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Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation
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Although the simulation of quantum chemistry is one of the most anticipated applications of quantum
computing, the scaling of known upper bounds on the complexity of these algorithms is daunting. Prior work has
bounded errors due to discretization of the time evolution (known as “Trotterization”) in terms of the norm of
the error operator and analyzed scaling with respect to the number of spin orbitals. However, we find that these
error bounds can be loose by up to 16 orders of magnitude for some molecules. Furthermore, numerical results
for small systems fail to reveal any clear correlation between ground-state error and number of spin orbitals. We
instead argue that chemical properties, such as the maximum nuclear charge in a molecule and the filling fraction
of orbitals, can be decisive for determining the cost of a quantum simulation. Our analysis motivates several
strategies to use classical processing to further reduce the required Trotter step size and estimate the necessary
number of steps, without requiring additional quantum resources. Finally, we demonstrate improved methods for
state preparation techniques which are asymptotically superior to proposals in the simulation literature.
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I. INTRODUCTION

The idea that the simulation of quantum systems would
be efficient on a quantum computer dates back to Feynman’s
original work on quantum mechanical computers [1]. Almost
a decade after Abrams and Lloyd [2] demonstrated a scalable
scheme for the quantum simulation of fermions, Aspuru-Guzik
et al. [3] proposed that these techniques could be used to
efficiently determine the ground-state energy of molecular
Hamiltonians, solving what chemists refer to as the electronic
structure problem. Since then, a great deal of work has
focused on specific strategies for the quantum simulation
of quantum chemistry. While most of these approaches are
based on a second quantized representation of the problem
making use of both phase estimation and discretization of
the time evolution (called “Trotterization”) [3–13], recently
some have proposed alternative schemes, such as the quantum
variational eigensolver [14], an adiabatic algorithm [15], and
an oracular approach based on a 1-sparse decomposition of the
configuration interaction Hamiltonian [16]. In fact, quantum
chemistry is such a popular application that toy problems in
chemistry have been solved on a variety of experimental quan-
tum information processors which include quantum optical
systems [14,17], nuclear magnetic resonance systems [18,19],
and solid-state nitrogen-vacancy center systems [20].

Recently, a series of papers [10–13] has provided improved
analytical and empirical bounds on the resources required to
simulate classically intractable benchmarks using a quantum
computer. While the initial findings in [10] were pessimistic,
improvements in both bounds and algorithms introduced
in [11] and [12] have reduced these estimates by more than 13
orders of magnitude for simulations of ferredoxin. The primary
contribution of [13] was to point out that in the limit of large
molecules, the use of a local basis can substantially reduce the
asymptotic complexity of these algorithms. In this paper we
build on the findings of [10–13] to offer new perspectives

*Corresponding author: nawiebe@microsoft.com

regarding the scaling of the second quantized, Trotterized
phase-estimation algorithm for quantum chemistry. In partic-
ular, we question a basic assumption implicit in all of these
works: that the Trotter error explicitly depends on the number
of spin orbitals being simulated.

Instead, we argue that chemical properties such as the filling
fraction of electrons in a given basis, the particular choice of
orbital basis, and the nuclear potential play a more significant
role in determining the Trotter error than does the number of
spin orbitals for small molecules. We support these arguments
with numerical analysis based on the explicit computation of
the Trotter error operator derived in [12]. Additionally, we
show that classically tractable approximations to the ground-
state wave function can be used to efficiently estimate the
Trotter error expected in a particular ground-state simulation.
This result is of significant practical importance because
without a procedure for estimating the Trotter error, one
must rely on analytical error bounds which (as we show)
tend to overestimate the ground-state error by many orders of
magnitude. Finally, we show asymptotically improved circuits
for state preparation based on these classical ansatz states.

A. The electronic structure problem

The electronic structure problem is to estimate the energy
of electrons interacting in a fixed nuclear potential to within
an additive error of ε. This Hamiltonian may be written as

H = −
∑

i

∇2
ri

2
−
∑
i,j

Zi

|Ri − rj | +
∑
i,j>i

1

|ri − rj | , (1)

where we have used atomic units and {Ri} denotes nuclear
coordinates, {ri} electronic coordinates, and {Zi} nuclear
charge. Oftentimes, the utility of these energies is to provide
Born-Oppenheimer surfaces for molecular modeling at finite
temperatures. Usually, chemists are interested in obtaining
free energy landscapes which provide mechanistic insight into
chemical events of significant practical importance, such as
drug binding, catalysis, and material properties. These free
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energy landscapes must be extremely accurate as chemical
rates are exponentially sensitive to changes in free energy.
Under typical laboratory conditions of room temperature and
atmospheric pressure, “chemical accuracy” is required, which
sets ε to the order of 10−3 hartree [21], where 1 hartree is

�
2

mee2a2
0

and me, e, and a0 denote the mass of an electron, charge

of an electron, and Bohr radius, respectively.
We represent the electronic structure Hamiltonian in second

quantization [21] as this requires significantly fewer qubits
than approaches using the first quantized Hamiltonian [22,23],

H =
∑
pq

hpqa
†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qaras, (2)

in which creation and annihilation operators act on a basis of
orthogonal spin orbitals, {ϕi}, and the one- and two-electron
integrals are

hpq =
∫

dσ ϕ∗
p(σ )

(
−∇2

r

2
−
∑

i

Zi

|Ri − r|

)
ϕq(σ ), (3)

hpqrs =
∫

dσ1 dσ2
ϕ∗

p(σ1)ϕ∗
q (σ2)ϕs(σ1)ϕr (σ2)

|r1 − r2| , (4)

where σi contains spatial and spin degrees of freedom for
the electrons. The operators a

†
p and ar obey the fermionic

anticommutation relations

{a†
p,ar} = δp,r , {a†

p,a†
r } = {ap,ar} = 0. (5)

In principle, the number of spin orbitals used to represent
a molecule is not a property of the molecule. However, the
quantum chemistry community has certain conventions (based
on periodic trends) for the number of spin orbitals that should
be used for each atom in the period table, depending on the
desired level accuracy in the calculation. In a minimal basis,
first-period atoms receive 2 spin orbitals, second-period atoms
receive 10 spin orbitals, and third-period atoms receive 18 spin
orbitals. The reasoning behind this scheme is that the most
important orbitals are those which have a principal quantum
number less than or equal to that of the highest occupied orbital
according to Hund’s rules.

In addition to choosing a spatial basis, one must choose
an orbital basis that associates orthogonal spatial functions
constructed from the spatial basis with the second quantized
sites. Throughout this paper we investigate three such orbital
basis sets: The “local basis” is the set of orthogonal atomic
orbitals discussed in [13], the “canonical basis” is the Hartree-
Fock molecular orbitals, and the “natural basis” is that which
diagonalizes the one-electron density matrices associated with
the exact ground state.1 It is worth pointing out that the
canonical orbitals are the natural orbitals of a Hartree-Fock
calculation using a single determinant.

1The natural basis can be well approximated without performing
an exact calculation by repeating truncated configuration interaction
calculations from reference states defined using the natural orbitals
associated with a previous solution.

From Eq. (2), we see that the number of terms in the Hamil-
tonian scales as �(N4).2 However, McClean et al. [13] recently
pointed out that the basis functions decay superexponentially
with distance in a local basis. This means that the integrals
in Eqs. (3) and (4) will be negligibly small for many of the
orbitals, which in turn allows the number of terms in the
Hamiltonian to be truncated to Õ(N2) or Õ(N ) depending
on the size and geometry of the molecule. All of the particular
benchmarks studied in this paper involve fewer than four atoms
and so we consider the number of non-negligible terms in the
Hamiltonian to scale as �(N4), even in a local basis.

