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Experimental construction of generic three-qubit states and their reconstruction from two-party
reduced states on an NMR quantum information processor
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We experimentally explore the state space of three qubits on a nuclear magnetic resonance (NMR) quantum-
information processor. We construct a scheme to experimentally realize a canonical form for general three-qubit
states up to single-qubit unitaries. This form involves a nontrivial combination of Greenberger-Horne-Zeilinger
(GHZ) and W -type maximally entangled states of three qubits. The general circuit that we have constructed for the
generic state reduces to those for GHZ and W states as special cases. The experimental construction of a generic
state is carried out for a nontrivial set of parameters and the good fidelity of preparation is confirmed by complete
state tomography. The GHZ and W states are constructed as special cases of the general experimental scheme.
Further, we experimentally demonstrate a curious fact about three-qubit states, where for almost all pure states, the
two-qubit reduced states can be used to reconstruct the full three-qubit state. For the case of a generic state and for
the W state, we demonstrate this method of reconstruction by comparing it to the directly tomographed three-qubit
state.
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I. INTRODUCTION

While a qubit is considered to be a building block for
quantum-information processing, the actual quantum com-
puter invariably involves complex states of multiple qubits [1].
The transition from one to two qubits is of fundamental
importance because it is the two-qubit system for which we
can have entangled states and hence a nontrivial quantum
advantage for information processing [2,3]. The manipulation
of two-qubit states is qualitatively more difficult than that for
a single qubit. As a matter of fact, the dynamics of a single
qubit finds a classical analog in polarization optics [4], and
it is only when we create entangled states of two qubits do
the nontrivial quantum aspects emerge [5]. It may appear that
moving from two qubits to several qubits is merely a matter
of detail. However, this is not the case and new quantum
aspects emerge for a three-qubit system, which is the simplest
system for which the concept of multipartite entanglement
can be introduced. Unlike the two-qubit case, the maximally
entangled states of three qubits are not equivalent up to local
unitary transformations and instead fall into two inequivalent
classes, namely the Greenberger-Horne-Zeilinger (GHZ) and
W classes of states [6]. In contradistinction to the two-qubit
case, a canonical form for three qubits turns out to be nontrivial
and involves a combination of GHZ and W states. It has been
shown that all pure states of a system of three qubits are
equivalent under local unitary transformations to a canonical
state with five independent nonzero real parameters [7–11].
While one-qubit reduced states have information about the
amount of entanglement in a two-qubit pure state, they do
not uniquely determine the state. On the other hand, it turns
out that almost every three-qubit pure state is completely
determined by its two-qubit reduced density matrices and there

*shrutidogra@iisermohali.ac.in
†kavita@iisermohali.ac.in
‡arvind@iisermohali.ac.in

is no more information in the full quantum state than what
is already contained in the three possible two-qubit reduced
states [12–14]. It is indeed somewhat surprising that even when
nontrivial multipartite entanglement is present, the “parts” can
determine the “whole.”

There have been several experimental implementations of
tripartite-entangled W and GHZ states using different physical
resources [15–19]. GHZ and W states have been used as
a resource in a quantum prisoner’s dilemma game [20], to
simulate the violation of Bell-type inequalities [21], in quan-
tum erasers [22,23] and complementarity measurements [24],
quantum key distribution [25], quantum secret sharing [26],
and quantum teleportation [27]. In the context of nuclear
magnetic resonance (NMR) quantum computing, GHZ and
W states have been generated on a one-dimensional Ising
chain [28,29], their decoherence properties studied [30], and
their ground-state phase transitions investigated in a system
with competing many-body interactions [31,32].

