αβ given that Alice and Bob prepared
a n-photon state and a m-photon state, respectively, pα,β,Z

represents the probability that Alice chooses intensity α and
Bob chooses intensity β under the Z basis, an denotes the
probability of a n-photon pulse coming from the intensity α

at Alice’s side, and bm denotes the probability of a m-photon
pulse coming from the intensity β at Bob’s side. In the finite-
key case, if we apply Hoeffdings inequality for independent
events [52], the real measured value nZ

αβ shall deviate from the
asymptotic value ñZ

αβ by

∣∣nZ
αβ − ñZ

αβ

∣∣ � δ(nZ,ε1), (4)

with a failure probability at most 2ε1, where δ(nZ,ε1) =√
0.5nZ ln(1/ε1) with nZ the sum of successful detection

events in the Z basis when either Alice or Bob sends no
vacuum states. Essentially, Eq. (4) enables us to construct a
link between the asymptotic values and the observed statistics
such as nZ

μaμb
, nZ

μaυb
, nZ

υaμb
, and nZ

υaυb
.

We assume that the nonvacuum states from Alice and
Bob’s laboratories have the following convex forms in photon
number space:

ρυa
=

∞∑
k=0

ak |k〉 〈k|, ρμa
=

∞∑
k=0

a′
k|k〉〈k|,

(5)

ρυb
=

∞∑
k=0

bk|k〉〈k|, ρμb
=

∞∑
k=0

b′
k|k〉〈k|,

with the photon number probabilities satisfying [30]

a′
k

ak

� a′
2

a2
� a′

1

a1
,

b′
k

bk

� b′
2

b2
� b′

1

b1
, (6)

for k � 2. Considering the successful detections under the Z

basis from source υaυb, υaμb, μaυb, and μaμb, respectively,
we have the following equations:

ñZ∗
υaυb

= a1b1g11 + a1b2g12 + a2b1g21 + a2b2g22 + Gυaυb
,

(7)

ñZ∗
υaμb

= a1b
′
1g11 + a1b

′
2g12 + a2b

′
1g21 + a2b

′
2g22 + Gυaμb

,

(8)

ñZ∗
μaυb

= a′
1b1g11 + a′

1b2g12 + a′
2b1g21 + a′

2b2g22 + Gμaυb
,

(9)

ñZ∗
μaμb

= a′
1b

′
1g11 + a′

1b
′
2g12 + a′

2b
′
1g21 + a′

2b
′
2g22 + Gμaμb

,

(10)
where

ñZ∗
υaυb

= ñZ
υaυb

pυa
pυb

(1 − qX)
− a0ñ

Z
0υb(

1 − pυa
− pμa

)
pυb

(1 − qX)
− b0ñ

Z
υa0(

1 − pυb
− pμb

)
pυa

(1 − qX)
+ a0b0ñ

Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

ñZ∗
υaμb

= ñZ
υaμb

pυa
pμb

(1 − qX)
− a0ñ

Z
0μb(

1 − pυa
− pμa

)
pμb

(1 − qX)
− b′

0ñ
Z
υa0(

1 − pυb
− pμb

)
pυa

(1 − qX)
+ a0b

′
0ñ

Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

ñZ∗
μaυb

= ñZ
μaυb

pμa
pυb

(1 − qX)
− a′

0ñ
Z
0υb(

1 − pυa
− pμa

)
pυb

(1 − qX)
− b0ñ

Z
μa0(

1 − pυb
− pμb

)
pμa

(1 − qX)
+ a′

0b0ñ
Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

ñZ∗
μaμb

= ñZ
μaμb

pμa
pμb

− a′
0ñ

Z
0μb(

1 − pυa
− pμa

)
pμb

(1 − qX)
− b′

0ñ
Z
μa0(

1 − pυb
− pμb

)
pμa

(1 − qX)
+ a′

0b
′
0ñ

Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) , (11)

and

Gυaυb
=

∑
(n,m)∈G0

anbmgnm, Gυaμb
=

∑
(m,n)∈G0

anb
′
mgnm, Gμaυb

=
∑

(n,m)∈G0

a′
nbmgnm, Gμaμb

=
∑

(n,m)∈G0

a′
nb

′
mgnm, (12)

with gnm = sZ
nm

τZ
nm

(n � 1,m � 1) and G0 = {(n,m)|n � 1,m � 1,n + m � 4,(n,m) �= (2,2)}.
One can obtain different analytical bounds of sZ