B. Quantum simulation of quantum chemistry

The electronic structure problem is classically intractable
to current methods even after discretizing the Hilbert space.
This intractability can be understood as a consequence of
the exponential size of the Hilbert space for the second
quantized Hamiltonian. Similarly, existing methods such as
configuration interaction require consideration of a number of
electronic configuration states that increases exponentially as
the approximation becomes more exact. Quantum simulation
offers a way to circumvent these challenges by directly
mapping the chemical system onto a set of qubits that can
be manipulated using a quantum computer. The particular
problem that we focus on is the problem of computing the
ground-state energy of the system. Other important physical
quantities such as dipole moments can be found by evaluating
their expectation value with respect to the prepared state. The
simulation problem that we consider is as follows.

Problem. Assume that the user is provided with a classical
database containing hpq and hpqrs for a molecule with N

spin orbitals and a black-box state preparation algorithm that
prepares an approximation |0̃〉 to the ground state |0〉 such that
|〈0̃|0〉|2 ∈ �[poly(N−1)]. Design a quantum circuit that uses
these elements to estimate the ground-state energy of Eq. (2)
within additive error ε using a minimal expected number of
gates and qubits.

Most proposals for quantum computer simulation of chem-
ical systems use similar strategies to solve this problem. The
first step involves translating the basis of the second quantized
Hamiltonian to that of the quantum computer. The standard
way to do this is to use the occupation number basis in which
individual qubits encode the occupation of a spin orbital. For
example, the state |00011〉 would refer to an electronic state
where the first two spin orbitals are occupied and the remaining
three spin orbitals are unoccupied.

Although representing states is trivial, representing the
Hamiltonian is not. The reason is that, although it may seem
that the creation and annihilation operators a

†
i and ai are

translated to (Xi − iYi)/2 and (Xi + iYi)/2, respectively, the
resulting operators do not obey the anticommutation relations

2We use the typical computer science convention that f ∈ �(g),
for any functions f and g, if f is asymptotically upper and lower
bounded by a multiple of g, O indicates an asymptotic upper bound, Õ
indicates an asymptotic upper bound up to polylogarithmic factors, �
indicates the asymptotic lower bound, and f ∈ o(g) implies f/g → 0
in the asymptotic limit.
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in Eq. (5). This problem is addressed by using either the
Jordan-Wigner transformation [3,24] or the Bravyi-Kitaev
transformation [9,25] to modify these operators to have the
correct anticommutation relations. Importantly, the operators
that result from using either of these representations are tensor
products of Pauli operations. While the number of such terms
in the transformed Hamiltonian scales as O(N4) using both
approaches, the locality (i.e., many-body order) of these terms
scales as O(N ) under the Jordan-Wigner transformation and
O(log N ) under the Bravyi-Kitaev transformation [9].

Since exponentials of a polynomial number of Pauli
operators are known to be efficiently simulatable, e−iH t |ψ̃〉
can be implemented using a polynomial number of gates using
a quantum computer. There are many different approaches that
can be used to achieve this and the majority of these rely on
Trotter decompositions, which we discuss in more detail later.
However, each of these methods solves a dynamical simulation
problem and does not directly solve the ground-state energy
estimation problem. The phase estimation algorithm provides
the connection needed to relate the eigenvalue estimation
problem to a dynamical simulation problem.

The quantum phase estimation algorithm (PEA) uses a
quantum computer to efficiently estimate energies from the
phases {θn(t)} accumulated during time evolution under a
propagator UH (t) associated with the Hamiltonian of interest
H ; i.e.,

eiHt |n〉 = UH (t)|ψn〉 = eiθn(t)|ψn〉, (6)

θn(t) = (Ent) mod 2π, (7)

where {|ψn〉} and {En} represent eigenstates and eigenvalues
of H . If we initialize a quantum register in a state |ψ̃0〉,
then time evolution under a static Hamiltonian produces the
superposition,

UH (t)|ψ̃0〉 =
⎛
⎝2N −1∑

n=0

eiθn(t)|ψn〉〈ψn|
⎞
⎠ |ψ̃0〉. (8)

Measuring the phase of this superposition projects the system
to state |ψ0〉 with probability |〈ψ0|ψ̃0〉|2. Thus, under the
assumptions of our problem, at most a polynomial number of
repetitions of the PEA will be needed to find the ground-state
energy.

There are obviously two contributions to the cost of solving
the electronic structure problem via quantum computing: (a)
the overlap |〈ψ0|ψ̃0〉|2 and (b) the cost of simulating the
dynamics of the system. Since the overlap is independent of
the simulation method used (to second order in perturbation
theory), most work on the topic has focused on reducing the
latter cost. We discuss both of these issues in the following.

Our main focus is on Trotter-Suzuki-based methods, which
involve a discretization of the time evolution known as
Trotterization. Trotterization approximates UH (t) as a series
of time steps known as “Trotter slices” during which only
one of the Hamiltonian terms is actually active. A Trotter
series containing μ Trotter slices is said to have a “Trotter
number” of μ and the error in this approximation, which arises
from noncommutativity of the Hamiltonian terms, vanishes
as μ → ∞. For a fixed-order Trotter-Suzuki formula, each
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FIG. 1. (Color online) Spin orbitals versus ground-state Trotter
error for various molecular benchmarks in three different basis sets.
Despite analytical predictions to the contrary (in prior works), it
would appear that no clear relation holds between the Trotter error
induced on the ground state and the number of spin orbitals for these
benchmarks.

Trotter slice contains a number of gates that is proportional
to the number of terms in the Hamiltonian, m. The value of
m depends on basis and molecular size and its scaling with
N ranges from Õ(N )to Õ(N4). Since the the total complexity
of the quantum simulation circuit for chemistry is Õ(mμ),
understanding how both of these terms scales is vital for
determining whether quantum chemistry will be viable on
small-scale quantum computers.

The big question that several recent papers have attempted
to address is as follows: “How does μ scale with N?” Indeed,
this issue is central to the optimizations introduced in many of
these simulation methods. Given the importance of this issue
in the literature, the data in Fig. 1 may come as a complete
surprise. We see there that for modestly small molecules,
the error in the second-order Trotter-Suzuki formula does not
have a clear functional dependence on N . This is especially
surprising for cases of canonical and natural orbitals where
there is little evidence of even an increasing trend in the
error as a function of N . This lack of monotonicity is
particularly striking for the atoms N, O, F, and Ne, which show
negligibly small Trotter errors. In fact, for these molecules
(along with others such as helium hydride and lithium hydride)
μ = 1 or μ = 2 is sufficient to achieve chemical accuracy
despite the fact that their Hamiltonians contain hundreds of
noncommuting terms.