This work has two main results. (a) We prescribe a scheme
to create generic states of three qubits and implement it on
an NMR quantum computer. The complete class of separable,
biseparable, and maximally entangled three-qubit states can be
generated using our scheme. (b) We experimentally demon-
strate the reconstruction of generic three-qubit states from their
two-qubit reduced marginals. The material in this paper is
organized as follows. Section II describes the NMR imple-
mentation of a generic state with a nontrivial five-parameter
set and the implementations of the GHZ and W states as special
cases of the general scheme. The density matrices of all the
states are reconstructed by using an optimal set of NMR state
tomography experiments. Section III describes the three-qubit
state reconstruction from their two-party reduced states for
a generic state and for the W state. By comparing the state
tomographs obtained from the two-qubit marginals and by a
full tomography of the three-qubit state we demonstrate that
reduced two-qubit density matrices are indeed able to capture
all information about the full three-qubit state. Section IV
contains some concluding remarks.
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II. NMR IMPLEMENTATION

The three-qubit system that we use for NMR quantum-
information processing is the molecule trifluoroiodoethylene
dissolved in deuterated acetone. The three qubits were encoded
using the 19F nuclei. The Hamiltonian of the three-qubit system
in the rotating frame is given by

H =
3∑

i=1

νiIiz +
3∑

i<j,i=1

Jij IizIjz, (1)

where Iiz is the single-spin Pauli angular momentum operator,
νi are the Larmor frequencies of the spins, and Jij are the
spin-spin coupling constants. The coupling constants recorded
are J12 = 69.8 Hz, J23 = −129.0 Hz, and J13 = 47.5 Hz.
Decoherence is not a major issue in this system, with average
fluorine longitudinal T1 relaxation times of 5.0 s and T2

relaxation times of 1.0 s, respectively. The structure of the
three-qubit molecule as well as the equilibrium NMR spectrum
obtained after a π/2 readout pulse are shown in Fig. 1. The
resonance lines of each qubit are labeled by the corresponding
states of the other two coupled qubits. All experiments were
performed at room temperature on a Bruker Avance III
400 MHz NMR spectrometer equipped with a z-gradient BBO
probe. The three fluorine nuclei cover a very large bandwidth
of 68 ppm. Standard shaped pulses (of duration 400 μs) were
hence modulated to achieve uniform excitation of all the
three qubits by exciting smaller bandwidths simultaneously at
different offsets. Individual qubits were addressed using low-
power “Gaussian”-shaped selective pulses of 265-μs duration.
Before implementing the entangling circuits, the system was
first initialized into the |000〉 pseudopure state by the spatial
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FIG. 1. Molecular structure, NMR parameters, and 19F thermal
equilibrium spectrum of trifluoroiodoethylene. The three fluorine
spins in the molecule are marked as the corresponding qubits.
The table summarizes the relevant NMR parameters, i.e., resonance
frequencies νi and J -coupling constants. The 19F spectrum is obtained
after a π/2 readout pulse on the thermal equilibrium state. The
resonance lines of each qubit are labeled by the corresponding logical
states of the other two qubits in the computational basis.

averaging technique [33], with the density operator given by

ρ000 = 1 − ε

8
I8 + ε|000〉〈000| (2)

with a thermal polarization ε ≈ 10−5 and I8 being an 8 ×
8 identity matrix. The experimentally created pseudopure
state |000〉 was tomographed with a fidelity of 0.99. All
experimentally generated states were completely characterized
by performing NMR state tomography [34]. A modified tomo-
graphic protocol has been proposed [35], wherein a set of seven
operations defined by {III,XXX,IIY,XYX,YII,XXY,IYY}
is performed on the system before recording the sig-
nal. Here X(Y ) denotes a single spin operator and I

is the identity operator. These operators can be imple-
mented by applying the corresponding spin selective π/2
pulses. Motivated by this modified tomographic protocol,
we used an expanded set of 11 operations defined by
{III,IIX,IXI,XII,IIY,IYI,YII,YYI,IXX,XXX,YYY} to de-
termine all the 63 variables for our system of three qubits.
We needed a slightly expanded set to perform experimentally
accessible measurements that were sufficient to completely
characterize the experimental density matrix with good fi-
delity. As a measure of the fidelity of the experimentally
reconstructed density matrices, we use [36]

F = Tr(ρ†
theoryρexpt)√

(Tr(ρ†
theoryρtheory))

√
(Tr(ρ†

exptρexpt))
, (3)

where ρtheory and ρexpt denote the theoretical and experimental
density matrices, respectively.