11 from Eqs. (7)–(10) by eliminating the terms g12 and g21. Here, in order
to obtain the most compact one among them, we apply the same analysis conducted in [30]. By comparing the coefficients
of gnm (n � 2,m � 2) for different approaches, it can be proved that the bound derived by (a1a

′
2b1b

′
2 − a′

1a2b
′
1b2) × Eq. (7) −

b1b2(a1a
′
2 − a′

1a2) × Eq. (8) − a1a2(b1b
′
2 − b′

1b2) × Eq. (9) is the lowest one among them, which is presented by

sZ
11 �

τZ
11

[
(a1a

′
2b1b

′
2 − a′

1a2b
′
1b2)ñZ∗

υaυb
− b1b2(a1a

′
2 − a′

1a2)ñZ∗
υaμb

− a1a2(b1b
′
2 − b′

1b2)ñZ∗
μaυb

]
a1b1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (13)

where ñZ∗
υaυb

, ñZ∗
υaμb

, and ñZ∗
μaυb

are determined by Eq. (11). Particularly, it should be noted that Eq. (6) is a necessary condition for
the correctness of the above bound. Furthermore, consider the finite-size deviation terms given by Eq. (4); we can reformulate
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the bound with experimental observed events by

sZ
11 �

τZ
11

[
(a1a

′
2b1b

′
2 − a′

1a2b
′
1b2)NZ

υaυb
− b1b2(a1a

′
2 − a′

1a2)NZ
υaμb

− a1a2(b1b
′
2 − b′

1b2)NZ
μaυb

]
a1b1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
� sZ

11, (14)

where

NZ
υaυb

= nZ
υaυb

− δ(nZ,ε1)

pυa
pυb

(1 − qX)
− a0

[
nZ

0υb
+ δ(nZ,ε1)

]
(
1 − pυa

− pμa

)
pυb

(1 − qX)
− b0

[
nZ

υa0 + δ(nZ,ε1)
]

(
1 − pυb

− pμb

)
pυa

(1 − qX)
+ a0b0n

Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

NZ
υaμb

= nZ
υaμb

+ δ(nZ,ε1)

pυa
pμb

(1 − qX)
− a0

[
nZ

0μb
− δ(nZ,ε1)

]
(
1 − pυa

− pμa

)
pμb

(1 − qX)
− b′

0

[
nZ

υa0 − δ(nZ,ε1)
]

(
1 − pυb

− pμb

)
pυa

(1 − qX)
+ a0b

′
0n

Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

NZ
μaυb

= nZ
μaυb

+ δ(nZ,ε1)

pμa
pυb

(1 − qX)
− a′

0

[
nZ

0υb
− δ(nZ,ε1)

]
(
1 − pυa

− pμa

)
pυb

(1 − qX)
− b0

[
nZ

μa0 − δ(nZ,ε1)
]

(
1 − pυb

− pμb

)
pμa

(1 − qX)
+ a′

0b0n
Z
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

(15)

with nZ
αβ being the number of measured successful detections

from source αβ in the Z basis.

B. Single-photon errors

In what follows, we shall first derive a bound on how to
calculate the single-photon errors based on the observed errors
in the X basis. In our protocol, to obtain a higher sifted key, we
apply a biased basis choice. Most importantly, for the states
prepared in the X basis from Alice and Bob’s laboratories, only
the decoy source υaυb is selected for parameter estimation.
Denote the υX

nm as the number of errors associated with sX
nm,

which is the number of successful detections in the X basis
when Alice sends n-photon state and Bob sends m-photon
state. Then, the expected number of errors assigned to the
source υaυb can be represented by

w̃X
υaυb

=
∞∑

n=0,m=0

pX
αβ|nmυX

nm, (16)

where

pX
αβ|nm = pα,β,Xanbm

τX
nm

, τX
nm =

∑
α∈A,β∈B

pα,β,Xanbm.