In order to understand why the Trotter error deviates so
strongly from prior expectations, we analyze a leading-order
perturbative expression for the error in the second-order Trotter
formula. The insights gained from this analysis raise an
interesting point: Although there is not a strong correlation
between N and the Trotter error, other chemical properties play
a decisive role in the Trotter error. This forces us to reconsider
how we conceptualize the scaling of quantum chemistry
simulation relative to prior results in quantum simulation,
e.g., [2,3,11–13,23,26–29].
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II. ANALYSIS OF TROTTER ERROR OPERATOR

The second-order Trotter-Suzuki decomposition allows us
to approximate the propagator as a series of unitaries corre-
sponding to the individual Hamiltonian terms. In particular,
the second-order3 Trotter formula gives us

UTS
H (�t ) ≡

m−1∏
α=0

Um−α

(
�t

2

) m∏
α=1

Uα

(
�t

2

)
, (9)

where

Uα

(
�t

2

)
= e−iHα�t /2. (10)

The second-order formula applies each unitary twice with the
second half of the Trotter series in reverse order of the first half
to cancel out error terms in the ground-state energy that would
arise at first order in �t . We use this to make the approximation,
valid for sufficiently small values of �t , that

U = eiHt ≈ [UTS(�t )]
μ, �t = t/μ. (11)

Poulin et al. [12] focus on bounding the error in this
approximation with the Baker-Campbell-Hausdorff (BCH)
formula,

log(eXeY ) = X + Y + 1
2 [X,Y ]

+ 1
12 [X,[X,Y ]] − 1

12 [Y,[X,Y ]] + · · · . (12)

By recursively applying Eq. (12) to Eq. (9), the error operator
may be written as V = ∑∞

j=1 V (j ). The leading-order term in
this expansion is

V (1) = −�2
t

12

∑
α�β

∑
β

∑
γ 〈β

[
Hα

(
1 − δα,β

2

)
,[Hβ,Hγ ]

]
, (13)

with errors on the order of O(�4
t ).

The leading-order shift in the energy of the ith eigenstate
is given by nondegenerate perturbation theory as

�Ei = 〈ψi |V (1)|ψi〉 + O
(
�4

t

)
, (14)

where H |ψi〉 = Ei |ψi〉. Solving the electronic structure prob-
lem requires fixed precision in the energy, i.e., �E = O(1).
This suggests that we must shrink the time step for larger
problem instances in order to offset any increase in Trotter
error. In order to make the leading order shift in the energy
eigenvalue at most δ it suffices to take

μ = O

⎧⎨
⎩t

√√√√1

δ

〈∑
α�β

∑
β

∑
γ 〈β

[
Hα

(
1 − δα,β

2

)
,[Hβ,Hγ ]

]〉⎫⎬
⎭.

(15)

Higher-order Trotter-Suzuki algorithms can be used to reduce
the scaling of μ; however, they require a number of gates that

3Note that in work that focuses on high-order Trotter-Suzuki
formulas Eq. (9) is often called the first-order Trotter-Suzuki
formula because it is the lowest iteration order in Suzuki’s iterative
construction of high-order splitting formulas.

scales exponentially with the order of the Trotter formula. This
means that for many problems with modest error tolerances,
the second-order Trotter formula Eq. (9) yields the most
efficient results. Although a similar expression based on
degenerate perturbation theory must be used for molecules
near disassociation, in most practical cases Eq. (15) will
accurately predict the required Trotter number in the limit
of small δ.

In practice, it is difficult to determine precisely how this
error scales with problem size for real molecules. By inspection
of Eq. (13), a loose bound of μ = O(N5) is obtained [12]. This
bound is obtained by recognizing that the double commutator
sum in Eq. (13) contains O(N12) terms but only O(N10) such
terms are nonzero. In some cases, such as large molecules
represented in a local orbital basis, many of these interactions
can be neglected and the actual scaling of μ needed to
achieve chemical accuracy may be closer to μ = Õ(N3) or
μ = Õ(N3/2).

All of these scalings follow from worst-case assumptions
about the error and liberal application of the triangle inequality.
Such arguments are not sufficient to explain the data in
Fig. 1, which does not show a clear dependence of μ on
N . We therefore focus in the remainder on two quantities:
(a) the error in the ground-state energy and (b) the operator
norm of the Trotter error operator. While (a) is the best
measure of the error in quantum chemistry simulation, we
also focus on (b) because it upper bounds (a) and be-
cause it can be well approximated without diagonalizing the
Hamiltonian.

In the numerics that follow we construct error operators by
explicitly computing all O(N10) nonzero terms in Eq. (13).
Once all the terms in the error operator are constructed,
we simplify the resulting expression by normal ordering
the result. Here normal ordering refers to a sorting process
where any chain of creation and annihilation operators
that results from Eq. (13) is reordered such that creation
operators always occur at the leftmost part of the chain.
This reordering is done by using the anticommutation rela-
tions in Eq. (5). For example, a2a1a

†
1a

†
3 = a

†
1a

†
3a1a2 − a

†
3a2.

These normal-ordered terms are then grouped, allowing
their actions on computational basis states to be efficiently
computed.

The Trotter scheme we investigate does not use the
coalescing strategies introduced in [12], which would surely
lead to even more error cancellation. We use a minimal
spatial basis (STO-6G). The Trotter series is ordered in the
“interleaving” scheme introduced in [11] and PQRS terms
are ordered lexicographically. All molecular integrals in this
work were calculated at equilibrium configurations using the
GAMESSelectronic structure package [30,31]. While comput-
ing the error operator is efficient, evaluating the error operator
on an eigenstate of the Hamiltonian cannot be performed in
polynomial time on a classical computer. Due to the expensive
nature of these calculations, we limit our investigation to
benchmarks containing less than 20 spin orbitals. We study
the scaling of the norm of the Trotter error operator as this
quantity is the focus of analytical bounds introduced in [10]
and [12]. Though the bounds in [12] are based on an upper
bound for the operator norm of the error operator, here we use
the exact value of ‖V (1)‖.
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FIG. 2. (Color online) A comparison between the norm of the
error operator and the error induced in the ground state. Notice that in
many cases the basis of natural orbitals have the lowest Trotter error
(especially for examples with large Trotter error).

A. Comparison of norm of error operator
and ground-state error

An important question to ask is as follows: How does the
error in the simulated ground-state energy compare to that
predicted by the norm of the error operator?” This is important
for two reasons. The first reason is that there can be substantial
cancellation in the sum implicit in Eq. (14). This effect is also
discussed in [12]. The second reason is that the ground state
may only have limited overlap with the eigenstates of the
error operator that have large eigenvalues. We discuss these
two effects in detail later, but for now it suffices to ask how
substantial the differences between the two measures are.

Figure 2 shows that substantial differences exist between
the computed Trotter error and the norm of the error operator.
In particular, for O, F, and Ne these discrepancies can be as
large as 16 orders of magnitude. Other molecules, such as H2O
and HF differ by only two orders of magnitude. This shows that
existing estimates of the error can ludicrously overestimate the
error in Trotter-Suzuki formulas if the properties of the ground
state are not also taken into account. Similar comparable
results have also been observed for random many-body
Hamiltonians [32].

To see this, let us consider Ne. By the convention for
second-period atoms, Ne is given ten spin orbitals in a
minimal basis but it also has ten electrons. This means
that all of its spin orbitals will be occupied, i.e., |ψ0〉 =
|1〉⊗10. If we consider the action of a single normal-ordered
term from Eq. (14), α a

†
p1 · · · a†

p5aq1 · · · aq5 , then we see
that 〈ψ0|α a

†
p1 · · · a†

p5aq1 · · · aq5 |ψ0〉 = 0 unless {p1, . . . ,p5} =
{q1, . . . ,q5} up to permutations. Thus, the vast majority of
the terms present in the error operator will evaluate to zero,
irrespective of the magnitude of their coefficients. A similar
argument can be made for F and O except that the ground
state will no longer precisely be the Hartree-Fock state
and instead will be a linear combination of computational
basis states. Nonetheless, it is easy to see that the vast
majority of these expectation values will be zero for these

highly constrained systems. We therefore expect from this
argument that molecules that have spin orbitals that are nearly
fully occupied will have abnormally low error compared to
molecules that are half filled, where the dimension of the space
is maximal for a given number of basis functions. This not only
justifies the shockingly small error in N, O, F, and Ne but also
explains why only considering the norm of the error operator
obscures this trend.