A. Generic state implementation

The canonical (generic) state for three qubits proposed by
the authors of [7] is given by

|ψ〉 = a1|000〉+ a2|001〉+ a3|010〉+ a4|100〉+ a5e
iφ|111〉,

ai � 0;
∑

i

a2
i = 1. (4)

The normalization condition leads to the reduction of one
parameter and hence the state has five independent nonzero,
real parameters (four modulii and one phase). The state is
symmetric under permutations of the qubits and the five com-
ponents which are invariant under local unitaries (single-qubit
operations) are the minimal number of nonlocal parameters
required to completely specify the state. Any three-qubit
state up to local unitaries, can hence be written in the form
given in Eq. (4). We base our experimental construction on
this canonical form and will henceforth refer to it as the
generic three-qubit state. The generic three-qubit state can
be constructed by a sequence of gates, starting from the
system in a pseudopure state. These gates are one-parameter
unitary transformations, and as will be shown, have elegant
decompositions in terms of NMR pulses. The normalization
condition is automatically satisfied as the normalization will
be preserved under these unitary operations.

The sequence of gates with four real parameters α,β,γ,δ

representing the amplitude parameters a1, . . . ,a5 and the phase
φ leading to the construction of a generic three-qubit state is
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detailed below:

|000〉 U 1
2α−→ cos α|000〉+ sin α|100〉,

CROT
2β

12−→ cos α|000〉+ sin α cos β|100〉+ sin α sin β|110〉,
CNOT21−→ cos α|000〉+ sin α cos β|100〉+ sin α sin β|010〉,
CROT

2γ

13−→ cos α|000〉+ sin α cos β cos γ |100〉
+ sin α cos β sin γ |101〉+ sin α sin β|010〉,

CNOT31−→ cos α|000〉+ sin α cos β cos γ |100〉
+ sin α cos β sin γ |001〉+ sin α sin β|010〉,

CROT2δ
12−→ cos α|000〉+ sin α cos β cos γ cos δ|100〉

+ sin α cos β cos γ sin δ|110〉
+ sin α cos β sin γ |001〉+ sin α sin β|010〉,

CCN12,3−→ cos α|000〉+ sin α cos β cos γ cos δ|100〉
+ sin α cos β cos γ sin δ|111〉
+ sin α cos β sin γ |001〉+ sin α sin β|010〉,

Phφ

12,3−→ cos α|000〉+ sin α cos β sin γ |001〉
+ sin α sin β|010〉+ sin α cos β cos γ cos δ|100〉
+ eιφ sin α cos β cos γ sin δ|111〉. (5)

The operator U 1
2α is a separable, nonentangling transformation

belonging to the SU(2) group, which implements a rotation by
an arbitrary angle α on the first qubit, leading to a generalized
superposition state of the qubit. The global phase is not
detectable in NMR experiments and is thus ignored throughout
in gate implementation; CROT2θ

ij implements a controlled
rotation by an arbitrary angle θ , with the ith qubit as control and
j th as target; CNOTij implements a controlled-NOT gate, with
the ith qubit as control and j th as target; CCN12,3 implements
a controlled-controlled-NOT (Toffoli) gate on the third qubit,
i.e., it flips the state of qubit 3, if and only if both qubits 1 and 2
are in the |1〉 state; Phφ

12,3 is a controlled-controlled-phase shift
gate with 1,2 as control qubits and 3 being the target qubit.
The state thus obtained has five variables: α ∈ [0,π/2],β ∈
[0,π/2],γ ∈ [0,π/2],δ ∈ [0,π/2], and φ ∈ [0,2π ].