(17)

Also using Hoeffdings inequality [52], we thus obtain the
real measured errors wX

υaυb
which deviates from the expected

ones by
∣∣wX

υaυb
− w̃X

υaυb

∣∣ � δ(wX,ε2), (18)

which holds true with a probability of at least 1 − 2ε2. Here,
δ(wX,εw) =

√
0.5wX ln(1/ε2), where with wX is the sum of

errors in the X basis when either Alice or Bob sends no vacuum
states.

According to the conditional probabilities defined in the
previous section, we can obtain the expression of asymptotical
errors from source υaυb in photon-number distribution

w̃X∗
υaυb

= a1b1r11 + a1b2r12 + a2b1r21 + a2b2r22 + Tυaυb
,

(19)

where

w̃X∗
υaυb

= w̃X
υaυb

pυa
pυb

qX

− a0w̃
X
0υb(

1 − pυa
− pμa

)
pυb

qX

− b0w̃
X
υa0(

1 − pυb
− pμb

)
pυa

qX
(20)

+ a0b0w̃
X
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

Tυaυb
=

∑
(n,m)∈G0

anbmrnm,

with rnm = υX
nm

τX
nm

(n � 1,m � 1).
Note that all terms in the right-hand side of Eq. (19) are

not smaller than zero and ignore the terms when either of the
subscripts n or m is bigger than 1; we can obtain an upper
bound of υX

11, which is given by

υX
11 �

τX
11w̃

X∗
υaυb

a1b1
. (21)

Then, consider the deviation terms between the number of
expected errors and observed errors; we can obtain

υX
11 �

τX
11W

X
υaυb

a1b1
� υX

11, (22)

with

WX
υaυb

= wX
υaυb

+ δ(wX,ε2)

pυa
pυb

qX

− a0
[
wX

0υb
− δ(wX,ε2)

]
(
1 − pυa

− pμa

)
pυb

qX

− b0
[
wX

υa0 − δ(wX,ε2)
]

(
1 − pυb

− pμb

)
pυa

qX

+ a0b0w
X
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) . (23)

C. Phase error rate

Since the final secret key is produced in the Z basis, we
need to the estimate the phase error rate under the Z basis, i.e.,
ϕZ . In the asymptotic case, the phase error rate in the Z basis
is equal to the bit error rate in the X basis. However, in the
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finite-key case, ϕZ should be estimated via a random-sampling
theory (without replacement) based on the observed error rate
in the X basis. Since the security of MDI-QKD is built on
the time-reversed Einstein-Podolsky-Rosen protocols [53,54],
the analysis on estimating the phase error rate for BB84
protocol can be naturally introduced into that for MDI-QKD.
In this paper, we conduct an interval estimation based on
the straightforward bounds [36], derived from an approaching
technique for the hypergeometric distribution. And we stress
that the estimation method given in [55] is also preferable

in our protocol. It should be noted that the result of [36] is
obtained for the ideal single-photon source. Here, combining
the decoy-state method with the bound given by Hayashi [36],
we will show how to calculate ϕZ for the case when nonideal
single-photon sources are used, such as the WCS and the
heralded SPDCS.

First of all, we should give an estimation on the number of
sample single-photon detections in the X basis. The method
is similar to the way of calculating sZ

11 and the calculation
formula can be given by

sX
11 �

τX
11

[
(a1a

′
2b1b

′
2 − a′

1a2b
′
1b2)NX

υaυb
− b1b2(a1a

′
2 − a′

1a2)NX
υaμb

− a1a2(b1b
′
2 − b′

1b2)NX
μaυb

]
a1b1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
� sX

11, (24)

where

NX
υaυb

= nX
υaυb

− δ(nX,ε1)

pυa
pυb

qX

− a0
[
nX

0υb
+ δ(nX,ε1)

]
(
1 − pυa

− pμa

)
pυb

qX

− b0
[
nX

υa0 + δ(nX,ε1)
]

(
1 − pυb

− pμb

)
pυa

qX

+ a0b0n
X
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

NX
υaμb

= nX
υaμb

+ δ(nX,ε1)

pυa
pμb

qX

− a0
[
nX

0μb
− δ(nX,ε1)