For most benchmarks there is still evidence of correlation
between the norm of the error operator and the Trotter error.
This means that trends in the norm of the error operator are
often reflected in the simulation error. As we have seen, the
properties of the molecules in question can change the nature
of this relationship.

B. Dependence on basis

In addition to showing that Trotter error in the ground state
is usually substantially less than the error operator norm, Fig. 2
suggests that the error is also basis dependent. While previous
works have focused on the local and canonical basis sets,
this figure suggests that using natural orbitals can often lower
Trotter error by several orders of magnitude relative to a local
orbital basis.

Furthermore, we argue that the discrepancy between error
norm and ground-state error increases with the number of spin
orbitals to such an extent that the former should not be used to
make arguments about the asymptotic scaling of the latter. One
can always add more spin orbitals to a molecular Hamiltonian
but given a reasonable orbital basis, the ground state and
physically meaningful excited states will have increasingly
limited occupancy in high-energy orbitals. In this context, the
energy of an orbital is understood to mean the energy of a
single electron occupying that orbital in the absence of other
electrons (appropriate for atomic orbitals) or in the presence
of the average density of all other electrons (appropriate for
the canonical orbitals). Additionally, the natural orbital basis is
known to have the property that states with an odd number of
excitations from ground-state reference often have negligible
overlap with the exact ground state [33].

While the error operator will inevitably contain many
terms involving excitations to and from these high-energy
spin orbitals, eigenstates of physical interest (e.g., the ground
state) are superpositions of configurations which have a limited
number of excitations. Accordingly, terms involving combina-
tions of high-energy orbitals are not expected to significantly
contribute to the error induced in relevant eigenstates despite
increasing the norm of the error operator. This principle
is demonstrated in Table I, which shows the ratio between
ground-state error and error norm for molecular hydrogen in
various basis sets.

C. Dependence on nuclear charge

Figure 3 indicates that Trotter error norm correlates es-
pecially well with the maximum nuclear charge, as further
demonstrated in Fig. 4. The local basis is formed from the
set of orthogonal atomic orbitals which are obtained for
molecules using Löwdin symmetric orthogonalization on the
original nonorthogonal local Gaussian orbitals [13]. These
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TABLE I. Ratio of ground-state error to error operator norm for
molecular hydrogen in various basis sets.

Basis Type Orbitals Error/Norm

STO-6G Local 4 0.2063
3-21G Local 8 0.0568
6-31G Local 8 0.0592
6-31++G Local 12 0.0328
STO-6G Canonical 4 0.1131
3-21G Canonical 8 0.0231
6-31G Canonical 8 0.0242
6-31++G Canonical 12 0.0108
STO-6G Natural 4 0.1131
3-21G Natural 8 0.0472
6-31G Natural 8 0.0547
6-31++G Natural 12 0.0194

Gaussian basis functions are constructed as approximations
to eigenfunctions of hydrogenlike systems, with some fitting
adjustments. As such, we can determine the scaling behavior
by considering the eigenfunctions of hydrogenlike systems
which are simple enough to permit analytical determination
of how each term in the Hamiltonian will scale with nuclear
charge. We begin by writing the eigenfunctions of a single
electron in the potential of a point charge Z in a convenient
way,

ψn�m(ρ,θ,φ) =
√(

2Z

n

)3 (n − � − 1)!

2n(n + �)!
e− ρ

n

(
2ρ

n

)�

×L2�+1
n−�−1

(
2ρ

n

)
Ym

� (θ,φ), (16)

where ρ = rZ, L2�+1
n−�−1( 2ρ

n
) is a generalized Laguerre polyno-

mial of degree n − � − 1 and Ym
� (θ,φ) is a spherical harmonic

of degree � and order m. With the convention

ϕp(σi) = ψp(ρi,θi,φi)χ (si) ∝ Z3/2, (17)

dσi = ρ2
i dρi

Z3
sin(θi) dθi dφi dsi ∝ Z−3, (18)

∇2 = Z2

(
∂2

∂ρ2
+ 2

ρ

∂

∂ρ

)
+ Z2

ρ2 sin2 (θ )

∂2

∂φ2

+ Z2

ρ2 sin2(θ )

∂2

∂φ2
∝ Z2, (19)

where χ (si) is a spin assignment and σ represents all degrees
of freedom for an electron, we rewrite Eqs. (3) and (4) in terms
of ρ, assuming a single nuclei,

hpq =
∫

dσ ϕ∗
p(σ )

(
−∇2

2
− Z2

ρ

)
ϕq(σ ), (20)

hpqrs =
∫

dσ1 dσ2
ϕp(σ1)ϕq(σ2)ϕs(σ1)ϕr (σ2)

|ρ1 − ρ2|/Z . (21)

For both integrals, factors of Z from the differential volume
elements dσ cancel with factors of Z from the spin orbitals ϕ
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FIG. 3. (Color online) We correlate the number of spin orbitals
with the norm of the error operator in the local basis. The semblance
of a positive slope appears to be a symptom of increasing nuclear
charge as the number of spin orbitals increases. Red dots are atoms
and blue dots are molecules.

and we find that

|hpq | = �(Z2), (22)

|hpqrs | = �(Z). (23)

Thus, it is clear that we can upper bound the scaling of
individual Hamiltonian terms with nuclear charge as O(Z2

max).
While this result is rigorous only when the orbital basis is the
basis of true atomic orbitals, we expect qualitatively similar
behavior in other bases. Assuming the hpq terms dominates
the error in the Trotter formula, then Eq. (13) implies that
the Trotter error should scale as O(Z6

max). This scaling is
qualitatively consistent with the empirical scaling in Fig. 4,
which fits Z6

max scaling to the norm of the error operator with an
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max scaling.
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r2 value of 0.994. Comparable results to this scaling have also
been observed in diffusion Monte Carlo algorithms [34,35].

These results imply that if an atomic basis is used then
the error in the second-order Trotter-Suzuki formula scales at
most as

‖V (1)‖ ∈ O
(
N4Z6

max + N10Z3
max

)
. (24)

This result is a direct consequence of bounds on the Trotter-
Suzuki error in [11] and the observation that double commu-
tators of the one- and two-body terms produce at most N4 and
N10 terms, respectively. This implies that the computational
complexity of performing the simulation on an arbitrary
state, given fixed error tolerance of chemical accuracy, is
O[N4(N2Z3

max + N5Z
3/2
max)]. However, our numerical results

are consistent with an O(N4Z3
max), which suggests that this

scaling may be loose. It also important to note that the
gate depth can be further reduced by using interleaving and
nesting as per [11], which is significant when the algorithm
is implemented on systems where quantum operations can
be executed in parallel. It is also worth noting that the one-
body terms dominate the two-body terms in every numerical
example that we considered. Larger molecules with more
hpqrs terms may lead to Trotter errors that scale as O(Z3

max)
rather than O(Z6

max). More extensive numerical results may be
needed to determine the conditions under which the two-body
terms asymptotically dominate the one-body terms (if such
conditions exist).