The quantum circuit for generic state construction is given
in Fig. 2(a). The circuit consists of a single-qubit rotation
gate, followed by several two-qubit controlled-rotation and
controlled-NOT gates, a three-qubit controlled-controlled NOT

(Toffoli) gate, and finally a controlled-controlled phase gate
that introduces a relative phase in the |111〉 state.

The NMR pulse sequence to construct the generic three-
qubit state starting from the pseudopure state |000〉 is given
in Fig. 2(b). Refocusing pulses are used in the middle of
all J -evolution periods to compensate for chemical shift
evolution. Pairs of π pulses have been inserted at 1/4 and
3/4 of the J -evolution intervals to eliminate undesirable
evolution due to other J couplings. The 180◦ pulses are
represented by unfilled rectangles, while the other pulses are
labeled with their specific flip angles and phases. An ideal
controlled rotation gate CROTij , where “i” is control and “j”
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FIG. 2. (Color online) (a) Quantum circuit showing the specific
sequence of implementation of the controlled-rotation, controlled-
NOT, controlled-controlled-NOT, and controlled-controlled-phase
gates required to construct a generic state and (b) NMR pulse
sequence to implement a general three-qubit generic state; τij is
the evolution period under the Jij coupling. The 180◦ pulses are
represented by unfilled rectangles. The other pulses are labeled with
their specific flip angles and phases. The last pulse (gray shaded)
on the third qubit is a transition-selective 180◦ pulse on the |110〉 to
|111〉 transition about an arbitrary axis n̂ which is inclined at angle
(φ + 90) with the x axis. The last two rectangular pulses on the first
and second qubits are 90◦ z-rotations, to compensate the extra phases
acquired (as described in the text).

is the target qubit (i < j ) is implemented by the sequence
(θ )j−y (π

2 )i,jz
1

4Jij
(π )i,jy

1
4Jij

(π )i,jy (θ )j−y (π )i,jz [37]; here (θ )iα de-
notes an rf pulse of flip angle θ and phase α applied on the ith
qubit, (β)i,jα denotes an rf pulse of flip angle β and phase α ap-
plied simultaneously on both the ith and j th qubits, and 1

4Jij
de-

notes an evolution period under the coupling Hamiltonian (us-
ing standard NMR notation). The above sequence for the ideal
CROTij gate contains two z rotations on each of the control and
target qubits, which are of long duration and give rise to exper-
imental imperfections. To shorten the gate duration and hence
reduce experimental artifacts, we implemented a shorter pulse
sequence corresponding to (θ )j−y

1
4Jij

(π )i,jy
1

4Ji,j
(π )i,jy (θ )j−x ,

which creates the desired state along with a relative phase.
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We keep track of the relative phase gained at the end of
each controlled operation and implement z rotations on the
spins at the end of the sequence to compensate for the relative
phases acquired. The last two gates in the circuit, namely the
controlled-controlled NOT (Toffoli) gate and the controlled-
controlled phase gate were simultaneously implemented using
a single transition-selective π pulse, applied about an arbitrary
axis of rotation n̂ [gray-shaded area in Fig. 2(b)] [38,39]. A
three-qubit controlled-controlled NOT (Toffoli) gate can be
experimentally realized by a transition-selective (π )y pulse
between energy levels |110〉 and |111〉. A transition-selective
pulse (π )n̂ about an arbitrary axis of rotation n̂ = cos φ

′
x̂ +

sin φ
′
ŷ, on the other hand, introduces an extra phase of

eιφ (φ
′ = φ + π/2). Hence, (π )|110〉→|111〉

n̂ when applied on the
basis vector |110〉, results in the state eιφ |111〉. This is an
ingenious method to reduce the experimental time, and comes
in handy in completing the circuit implementation before the
decoherence begins to introduce significant distortions.