]
(
1 − pυa

− pμa

)
pμb

qX

− b′
0

[
nX

υa0 − δ(nX,ε1)
]

(
1 − pυb

− pμb

)
pυa

qX

+ a0b
′
0n

X
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) , (25)

NX
μaυb

= nX
μaυb

+ δ(nX,ε1)

pμa
pυb

qX

− a′
0

[
nX

0υb
− δ(nX,ε1)

]
(
1 − pυa

− pμa

)
pυb

qX

− b0[nX
μa0 − δ(nX,ε1)](

1 − pυb
− pμb

)
pμa

qX

+ a′
0b0n

X
00(

1 − pυa
− pμa

)(
1 − pυb

− pμb

) ,

with nX
αβ being the number of measured successful detections

from source αβ in the X basis and nX
00 = n00qX. Here, nX is

the sum of successful detection events in the X basis when
either Alice or Bob send no vacuum states.

In our protocol, we note that the estimated lengths of single-
photon sifted bits and single-photon sample bits are sZ

11 and sX
11,

respectively. In the following, we will show how to calculate
the phase error rate given sZ

11, sX
11, and υX

11.
Step 1. For a given security parameter εsec, choose a value

ω such that

√√√√ sZ
11 + sX

11

sZ
11

√
ω2 + 2π

2
eν�(ω) � 1

16
εsec

2, (26)

where ν = 1
6sZ

11
+ 1

12 and �(ω) = 1√
2π

∫ ∞
ω

exp(−y2

2 )dy.

Step 2. Determine the sample single-photon bit error rate
by eX

11 = (υX
11 + 2)/sX

11 and calculate the parameters

σ =
ω2sZ

11

4sX
11

(
sZ

11 + sX
11 − 1

) ,

(27)

ê =
eX

11 + 2σ + 2
√

σ
[
eX

11

(
1 − eX

11

) + σ
]

1 + 4σ
.

Step 3. Calculate the phase error rate ep by

ep =
(
sZ

11 + sX
11

)
ê − sX

11e
X
11

sZ
11

. (28)

V. NUMERICAL SIMULATION

In this section, we will numerically simulate the perfor-
mance of our protocol. For better comparison, we consider
a fiber-based channel model and directly borrow experi-
mental parameters from [44]. Denote ηc

a = 10−αLa/10 (ηc
b =

10−αLb/10) as the fiber transmission of Alice (Bob) with the
loss coefficient being α = 0.2 dB/km, ηd = 14.5% as the
detection efficiency of the relay, and pd = 6.02 × 10−6 as
its background dark count rate. La (Lb) is the length of
fiber between Charlie and Alice (Bob). The security bound
is fixed to ε = 10−10 and the numerical parameters are listed
in Table II.

It should be noted that our protocol is not confined with
specific source and any source satisfying Eq. (6) is available.
Here, we consider the cases when WCS is used as the
sources of Alice and Bob in the phase-encoded MDI-QKD
scheme proposed by Ma et al. [18]. And we stress that
the original polarization-based protocol [13] and the phase-
encoded protocol proposed by Tamaki et al. [17] are also
acceptable for our protocol.

TABLE II. List of experimental parameters used in the simula-
tions: α is the loss coefficient of the fiber, f is the error correction
inefficiency, ηd is the detection efficiency of the relay, ed is the errors
due to channel relative-phase misalignment between Alice and Bob,
pd is the background dark count rate of the detector in the relay, and
ε is the predetermined security bound.

α (dB/km) f ηd ed pd ε

0.20 1.16 0.145 0.015 6.02 × 10−6 10−10
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For parameter estimation, the parameters nZ
αβ, nX

αβ , and
wX

αβ can be directly obtained in the experimental process of
executing our protocol. In this paper, for simulation purposes,
we can theoretically calculate them based on the channel
model [18]:

nX
αβ = 2NpαpβqXy2[1 + 2y2 − 4yI0(x) + I0(2x)],

wX
αβ = e0n

X
αβ − 2NpαpβqX(e0 − ed )y2[I0(2x) − 1],

(29)
nZ

αβ = Npαpβ(1 − qX)(QC + QE),

wZ
αβ = Npαpβ(1 − qX){edQC + (1 − ed )QE},

where

QC = 2(1 − pd )2e−μ′/2[1 − (1 − pd )e−ηaα/2]