Figure 5 shows that these error estimates are pessimistic
for the molecules considered when using the canonical basis.
While the error norm is still strongly correlated to nuclear
charge, unlike the scaling in the local basis, the fit to a Z6

max
scaling is less convincing. Instead, the data empirically seem
to follow a Z5

max scaling. Intuitively, this is easy to envision
because the molecular orbitals are inherently delocalized and
thus it is natural to expect that the maximum nuclear charge
should make less of an impact in this basis. We also see no
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max scaling.
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FIG. 6. (Color online) This plot shows the coefficients of normal-
ordered terms in the error operator for water in a local basis as a
function of the orbitals on which they act. The coefficients of the
error terms are binned according to the orbitals involved in the term.
This plot shows the marginal distribution of the magnitudes of those
terms.

evidence of explicit scaling with N over this range in Zmax. It is
interesting to note that although the number of non-negligible
integrals in a local orbital basis can be quadratically or
quartically smaller than the size of an untruncated canonical
molecular orbital basis, the scaling with Zmax seems to be
better by a linear factor. This suggests interesting trade-offs
between the two methods and hints that neither is intrinsically
superior for quantum simulation.

D. Dependence on orbital structure

The terms that appear in the error operator include inter-
actions between every orbital in the basis set. This begs the
question of whether terms in the Hamiltonian that involve
particular orbitals have larger contribution to the error. In order
to assess this, we compute the error operator for a number of
different molecules and normal order the resultant operator. We
then sum the magnitudes of every remaining term that either
creates or annihilates an electron in each of the orbitals. An
example of this is provided in Fig. 6, which shows the marginal
coefficient magnitudes of all terms in the error operator (after
normal ordering) in terms of two spin orbitals they contain.
Appendix B shows similar analysis for other molecules in
other basis sets. As we can see, terms which involve the inner
shell electrons dominate the norm of the error operator in the
local basis.

We see from such figures that the inner orbitals, especially
the single-particle terms which are on the diagonal of the plot
above, have a substantial impact on the Trotter error. This is not
surprising as the inner atomic orbitals interact very strongly
with nuclei so the single-particle integrals are likely to be
much larger than the interaction integrals for these orbitals.
Interestingly, although the valence-shell electrons are often
the most important for determining the chemical properties
of a molecule, the inner orbitals are the ones that affect the
error most significantly. This suggests that pseudopotentials,
which allow the core electrons to be treated as effectively
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“frozen,” may provide a way to reduce the Trotter error in
some circumstances. We leave this as an open question for
future work.

E. Dependence on structure of eigenstates

Due to the substantial discrepancy between error induced
on the ground-state and operator norm, we might ask the fol-
lowing question: Given the error operators for real molecules,
what is the distribution of errors that would be induced on
a random ensemble of vectors? This question is important
as the answer will help us to identify the source of the
observed error cancellation. We consider the ensemble of Haar
random vectors which form a unitarily invariant ensemble of
vectors with uniformly distributed complex elements. Unitary
invariance ensures that the ensemble has uniform distribution
in an arbitrary complete, orthonormal basis such as the
eigenbasis of the error operator.

Denoting vectors from the random ensemble as |v〉 and
eigenvectors of the error operator as |k〉 with eigenvalue λk ,
we are interested in analyzing properties of the following
distribution of expected errors given by

�E(v) =
∑

k

λk|〈v|k〉|2. (25)

First, note that
∑

k λk = 0. This is because if C = [A,B] =∑
j λk|k〉〈k|, then

∑
k

λk = Tr(C) = Tr(AB) − Tr(BA) = 0, (26)

from the cyclic property of the trace. Since V (1) is the sum
of such operators, it follows that its trace is also zero. This
implies that the Haar-expectation value of the error, over all
possible random states, is

EH (�E(v)) =
∑

k

λkEH |〈v|k〉|2 = 1

2N

∑
k

λk = 0. (27)

This shows that there is no inherent bias that arises from Trot-
terization towards either overestimating or underestimating the
true expectation value.

This result does not represent the typical error that we
expect to see in a simulation. We also need to find the Haar
variance of the expected error to estimate the typical variation
of simulation errors about the mean. It is then easy to see that
the Haar variance is

VH

(∑
k

λk|〈v|k〉|2
)

=
∑

k

λ2
kVH (|〈v|k〉|2). (28)

In Appendix A, we derive the Haar variance of the squared
projection,

VH (|〈v|k〉|2) = 2

2N (2N + 1)
− 1

22N
, (29)

where N is the number of spin orbitals. Combining Eqs. (29)
and (28) and using Chebyshev’s inequality, we see that with
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FIG. 7. (Color online) This plot shows the distribution of expec-
tation values of the error operator for water in the local basis over its
eigenstates and Haar random vectors. We see that the random vectors
lead to substantially less error, on average, than do the Hamiltonian
eigenstates. The Haar distribution of errors has a standard deviation of
4.82 while the Hamiltonian error distribution has standard deviation
of 10.68.

high probability over |v〉

|〈v|V (1)|v〉| ∈ O

⎛
⎝
√∑

k λ2
k

2N

⎞
⎠ . (30)

Equation (30), surprisingly, shows that a concentration of
measure argument causes the expectation of the Trotter error
to be asymptotically zero if (a) |v〉 is typical of a Haar random
state, (b)

∑
k λ2

k ∈ o(22N ), and (c) |v〉 is chosen independently
of the |k〉.

We do not expect a concentration of measure argument
like this to hold for actual quantum simulations because it
would imply that the Trotter errors in eigenvalue estimation
shrink rapidly with system size for physically reasonable
distributions of λk . Thus, it is natural to expect that one or both
of assumptions (a) and (c) are not reasonable for eigenvalue
estimation.

In Fig. 7, we show the expected errors according to Eq. (25)
over an ensemble of Haar random vectors as well as the
expected errors over the eigenstates of the Hamiltonian for
water. The results clearly show that the errors observed in
this chemical example are much greater than we would expect
from Haar random states. Furthermore, we see little evidence
of concentration of measure of the errors about zero for the case
where |v〉 is an eigenvector of H , whereas the Haar random
|v〉 lead to results that are much more concentrated about
zero error. This suggests that the discrepancies between the
norm of the error operator and the ground-state error cannot
be explained by a simple randomization argument as the actual
errors observed are much worse than would be otherwise
expected.

Equation (25) shows that the expected error is the convo-
lution of the functions λk and |〈v|k〉|2. Thus, we expect the
distribution of errors to resemble the underlying distribution
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FIG. 8. These are histograms of the eigenspectra of the error operators for various molecular and atomic benchmarks in the local basis.
Proceeding clockwise from top left, the molecules are water, hydrogen fluoride, methylene, atomic beryllium, atomic carbon, and atomic neon.
Error operators for all of our benchmarks have surprisingly similar eigenspectra, regardless of the orbital basis. The source of this striking
similarity and the reason for the particular structure is unknown.

of eigenvalues of V (1). This intuition can easily be seen
by comparing Fig. 7 to the eigenspectrum of the water
error operator in Fig. 8(a). As expected, the distribution of
errors for the random ensemble (Fig. 7) resembles the error
operator eigenspectrum [Fig. 8(a)] with concentration about
the mean [as anticipated by Eq. (30)]. Also, it is interesting
to note that the eigenspectra of the error operators for various
molecules and atoms studied in this paper bear a remarkable
degree of similarity and appear extremely structured as Fig. 8
demonstrates. Additionally, every example has a sharp peak
in its spectrum about zero error. This suggests that much of
the rift between the norm of the error operator in Fig. 2 may
be due to the large number of eigenvectors with near-zero
eigenvalue.