To demonstrate our general method to create generic three-
qubit states, we implement our scheme to create a state with
a nontrivial structure. We chose a state in which all the terms
in the generic state expression given in Eq. (5) are involved
in a nontrivial way. We have chosen α = 45◦,β = 55◦,γ =
60◦,δ = 58◦, and φ = 125◦. This set of parameters leads to
the creation of the generic state

0.707|000〉 + 0.351|001〉 + 0.579|010〉 + 0.107|100〉
+ 0.172ei(125◦)|111〉. (6)

The tomograph corresponding to this state is shown in Fig. 3,
wherein the experimentally tomographed state [Fig. 3(b)]
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FIG. 3. The real (Re) and imaginary (Im) parts of the (a)
theoretical and (b) experimental density matrices for the three-qubit
generic state, reconstructed using full state tomography. The values
of the parameters are α = 45◦,β = 55◦,γ = 60◦,δ = 58◦,φ = 125◦.
The rows and columns encode the computational basis in binary
order, from |000〉 to |111〉. The experimentally tomographed state
has a fidelity of 0.92.

is compared to the theoretically expected state [Fig. 3(a)].
The fidelity of the experimentally tomographed state [by the
definition given in Eq. (3)] in this case is 0.92.

Our method is quite general and can be used to construct
any generic state of the three-qubit system. Given that the
relaxation times for our system are quite long and the qubits
are well separated in frequency space, it is also possible to
perform single-qubit operations to transform the state further.

B. GHZ state implementation

Generalized GHZ states are a special case of the generic
state given in Eq. (4), corresponding to the parameter values
α = α,β = γ = 0,δ = π/2,φ = 0, and the circuit given in
Fig. 2(a) reduces to the circuit given in Fig. 4(a). The

(a)

(b)

(c)

|0

|0

|0

|0

|0

|0

|0

|0

|0

U2α

R12(180)

eιφ

U2α

90y

90y 90x

90y 90x

τd τ12 τd

T

O

M

O

G

R

A

P

H

Y

FIG. 4. (Color online) (a) Quantum circuit to implement a gen-
eralized GHZ state, derived from the general circuit for generic
state construction given in Fig. 2(a). (b) Simplified circuit for
experimental implementation of the GHZ state. (c) NMR pulse
sequence corresponding to the circuit in (b). The τd = τ13−τ12

2 period
is tailored such that the system evolves solely under the J13 coupling
term.
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FIG. 5. The real (Re) and imaginary (Im) parts of the (a)
theoretical and (b) experimental density matrices for the GHZ state,
reconstructed using full state tomography. The rows and columns
encode the computational basis in binary order, from |000〉 to |111〉.
The experimentally tomographed state has a fidelity of 0.97.

two controlled-rotation gates CROT
2β

12 and CROT
2γ

13 are hence
redundant for the state implementation and the simplified
experimental circuit is given in Fig. 4(b), with a single-qubit
rotation followed by two controlled-NOT gates. An arbitrarily
weighted GHZ kind of entangled state can be prepared from
the initial pseudopure state |000〉 by the sequence of operations

|000〉 U 1
2α−→ cos α|000〉 + sin α|100〉,

CNOT12−→ cos α|000〉 + sin α|110〉,
CNOT13−→ cos α|000〉 + sin α|111〉. (7)

For α = π/4, the above sequence leads to a pure GHZ
state [15,16,23]

|ψGHZ〉 = 1√
2

(|000〉 + |111〉). (8)

The quantum circuit and the NMR pulse sequence used to
create an arbitrary GHZ-like entangled state beginning from
the pseudopure state |000〉 and ignoring overall phase factors
are given in Figs. 4(b) and 4(c), respectively. The CNOT12 and
CNOT13 in the circuit are controlled-NOT gates with qubit 1 as
the control and qubit 2 (3) as the target. Since the target qubits
are different in both these cases, these gates commute and can
be applied in parallel, leading to a reduction in experimental
time. For our system τ13 > τ12, where τij denotes the evolution
period under the 1