× [1 − (1 − pd )e−ηbβ/2], (30)

QE = 2pd (1 − pd )2e−μ′/2[I0(2x) − (1 − pd )e−μ′/2],

with μ′ = ηaα + ηbβ, x = √
ηaαηbβ/2, and y = (1 −

pd )e−μ′/4. In the above equations, I0(x) is the modified Bessel
function of the first kind, e0 = 0.5 is the error rate of a random
background noise, pd is the dark count rate of the detector
in the relay, and ηa = ηdη

c
a (ηb = ηdη

c
b) is the transmission

efficiency of Alice (Bob).
In our simulations, we use the experimental parameters

listed in Table II. We set the key’s secrecy εsec and correctness
εcor be 10−10 and 10−12, respectively.

In Fig. 1, the curves of the numerical secret key rates from
left to right are obtained for different values of qX with the total
number of signals N fixed to be 1013. One can see that the secret
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FIG. 1. (Color online) Key rate comparison with different prob-
abilities of choosing X basis. A realistic finite size of data N is
fixed to be 1013. For different qX = 0.05,0.25,0.45,0.65,0.85, the
curves from left to right are all plotted by Eq. (1) averaged on the
total number of signals N sent by Alice and Bob. The single-photon
contribution nZ

1 , single-photon errors υX
11, and the phase error rate

ϕZ are all analytically obtained by Eq. (14), Eq. (22), and Eq. (28),
respectively. The intensities of signal states and decoy states are
assigned specific values of 0.36 and 0.18, respectively.
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FIG. 2. (Color online) Key rate comparison with different finite
data sets. The dashed curve denotes the ideal secret key rate when
infinite decoy states are used and the intensity is optimized for each
distance. The dash-dotted curve denotes the asymptotic secret key
rate of the three-intensity decoy-state method with the intensity of
signal states and decoy states being 0.5 and 0.1, respectively. The
solid curves from left to right are plotted by our protocol for finite
number of total pulses from the weak coherent source N = 10j with
j = 12,12.5,13,13.5,14,15. The intensities of signal states and decoy
states are fixed to be 0.36 and 0.18, respectively. But the probability
of choosing X basis qX is optimally chosen for each N .

key rate and achievable secure transmission distance have their
optimal values for different basis choices. 0.25 is found to be
optimal for N = 1013. This comes from the trade-off between
qX and qZ since the bigger qX means less statistical fluctuation
and the bigger qZ = 1 − qX means more generation of key.

In Fig. 2, the solid curves of the secret key rates from
left to right are obtained for different total number of signals
N , where qX is optimally chosen for each N . Under the
same experimental parameters, our simulation results perform
better than that of [44]. For example, with a realistic finite
size of data saying N = 1012 and N = 1012.5, the maximal
transmission distance can reach to 64 and 86 km, apparently
bigger than [44]. And it should be noted that the key
rates of [44] are obtained under a full optimization over
various parameters such as μa, υa, pμa

, pυa
, and qX, where

μb = μa, υb = υa, pμb
= pμa

, pυb
= pυa

, and qZ = 1 − qX.
However, in the simulations of our protocol, we fix μa =
0.36,υa = 0.18,pμa

= 0.58,pυa
= 0.3 and only optimize the

key rate over one parameter qX. This indicates the feasibility
of our protocol.

With the full parameter optimization method based on a
local search algorithm [45], the key rate and secure distance
of our protocol can be further increased and extended, respec-
tively. But in practice, the implementation of full parameter
optimization needs complex modulation setups, which raises
the technical difficulty in practical experiment. Our protocol
can be easily conducted in existing setups of a practical
experiment. Besides, the estimation of phased error rate is
conducted rigorously, whereas [44] and [45] are not. This
will certainly enhance the security level of our protocol. Our
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protocol has good performance for two reasons. One is that
we apply a smart intensity-choosing policy, where all intensity
levels in the Z basis contribute to the final keys and the signal
states are not prepared in the X basis when both Alice and
Bob choose signal states. The other is that the basis is chosen
optimally, which brings a good balance between data used for
key generation and that used for parameter estimation.