III. IMPROVED SIMULATION METHODS INSPIRED BY
CLASSICAL APPROACHES TO QUANTUM CHEMISTRY

Given the large disparity between error operator norm
and error induced on the exact ground state, any efficient
method which allows one to approximate the error induced on
the ground state (which implies an estimate for the number
of Trotter steps needed) would be of critical importance
for anyone wishing to actually run a quantum chemistry
simulation on a quantum computer. A natural way to address
this problem is to directly evaluate the error over a mesh in
position and fit the data to a power law. This process can
be made efficient using the SWAP test, as proposed by Wiebe
et al. [36]. A major drawback of this approach is that it requires
roughly twice the qubits that the basic simulation used and
also the variance in the estimate returned by the SWAP test
can be prohibitively large. In this section, we propose an

alternative method that estimates the error in the ground-state
energy by evaluating the error operator on a classical ansatz
for the ground state numerically. This method also allows
the contribution to the error in the quantum simulation from
the Trotter error to be subtracted off of the final estimate,
improving the accuracy of the simulation without requiring
additional quantum operations.

Perhaps the most well known classical algorithm for solving
the electronic structure problem is a mean-field approach
known as the Hartree-Fock method [21]. In this scheme, single-
particle molecular orbitals are obtained using a self-consistent
variational procedure in which each particle is made to interact
with the average density of the other particles. The output of
this calculation provides molecular orbitals which, together
with a spin assignment, are used to approximate the n-particle
wave function as an antisymmetric product of the orbitals
(known by chemists as a Slater determinant).

Unfortunately, the Hartree-Fock method is incapable of
approximating dynamic electron correlation and is known to
overestimate energies by an amount that is typically well
above the threshold of chemical accuracy. To correct for
this problem, one can expand the wave function in a basis
of multiple Slater determinants and variationally solve for
the coefficients which minimize the electronic energy. In
general, there are M = (

N

n

)
valid configurations for n electrons

arranged into N spin orbitals. The ground-state wave function
in Eq. (1) may be represented as a linear combinations of these
arrangements,

|�〉 =
M∑
i=1

ai |i〉. (31)
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The energies may be solved for variationally,

E = min
{ai }

〈�|H |�〉
〈�|�〉 → H CI|�〉 = E|�〉, (32)

where H CI
ij = 〈i|H |j 〉. In chemistry this method is known as

full configuration interaction (FCI).
FCI is strongly believed to be classically intractable because

M scales combinatorially with N and n. Accordingly, a
common classical approach is to truncate the expansion in
Eq. (31) to include only configurations that represent a fixed
number of excitations from a reference configuration. Though
this work and recent work [13] discuss using different orbital
basis choices, usually the reference is taken to be the Hartree-
Fock state (this orbital basis is known in chemistry literature
as the “canonical basis”). This approach defines a hierarchy
of methods referred to as truncated configuration interaction
(CI) which approach exactness as the number of excitations
is increased to the FCI space spanned by N − n excitations.
Fixing the maximum number of excitations at k, combinatorics
suggests that the number of basis functions in truncated CI
scales as �[(N−n

k
)( n

k
)]. Truncation to the level of single and

double excitations is referred to as configuration interaction
singles, doubles (CISD) and is used for several purposes in
this paper. Finally, we note that the accuracy of truncated CI
is extremely sensitive to the quality of the reference state and
it is therefore difficult to determine when these methods are
expected to approximate the ground-state energy within even
a fixed multiplicative error.

Since the error operator can be efficiently computed
and normal ordered in second quantized form, we suggest
evaluating the expectation value of this operator on a classical
ansatz for the ground state. In particular, we focus on the use
of the configuration interaction ansatz. Figure 9 illustrates the
utility of this idea by showing the discrepancy between actual
error and the error from evaluation of the error operator using
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FIG. 9. (Color online) Magnitude of the Trotter error in the exact
ground state against the magnitude of the error induced on a classical
ansatz for the ground state. Truncated CI computations are only
performed when inexact; e.g., we have not computed HF using CISD
because the calculation is exact in STO-6G.
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FIG. 10. (Color online) Magnitude of the Trotter error induced
in the exact ground state against percentage of the error that remains
after subtracting the ansatz error from the exact error. This plot is
intended to indicate the reduction in effective error when using a
classical ansatz estimate. A black line is drawn at 100% remaining.
In all benchmarks, using these ansatzae reduces effective error. Note
that the quadruple calculation is so accurate for Be and LiH that the
effective error appears to be exact to within double precision.

a classical ansatz. Figure 10 shows the extent to which the
effective error is reduced using a classical ansatz.

Apart from estimating errors, CISD states may also be of
use in coalescing schemes [12] which use the Hartree-Fock
approximation to determine whether a term in the Hamiltonian
can be executed less frequently without significantly impacting
the quality of the simulation. This process can substantially
reduce the costs of simulating molecules with many small, but
non-negligible, hpqrs terms but may fail if the Hartree-Fock
approximation breaks down. In such cases, the use of CISD
states may lead to superior coalescing schemes at the price of
requiring more classical computing time to find the coalescing
schedule.

Though the Hartree-Fock ansatz is usually not accurate
enough to reduce error by an order of magnitude, the use
of a truncated CI ansatz often exhibits enough accuracy to
very substantially reduce effective error. While we focus on
the CI ansatz to provide proof of principle, we believe that
more intelligent truncation schemes can substantially increase
ansatz accuracy without additional computational cost. For
instance, the use of multireference methods has been shown to
greatly improve the quality of the classical solution in many
cases, especially near molecular dissociation limits where the
exact electronic states become nearly degenerate [21].

The idea of using a classical ansatz to reduce the effective
error in a quantum calculation is useful for two reasons. The
first reason is that the error in a quantum simulation can usually
be reduced by approximating the error with a classical ansatz
at the CISD level of theory or greater, as demonstrated in
Fig. 10. The second (and perhaps more important) reason this
technique is useful is that it gives a realistic a priori estimate
of the error to expect in the quantum simulation (expected to
be correct to at least an order of magnitude), which provides a
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methodology for selecting the number of Trotter steps required
to obtain a desired precision. Finally, we point out that while
the error operator might be computationally costly to compute
(albeit efficient in the polynomial-time scaling sense), Monte
Carlo methods could be used to tractably sample the error
operator expectation values with a classical ansatz.

A. Circuit for state preparation based on CI ansatz

In contrast to the Hartree-Fock states, CISD states are
not computational basis states. Instead, they are a linear
combination of quantum states that are formed by single
and double excitations away from a reference state which
is often taken to be the Hartree-Fock state. Although the
CISD state can be efficiently computed for a given electronic
structure problem, preparing the state on a quantum computer
is nontrivial. Here we present a method based on state-of-the-
art multiqubit synthesis methods to prepare the CISD state.
Previous work has considered preparing this state using single
qubit rotations and CNOT gates [4,6,37]. Such gate sets are
unrealistic for fault-tolerant quantum computing so we discuss
the problem of compiling the state preparation circuit into
Clifford and T gates. In the following analysis we take the cost
of the circuit to be given by the number of T gates because
these gates are the most expensive gates to implement fault
tolerantly in error-correcting codes such as the surface code.

Let us begin by assuming the initial state for the quantum
simulation (i.e., the state we wish to prepare) is of the form

|ψ〉 =
D∑

k=1

αk|jk〉, (33)

where jk is a sequence of computational basis vectors that
spans the space that state has support over and D is the
dimension of that space.

It is unrealistic to assume that the state |ψ〉 will be exactly
preparable using gates from the Clifford + T gate library.
Instead, the initial state will typically have to be approximated
using these circuit elements. For years the Solovay-Kitaev
algorithm provided the best known method for solving this
approximation problem, but recently more advanced methods
based on number theoretic results have provided much more
efficient ways of performing this decomposition [38–40].

Therefore, the problem of finding the best sequence of
Clifford and T gates to approximate a multiqubit unitary
reduces to the following problem.