2Jij
coupling term. Hence, during the period

τ12, both qubits 2 and 3 evolve under the the J couplings
J12 and J13 [Fig. 4(c)]. The evolution in the intervals τd =
τ13 − τ12

2
is solely governed by the J13 coupling term, and by

the end of the evolution period, the system evolves under J12
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FIG. 6. (Color online) (a) Quantum circuit to implement the W

state, derived from the general circuit for generic state construction
given in Fig. 2(a). (b) Simplified circuit for experimental implemen-
tation of the W state. (c) NMR pulse sequence to experimentally
implement the W state, starting from the initial pseudopure state
|100〉. The first pulse on the second qubit implements a U 2

2β rotation,

with 2β = 2 sin−1 (1/
√

3) ≡ 70.53◦.

and J13 couplings for durations 1
2J12

and 1
2J13

, respectively. The
state generated experimentally [Fig. 5(b)] was tomographed
and lies very close to the theoretically expected state [Fig. 5(a)]
with a computed fidelity of 0.97.

C. W -state implementation

Generalized W states are another special case of the generic
state given in Eq. (4), corresponding to the parameter values
α = π/2,β,γ ∈ [0,π/2],δ = 0,φ = 0, leading to the state
|ψ〉 = cos γ cos β|100〉 + sin γ cos β|001〉 + sin β|010〉. The
circuit for generalized W states derived from the circuit in
Fig. 2(a) is given in Fig. 6(a) and can be constructed by the
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sequential operation of the gates

|000〉 U 1
π−→ |100〉,

CROT
2β

12−→ cos β|100〉 + sin β|110〉,
CNOT21−→ cos β|100〉 + sin β|010〉,
CROT

2γ

13−→ cos γ cos β|100〉 + sin γ cos β|101〉 + sin β|010〉,
CNOT31−→ cos γ cos β|100〉 + sin γ cos β|001〉 + sin β|010〉.

(9)

The first gate in the circuit, namely a rotation by π on the
first qubit, can be avoided by starting the implementation on
a different initial state. We hence begin with the pseudopure
state |100〉 as the initial state in our experiments. We also avoid
implementing the second gate in the circuit in Eq. (9), namely
the controlled-rotation CROT

2β

12 gate, and instead implement the
much simpler U 2

2β gate on the second qubit, which in this case

yields the same result. For 2β = 2 sin−1 (1/
√

3) and γ = 45◦,
the circuit leads to the implementation of the standard W state
up to a phase factor

|ψW〉 = 1√
3

(i|001〉 + |010〉 + |100〉). (10)

One can get rid of the extra phase factor by a single-qubit
unitary gate. The simplified experimental circuit and the
NMR pulse sequence for the creation of an arbitrary W -like
entangled state beginning from the pseudopure state |100〉 and
ignoring overall phase factors, are given in Figs. 6(b) and 6(c),
respectively. The experimentally reconstructed density matrix
[Fig. 7(b)] matches well with the theoretically expected values
[Fig. 7(a)], with a computed state fidelity of 0.96.
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FIG. 7. The real (Re) and imaginary (Im) parts of the (a)
theoretical and (b) experimental density matrices for the W state,
reconstructed using full state tomography. The rows and columns
encode the computational basis in binary order, from |000〉 to |111〉.
The experimentally tomographed state has a fidelity of 0.96.

III. THREE-QUBIT STATE RECONSTRUCTION FROM
TWO-PARTY REDUCED STATES

Linden et al. discovered a surprising fact about multiparty
correlations, namely, that “the parts determine the whole for a
generic pure state” [12,40]. For three qubits, this implies that
all the information in a generic three-party state is contained
in its three two-party reduced states, which then uniquely
determine the full three-party state. The only exceptions to the
above hypothesis are the generalized GHZ states, and no set
of their reduced states can uniquely determine such entangled
states. This is an important result which sheds some light
on how information is stored in multipartite entangled states.
In a related work, Diosi et al. [13] presented a tomographic
protocol to completely characterize almost all generic three-
qubit pure states, based only on pairwise two-qubit detectors.