VI. CONCLUSION

In conclusion, we put forward a biased decoy-state pro-
tocol for the measurement-device-independent quantum key
distribution with finite resources. For secret keys of a finite
length that are ε-secure, the analytical bounds for the single-
photon detections, single-photon errors, and phase error rate
are presented. Our protocol takes advantage of all possible
detections even if Alice and Bob choose decoy states. The
basis choice is assigned according to the intensity choice. By
numerical simulations, we remark that biased basis choice can

apparently extend the secure distance for MDI-QKD. Without
a full optimization program, our protocol can perform better
than that proposed by Curty et al. [44] and the secure distance
can reach to 168 km when the size of total pulses is N =
1015. Experimentalists can readily choose and implement our
protocol to enhance the performance of practical MDI-QKD
experiment.

Recently, we noticed that a study by Zhou et al. [46] pro-
posed analytical estimation bounds based on four intensities
for MDI-QKD. It will be appealing to adjust these bounds
to our protocol and we will maintain attention to the new
application of our protocol.
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[3] J. Cederlöf and J.-Ä. Larsson, IEEE Trans. Inf. Theory 54, 1735
(2008).

[4] C. Zhou, W.-S. Bao, H.-W. Li, Y. Wang, and X.-Q. Fu, Quantum.
Inf. Process. 13, 935 (2014).

[5] V. Scarani and R. Renner, in Theory of Quantum Computation,
Communication, and Cryptography, edited by Y. Kawano and
M. Mosca, Lecture Notes in Computer Science Vol. 5106
(Springer, Berlin/Heidelberg, 2008), pp. 83–95; V. Scarani and
R. Renner, Phys. Rev. Lett. 100, 200501 (2008).

[6] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner,
Nat. Commun. 3, 634 (2012).

[7] Y. Zhao, Chi-Hang Fred Fung, B. Qi, C. Chen, and H.-K. Lo,
Phys. Rev. A 78, 042333 (2008).

[8] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and
V. Makarov, Nat. Photonics 4, 686 (2010).

[9] H.-W. Li et al., Phys. Rev. A 84, 062308 (2011).
[10] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[11] N. Gisin, S. Pironio, and N. Sangouard, Phys. Rev. Lett. 105,

070501 (2010).
[12] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).
[13] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503

(2012).
[14] S. L. Braunstein and S. Pirandola, Phys. Rev. Lett. 108, 130502

(2012).
[15] M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302 (2011).
[16] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and

H. M. Wiseman, Phys. Rev. A 85, 010301 (2012).
[17] K. Tamaki, H.-K. Lo, Chi-Hang Fred Fung, and B. Qi, Phys.

Rev. A 85, 042307 (2012).
[18] X. F. Ma and M. Razavi, Phys. Rev. A 86, 062319 (2012).

[19] X.-B. Wang, Phys. Rev. A 87, 012320 (2013).
[20] Z.-Q. Yin, Chi-Hang Fred Fung, X. Ma, C.-M. Zhang, H.-W. Li,

W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 88,
062322 (2013).

[21] Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang,
Ke Cui, Hua-Lei Yin, Nai-Le Liu, Li Li et al., Phys. Rev. Lett.
111, 130502 (2013).

[22] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and
W. Tittel, Phys. Rev. Lett. 111, 130501 (2013).

[23] Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, Phys. Rev.
Lett. 112, 190503 (2014).

[24] W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
[25] H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[26] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
[27] S.-H. Sun, M. Gao, C.-Y. Li, and L.-M. Liang, Phys. Rev. A 87,

052329 (2013).
[28] Q. Wang and X.-B. Wang, Phys. Rev. A 88, 052332 (2013).
[29] C. Zhou, W.-S. Bao, W. Chen, H.-W. Li, Z.-Q. Yin, Y. Wang,

and Z.-F. Han, Phys. Rev. A 88, 052333 (2013).
[30] Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, Phys. Rev. A 88, 062339

(2013).
[31] M. Hayashi, Phys. Rev. A 76, 012329 (2007); J. Hasegawa,

M. Hayashi, T. Hiroshima, and A. Tomita, arXiv:0707.3541.
[32] H.-W. Li, Y.-B. Zhao, Z.-Q. Yin, S. Wang, Z.-F. Han, W.-S. Bao,

and G.-C. Guo, Opt. Commun. 282, 4162 (2009).
[33] M. Christandl, R. König, and R. Renner, Phys. Rev. Lett. 102,

020504 (2009).
[34] T.-T. Song, J. Zhang, S.-J. Qin, and Q.-Y. Wen, Quantum Inf.