(1) Find integers x0,x1,y0,y1 such that

Up,q ≈ Ũp,q = x0 + x1

√
2 + iy0 + iy1

√
2√

2
m

and Ũ is a unitary that can be exactly synthesized using
elements from the gate library.

(2) Find a sequence of Clifford and T gates that exactly
implements Ũ .

Note that because we are interested in preparing a state, not
implementing a multiqubit unitary, only the first column of U

needs to be approximated. In particular, the first column of Ũ

should approximate |ψ〉 to within a fixed error tolerance δ.
Before proceeding it is necessary to briefly review number

theoretic approaches to multiqubit circuit synthesis using

Clifford and T gates. The key insight behind this strategy
is that the unitary matrices that can be prepared with such
circuits take on a very special form. The form can easily be
seen from the Hadamard and T gates,

H = 1√
2

[
1 1
1 −1

]
, T =

[
1 0
0 1+i√

2

]
. (34)

It is then clear that any unitary matrix formed by a sequence
of H and T gates will consist of matrix elements that are of
the form

Ũi,j = x0 + x1

√
2 + iy0 + iy1

√
2√

2
m (35)

for integer x0,x1,y0,y1. Since the remainder of the gate set
consists of CNOT gates and Pauli gates which have (complex)
integer-valued matrix elements, it is then clear that every
unitary that can be formed by the gate library also has matrix
elements whose denominators are powers of

√
2 and whose

numerators are in the ring of Gaussian integers Z[1/
√

2,i].
Just like ordinary fractions, these fractions also can be

reduced. This notion of reducing a fraction manifests itself
as the least-denominator exponent k. In order to understand
this concept concretely, it is necessary to introduce some
terminology. Let ω = eiπ/4 and

Z[ω] = {aω3 + bω2 + cω + d|a,b,c,d ∈ Z}. (36)

Similarly, if we let D = {a2−b|a,b ∈ Z} denote the ring of
dyadic fractions, then we can express the ring Z[1/

√
2,i] as

D[ω] = {aω3 + bω2 + cω + d|a,b,c,d ∈ D}. (37)

Then for every t ∈ D[ω] there is a notion of a least denomina-
tor exponent that describes the fraction in Eq. (35) and uses the
smallest value of m possible while requiring that x0,x1,y0,y1

are integer. Or more formally, the least denominator exponent,

k, is the smallest non-negative integer such that t
√

2
k ∈ Z[ω].

The smallest-denominator exponent measures the precision
in the approximation U ≈ Ũ because Eq. (35) allows arbitrary
complex numbers to be represented with zero error in the
limit as k → ∞. This means that the value of k used in the
rounding process of the first column of U is a key property
for characterizing the complexity of the state preparation. In
fact, the problem of bounding the error in this approximation
problem as a function of k has already been solved by
Kliuchnikov [41],

‖(U − Ũ )|0〉‖ � 2(D + 2)2−4k + 2
√

2(D + 2)2−2k, (38)

where D is the number of nonzero components of the state
|ψ〉 = U |0〉. As a technical point, the dimension of Ũ is at
most D + 2 rather than D because the first column of U must
have at least two zero-valued components in order to guarantee
that a solution exists to the Diophantine equation for Ũ . This
requires enlarging the Hilbert space dimension by two in the
worst-case scenario, which may require adding at most an
additional qubit. However, the CISD state vector will likely
have many zero-valued components so this extra qubit will
often not be needed in practice.
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Using Eq. (38) we see that the state preparation error can
be made less than δ by choosing

k =
⌈

1

4

{
1 + log2

[
D + 2

(
√

1 + δ − 1)2

]}⌉
. (39)

This means that if D is polynomial in n, then k ∈ O[log2(n/δ)].
Once the unitary Ũ has been found, then the task of

decomposing the unitary into fundamental operations remains
a nontrivial problem. This problem is addressed by Giles
and Selinger in [42]. The idea behind this approach is to
decompose Ũ into a series of two-level unitary operations.
These two-level unitary operations are then implemented using
a Clifford circuit and a series of controlled operations to map
each two-level subspace to a single qubit. This process involves
first identifying pairs of levels that can be simplified and then
performing circuits of the form HwT xHyT z to the two-level
subspace such that the denominator exponent is systematically
reduced. Once the least denominator exponent is reduced to 0,
then the subspace either takes the form [ωp,0]T or [0,ωp]T for
integer p. Thus, the inverse of the state preparation circuit
can be found (up to a global phase) by performing this
reduction process iteratively of the D-dimensional initial state
until only one nonzero component remains and then mapping
this component to |0〉 using a Clifford circuit and a multiply
controlled NOT gate.

At most, k reduction steps are needed to reduce each two-
level subspace and there are, at most, (D + 2) − 1 subspaces
that must be looped through. Therefore, there are, at most,
k(D + 1) reduction steps taken. Each reduction step consists
of applying, at most, two H gates and two T x gates to each
subspace, as well as a multiply controlled NOT gate to map the
final state to one proportional to |0〉. Hence, in order to assess
the cost of the algorithm we need to compute the costs of each
of these gates.

Let us imagine that we need to perform a gate on
the subspace span(|j 〉,|k〉). We want to map this to
span(|2n − 1〉,|2n − 2〉) so that the gate can be applied to the
last qubit. By performing a sequence of O(n) X gates, we can
map

span(|j 〉,|k〉) → span(|j ⊕ k ⊕ 2n − 1〉,|2n − 1〉),
where ⊕ is bitwise exclusive or. There are two cases that
we need to consider. If j ⊕ k = 1 mod 2, then the least
significant bit of j ⊕ k ⊕ 2n − 1 is 0. This means that the
state |j ⊕ k ⊕ 2n − 1〉 can be mapped to |2n − 2〉 using
a sequence of n − 1 zero-controlled NOT gates while not
affecting |2n − 1〉. Otherwise, if j ⊕ k = 1 mod 2 then we
can reduce this case by finding the least significant bit where j

and k differ and swap that bit with the least significant bit. Since
|2n − 1〉 is an eigenstate of the swap operator, the swap does
not affect that vector. Hence, in either case we can perform the
subspace mapping using O(n) Clifford operations.

In order to apply the H and T gates required by the synthesis
algorithm on the correct qubits, we need to implement con-
trolled variants of these circuits. There are many constructions
for these controlled gates [43–45]. Here we anticipate that the
cost of state preparation for the CISD state will be subdominant
to the cost of the simulation. This means that minimizing the
number of qubits needed is an important design goal. Let us
define �m(G) to be the m-controlled version of the gate G.

Then the gate �m(H ) can be implemented using two �n−1(X)
gates, a �1(H ) gate, and an ancilla qubit,

• •
...

...• •
0 • 0

H

Controlled T q gates can be performed similarly,

• •
...

...• •
• •

0 T q 0

The resulting circuits can be further optimized by noting that
many of the Toffoli gates needed to perform the reductions of
the least denominator exponent are redundant. In particular,
we can express the simplified reduction circuit as

• •
...

. . . ...• •
0 • • • 0

H • • . . .

0 T q

The gate �1(H ) requires two T gates [42], and the Toffoli gates
can be implemented, up to an irrelevant phase, using four T

gates [44,45] and an ancilla qubit. The entire process requires,
at most, N + 4 qubits, which is typically less memory than is
required for the quantum simulation and eigenvalue estimation
phases of the algorithm. This means that the additional four
qubits required for the state preparation algorithm will not
impact the memory requirements of the overall simulation
algorithm.