In this paper we describe the first experimental demon-
stration of this interesting quantum-mechanical feature of
three-qubit states. We use the same algorithm delineated by
Diosi et al. [13], to reconstruct three-qubit states from their
two-party reduced states. Let us consider a three-qubit pure
state ρABC = |ψABC〉 〈ψABC |, with ρAB , ρBC , ρAC being its
two-party reduced states. The single-qubit reduced states ρA,
ρB , and ρC can be further obtained from the two-party reduced
states. Since ρABC is pure, ρA and ρBC share the same set of
eigenvalues, and can be written as

ρA =
∑

i

pi
A |i〉 〈i| ,

(11)
ρBC =

∑
i

pi
A |i; BC〉 〈i; BC| ,

where {|i〉} are the eigenvectors of ρA with eigenvalues {pi
A},

and {|i; BC〉} are the eigenvectors of ρBC with eigenvalues
{pi

A}. The three-qubit states compatible with ρA and ρBC are

|ψABC ; α〉 =
∑

i

eιαi

√
pi

A |i〉 ⊗ |i; BC〉. (12)

Using a similar argument, the set of three-qubit pure states
obtained from ρAB and ρC is given by

|ψABC ; γ 〉 =
∑

k

eιγk

√
pk

c |k; AB〉 ⊗ |k〉, (13)

where {|k〉} are the eigenvectors of ρC with eigenvalues {pk
c }

and {|k; AB〉} are the corresponding eigenvectors of ρAB . Since
the pure state |ψABC〉 is compatible with both ρAB and ρBC , we
can determine the values of αi and γk such that |ψABC ; α〉 =
|ψABC ; γ 〉. We thus obtain almost all three-qubit pure states
from any two of their corresponding two-party reduced states.
The set (ρAB , ρAC) or the equivalent set (ρAB , ρBC) can be
used to reconstruct ρABC .

The two-party reduced states ρAB , ρBC , and ρAC were
computed by performing partial state tomography. The set
of tomography operations performed to experimentally recon-
struct all three two-party reduced states include: {III, IXI, IYI,
XXI} to reconstruct ρAB ; {III, IIX, IIY, IXX} to reconstruct
ρBC ; and {III, IIX, IIY, XIX} to reconstruct ρAC . Almost
any three-qubit pure state ρABC (except those belonging to
the generalized GHZ class) can be determined by choosing
any two sets from the above. The three-party state ρABC
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reconstructed using the (ρAB,ρBC) set of two-party reduced
states was compared with the same state reconstructed using

complete tomography, and the results match well. For the W

state we tomographed ρAB and ρBC to give us

ρAB =

⎛
⎜⎜⎜⎝

0.36 0.0 0.0 0.0 − 0.01i

0.0 0.21 0.2 + 0.05i −0.01
0.0 0.2 − 0.05i 0.21 0.01

0.0 + 0.01i −0.01 0.01 0.22

⎞
⎟⎟⎟⎠ ,

(14)

ρBC =

⎛
⎜⎜⎜⎝

0.34 −0.01 0.0 + 0.01i 0
−0.01 0.3 0.0 + 0.24i 0.02
−0.01 0.0 − 0.24i 0.2 0.0

0 0.02 0 0.16

⎞
⎟⎟⎟⎠ .