Comput. 11, 374 (2011).
[35] Nelly Huei Ying Ng, M. Berta, and S. Wehner, Phys. Rev. A 86,

042315 (2012).
[36] M. Hayashi and T. Tsurumaru, New J. Phys. 14, 093014 (2012).
[37] M. Hayashi and R. Nakayama, New J. Phys. 16, 063009 (2014).
[38] R. D. Somma and R. J. Hughes, Phys. Rev. A 87, 062330 (2013).
[39] Y. Wang, W.-S. Bao, H.-W. Li, C. Zhou, and Y. Li, Phys. Rev.

A 88, 052322 (2013).

022313-8

http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1109/TIT.2008.917697
http://dx.doi.org/10.1109/TIT.2008.917697
http://dx.doi.org/10.1109/TIT.2008.917697
http://dx.doi.org/10.1109/TIT.2008.917697
http://dx.doi.org/10.1007/s11128-013-0703-9
http://dx.doi.org/10.1007/s11128-013-0703-9
http://dx.doi.org/10.1007/s11128-013-0703-9
http://dx.doi.org/10.1007/s11128-013-0703-9
http://dx.doi.org/10.1103/PhysRevLett.100.200501
http://dx.doi.org/10.1103/PhysRevLett.100.200501
http://dx.doi.org/10.1103/PhysRevLett.100.200501
http://dx.doi.org/10.1103/PhysRevLett.100.200501
http://dx.doi.org/10.1038/ncomms1631
http://dx.doi.org/10.1038/ncomms1631
http://dx.doi.org/10.1038/ncomms1631
http://dx.doi.org/10.1038/ncomms1631
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1103/PhysRevA.84.062308
http://dx.doi.org/10.1103/PhysRevA.84.062308
http://dx.doi.org/10.1103/PhysRevA.84.062308
http://dx.doi.org/10.1103/PhysRevA.84.062308
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.105.070501
http://dx.doi.org/10.1103/PhysRevLett.105.070501
http://dx.doi.org/10.1103/PhysRevLett.105.070501
http://dx.doi.org/10.1103/PhysRevLett.105.070501
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130502
http://dx.doi.org/10.1103/PhysRevLett.108.130502
http://dx.doi.org/10.1103/PhysRevLett.108.130502
http://dx.doi.org/10.1103/PhysRevLett.108.130502
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevA.85.042307
http://dx.doi.org/10.1103/PhysRevA.85.042307
http://dx.doi.org/10.1103/PhysRevA.85.042307
http://dx.doi.org/10.1103/PhysRevA.85.042307
http://dx.doi.org/10.1103/PhysRevA.86.062319
http://dx.doi.org/10.1103/PhysRevA.86.062319
http://dx.doi.org/10.1103/PhysRevA.86.062319
http://dx.doi.org/10.1103/PhysRevA.86.062319
http://dx.doi.org/10.1103/PhysRevA.87.012320
http://dx.doi.org/10.1103/PhysRevA.87.012320
http://dx.doi.org/10.1103/PhysRevA.87.012320
http://dx.doi.org/10.1103/PhysRevA.87.012320
http://dx.doi.org/10.1103/PhysRevA.88.062322
http://dx.doi.org/10.1103/PhysRevA.88.062322
http://dx.doi.org/10.1103/PhysRevA.88.062322
http://dx.doi.org/10.1103/PhysRevA.88.062322
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevA.87.052329
http://dx.doi.org/10.1103/PhysRevA.87.052329
http://dx.doi.org/10.1103/PhysRevA.87.052329
http://dx.doi.org/10.1103/PhysRevA.87.052329
http://dx.doi.org/10.1103/PhysRevA.88.052332
http://dx.doi.org/10.1103/PhysRevA.88.052332
http://dx.doi.org/10.1103/PhysRevA.88.052332