These experimental tomographed density matrices were then used to reconstruct the three-qubit W -state density matrix ρABC .
The thus reconstructed ρABC is given by

ρABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0 − 0.01−0.02i 0.02 − 0.01i 0.0 0.02 0.0 0.0 0.0
−0.01 + 0.02i 0.36 0.0 + 0.29i 0.02 −0.1 + 0.37i −0.01 + 0.01i −0.02 − 0.02i 0.0
0.02 + 0.01i 0.0 − 0.29i 0.23 0.0 − 0.02i 0.3 + 0.08i 0.01 −0.01 + 0.01i 0.0

0.0 0.02 0.0 + 0.02i 0.0 −0.01 + 0.02i 0.0 0. 0.0
0.02 −0.1 − 0.37i 0.3 − 0.08i −0.01 − 0.02i 0.4 0.02 −0.01 + 0.02i 0.0
0.0 −0.01 − 0.01i 0.01 0.0 0.02 0.0 0.0 0.0
0.0 −0.02 + 0.02i −0.01 − 0.01i 0.0 −0.01 − 0.02i 0.0 0. 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

The reconstructed density matrix for the W state is shown
in Fig. 8, computed from two sets of the corresponding
two-qubit reduced density matrices. The tomographed state
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FIG. 8. The real (Re) and imaginary (Im) parts of the density
matrix for the W state. (a) The two-qubit reduced density matrix ρAB .
(b) The two-qubit reduced density matrix ρBC . (c) The entire three-
qubit density matrix ρABC , reconstructed from the corresponding two-
qubit reduced density matrices. The rows and columns encode the
computational basis in binary order, from |00〉 to |11〉 for two qubits
and from |000〉 to |111〉 for three qubits. The tomographed state has
a fidelity of 0.97.

(c)

Re Im Re Im

(a) (b)ρAB ρBC

00
01

10
11 00

01
10

11 00
01
10
11 00

01
10

11 00
01

10
11 00

01
10

11 00
01
10
11 00

01
10

11

Re Im
ρABC

000
001

010
011

100
101

110
111 000

001
010
011

100
101

110
111

000
001

010
011

100
101

110
111

000
001
010

011
100

101
110

111

FIG. 9. The real (Re) and imaginary (Im) parts of the density
matrix for the generic state. (a) The two-qubit reduced density
matrix ρAB . (b) The two-qubit reduced density matrix ρBC . (c)
The entire three-qubit density matrix ρABC , reconstructed from the
corresponding two-qubit reduced density matrices. The parameter
set includes α = 45◦,β = 55◦,γ = 60◦,δ = 58◦,φ = 125◦. The rows
and columns encode the computational basis in binary order, from
|00〉 to |11〉 for two qubits and from |000〉 to |111〉 for three qubits.
The tomographed state has a fidelity of 0.90.
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has a fidelity of 0.97, which matches well with the fidelity
of the original three-qubit density matrix of the W state
[Fig. 7(b)]. As another illustration of reconstructing the whole
state from its parts, the reconstructed density matrix of
the experimentally generated generic state with a parameter
set α = 45◦,β = 55◦,γ = 60◦,δ = 58◦,φ = 125◦, is shown in
Fig. 9. The two-party reduced states were able to reconstruct
this three-qubit state with a fidelity of 0.90, which compares
well with the full reconstruction of the entire three-qubit state
given in Fig. 3(b).

IV. CONCLUDING REMARKS

We have proposed and implemented an NMR-based scheme
to construct a generic three-qubit state from which any general
pure state of three-qubits (including separable, biseparable,
and maximally entangled states) can be constructed, up to
local unitaries. Full tomographic reconstruction of the experi-
mentally generated states showed good fidelity of preparation
and we have achieved a high degree of control over the state
space of three-qubit quantum systems. Generating generic

three-qubit states with a nontrivial phase parameter was an
experimental challenge and we archived it by crafting a
special pulse scheme. It has been previously shown that in a
system of three qubits, no irreducible three-party correlations
exist and that all information about the full quantum state
is completely contained in the three two-party correlations.
We have demonstrated this important result experimentally
in a system of three qubits. The three-qubit density operator
ρABC is obtained by complete quantum state tomography and
compared with the same three-qubit state reconstructed from
tomographs of the two-party reduced density operators given
by ρAB , ρBC , and ρAC . It is expected that our experiments
will pave the way for an understanding of how information is
stored in multipartite entangled systems.
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