http://dx.doi.org/10.1103/PhysRevA.88.052332
http://dx.doi.org/10.1103/PhysRevA.88.052333
http://dx.doi.org/10.1103/PhysRevA.88.052333
http://dx.doi.org/10.1103/PhysRevA.88.052333
http://dx.doi.org/10.1103/PhysRevA.88.052333
http://dx.doi.org/10.1103/PhysRevA.88.062339
http://dx.doi.org/10.1103/PhysRevA.88.062339
http://dx.doi.org/10.1103/PhysRevA.88.062339
http://dx.doi.org/10.1103/PhysRevA.88.062339
http://dx.doi.org/10.1103/PhysRevA.76.012329
http://dx.doi.org/10.1103/PhysRevA.76.012329
http://dx.doi.org/10.1103/PhysRevA.76.012329
http://dx.doi.org/10.1103/PhysRevA.76.012329
http://arxiv.org/abs/arXiv:0707.3541
http://dx.doi.org/10.1016/j.optcom.2009.07.011
http://dx.doi.org/10.1016/j.optcom.2009.07.011
http://dx.doi.org/10.1016/j.optcom.2009.07.011
http://dx.doi.org/10.1016/j.optcom.2009.07.011
http://dx.doi.org/10.1103/PhysRevLett.102.020504
http://dx.doi.org/10.1103/PhysRevLett.102.020504
http://dx.doi.org/10.1103/PhysRevLett.102.020504
http://dx.doi.org/10.1103/PhysRevLett.102.020504
http://dx.doi.org/10.1103/PhysRevA.86.042315
http://dx.doi.org/10.1103/PhysRevA.86.042315
http://dx.doi.org/10.1103/PhysRevA.86.042315
http://dx.doi.org/10.1103/PhysRevA.86.042315
http://dx.doi.org/10.1088/1367-2630/14/9/093014
http://dx.doi.org/10.1088/1367-2630/14/9/093014
http://dx.doi.org/10.1088/1367-2630/14/9/093014
http://dx.doi.org/10.1088/1367-2630/14/9/093014
http://dx.doi.org/10.1088/1367-2630/16/6/063009
http://dx.doi.org/10.1088/1367-2630/16/6/063009
http://dx.doi.org/10.1088/1367-2630/16/6/063009
http://dx.doi.org/10.1088/1367-2630/16/6/063009
http://dx.doi.org/10.1103/PhysRevA.87.062330
http://dx.doi.org/10.1103/PhysRevA.87.062330
http://dx.doi.org/10.1103/PhysRevA.87.062330
http://dx.doi.org/10.1103/PhysRevA.87.062330
http://dx.doi.org/10.1103/PhysRevA.88.052322
http://dx.doi.org/10.1103/PhysRevA.88.052322
http://dx.doi.org/10.1103/PhysRevA.88.052322
http://dx.doi.org/10.1103/PhysRevA.88.052322


BIASED DECOY-STATE MEASUREMENT-DEVICE- . . . PHYSICAL REVIEW A 91, 022313 (2015)

[40] C. Zhou, W.-S. Bao, H.-W. Li, Y. Wang, Y. Li, Z.-Q. Yin,
W. Chen, and Z.-F. Han, Phys. Rev. A 89, 052328 (2014).

[41] M. Mafu, K. Garapo, and F. Petruccione, Phys. Rev. A 88,
062306 (2013).

[42] T.-T. Song, Q.-Y. Wen, F.-Z. Guo, and X.-Q. Tan, Phys. Rev. A
86, 022332 (2012).

[43] X. Ma, Chi-Hang Fred Fung, and M. Razavi, Phys. Rev. A 86,
052305 (2012).

[44] M. Curty, F.-H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K.
Lo, Nat. Commun. 5, 3732 (2014).

[45] F.-H. Xu, H. Xu, and H.-K. Lo, Phys. Rev. A 89, 052333 (2014).
[46] Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, Phys. Rev. A 89, 052325

(2014).
[47] Charles Ci Wen Lim, M. Curty, N. Walenta, F. Xu, and

H. Zbinden, Phys. Rev. A 89, 022307 (2014).

[48] M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W.
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