For the present problem, the CISD state is in C2N+1
(recall

that one additional qubit is needed to ensure a solution to
the norm equations for synthesis). This means that we also
need to consider the cost of implementing �N (X) gates.
Although highly time-efficient constructions for the multiply
controlled circuits can be made using the circuits of [44],
they require a large number of qubits. In order to ensure that
the space complexity of state preparation does not dominate
the algorithm, we use the less time-efficient construction
of Barenco et al. [43] to compile the �N (X) gates. Using
Corollary 7.4 from [43] and the �2(iX) gate from [44,45]
to implement the Toffoli gate, the cost of implementing such
circuits is, at most,

Tcount(�N (iX)) � 32(N − 3). (40)

At most, N + 4 qubits, where N � 5, are needed to implement
these gates [43].

The reduction of each of the two-dimensional subspaces
requires two steps. First is the application of the �N (X) gates
to mark the subspace and a sequence of k controlled operations
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to reduce the denominator exponent of that subspace. This
reduction process requires k steps, each of which involves at
most two �1(H ) and two �2(T q). Including the cost of the
two �N (X) gates, the total cost of the reduction is, at most,
22k + 64(N − 3) T gates. At most, D + 1 reduction steps
are required in this process as well as potentially a swap of
the final state into the |0N+1〉 state (which can be performed
using Clifford operations). Thus, the overall T count for this
process is

[22k + 64(N − 3)](D + 1). (41)

This also is the T count for for preparing the CISD state
from the |0N+1〉 state because the necessary circuit can be
found by taking the Hermitian conjugate of the resultant
gate sequence. Thus, using Eq. (39) the total number of
non-Clifford operations required in the state preparation scales
at most as

O

[
D log

(
D

δ

)
+ ND

]
. (42)

If the approach of Wang et al. [6], coupled with recent
methods for decomposing single qubit rotations into T gates,
is used to prepare the CISD state, then the resultant T count
scales at most as Õ(2neNne/ne!) log(1/δ). If ne ≈ N/2, then
this method is inefficient, whereas ours is not since D ∈ O(N4)
for CISD states. If ne � 3 then the method of Wang et al. does
provide superior scaling as N increases, though cases where
ne � 3 and N is large may be rare. In contrast, the method
of Ortiz et al. [4] requires Õ(D2N2 log(1/δ) gates, which is
nearly quadratically slower than our method.

As a final point, the cost of the state preparation algorithm is
O(N5) in worst-case scenarios. This can be comparable to, or
greater than, the cost of quantum simulation in the limit of large
N . This means that using a naive CISD approximation in cases
with half filling may seriously degrade the performance of the
algorithm. This means that in order to see the performance
advantages promised by recent algorithms, which have scaling
near O(N4), sophisticated state preparation methods are
needed in cases where the Hartree-Fock state has poor overlap
with the FCI ground state.

IV. CONCLUSION

Our work calls into question the basic assumption that the
error in Trotter-Suzuki-based methods for simulating quantum
chemistry is explicitly a function of the number of spin orbitals
used to represent the system. We find through numerical
evidence that such errors do not seem to be directly related to
the number of spin orbitals in the system for small molecules.
We observe this lack of correlation for a variety of orbital
bases including local, canonical, and natural orbitals. Instead,
we see that chemical features such as the maximum nuclear
charge is a strong indicator of the complexity of a simulation.
We argue that the errors should scale as O(Z6

max) for an atomic
orbital basis, which is in close agreement with the scaling
observed numerically. We also observe that some atoms, such
as oxygen, fluorine, and neon, have vanishingly small Trotter
errors despite available error bounds predicting large Trotter
errors for these molecules. We show that this discrepancy can
be understood as a consequence of the large filling fraction

for these molecules. This suggests that chemical features of
a molecule may be much better predictors of the number of
Trotter steps needed in a simulation than the number of spin
orbitals assigned to the molecule.

We further analyze the errors and see that the discrepancy
between the observed Trotter error and the norm of the error
operator does not arise from random cancellation. Indeed,
the errors observed are much greater than what would be
expected if the ground state were a Haar random state that
was chosen independently from the eigenvectors of the error
operator. Furthermore, we observe that the distribution of
eigenvalues of the error operator is highly structured and has
many near-zero eigenvalues, which likely is the cause of the
orders of magnitude separation between the Trotter error and
the norm of the error operator.

We also use the error operator to improve quantum
simulation methods by providing a computationally efficient
algorithm for estimating the error in a simulation. This leads
to two applications: (a) compensating for Trotter error in a
quantum simulation by subtracting the prediction off the result
and (b) predicting the number of Trotter steps needed in a sim-
ulation. Finally, we provide a quantum algorithm for preparing
CISD states that is polynomially more efficient than existing
methods and may provide a viable alternative to adiabatic state
preparation in cases where the Hartree-Fock approximation to
the ground state leads to poor success probability.

There are several natural avenues of inquiry that this work
reveals. First, although this work shows strong numerical
evidence for small molecules, we do not have sufficient
evidence to state conclusively that the error in the Trotter-
Suzuki formula is independent of N in the asymptotic limit.
Larger numerical experiments may be needed to shed more
light on the scaling of Trotter-Suzuki errors in this regime.
Second, ferredoxin is often suggested as a strong candidate for
quantum chemistry simulation but Fe2S2 has large nuclear
charges, which make it a challenging molecule from the
perspective of simulation. This suggests that there may be other
large organic molecules with smaller nuclear charges that may
be even more natural targets for quantum simulation. Finally,
although our work has suggested that the number of spin
orbitals in a molecule may not uniquely characterize the cost of
a quantum chemistry simulation, it does not provide a simple
criteria for determining which molecules are easy or hard to
simulate. Finding molecular features, beyond the maximum
nuclear charge and the filling fraction, that can be used to
predict the relative difficulty of simulation would not only
constitute an important step forward for quantum chemistry
simulations but would also be an important contribution to
quantum chemistry as a whole.
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APPENDIX A: COMPUTATION OF HAAR EXPECTATIONS

In order to determine whether the error cancellations
observed for ground-state quantum simulations arise because
of properties of the eigenstates of the Hamiltonian, we need to
determine whether these results would also be typical of ran-
dom vectors. Here we provide a derivation, for completeness,
of the Haar-expectation value and variance of the |〈v|k〉|2.

In the following we take k to be fixed and v to represent
the Haar random variable. We also use the convention that EH

denotes the expectation value of a quantity over a set of Haar
random vectors, and VH denotes the variance over the set. To
be clear, EH |〈v|k〉|2 = ∫

U∈Haar |〈0|U †|k〉|2dU .
We wish to compute the variance,

VH (|〈v|k〉|2) = EH (|〈v|k〉|4) − EH (|〈v|k〉|2)2, (A1)

of the square of the overlap of an arbitrary Haar random vector,
|0〉, with an eigenvector of an arbitrary Hermitian operator (in
this case, the Trotter error operator), |k〉. We begin by stating
the correspondence,

|v〉〈v| = U |0〉〈0|U †, (A2)

where U is the unitary Gram matrix which affects a basis
transformation into the error operator eigenbasis (for instance)
and |v〉 represents |0〉 in the error operator eigenbasis. We are
interested in the projection of this state onto an eigenvector of
the error operator,

ak = 〈k|v〉 = 〈k|U |0〉, (A3)

|ak|2 = 〈k|U |0〉〈0|U †|k〉
= tr[|k〉〈k|U |0〉〈0|U †]. (A4)

We compute this trace in two steps. From the unitary invariance
of the Haar measure we have that∫

U (n)
[U |0〉〈0|U †]dU = 1

2N
. (A5)

Therefore,

EH (|ak|2) = tr

[
|k〉〈k| 1

2n

]
= 1

2N
. (A6)

Thus, EH (|ak|2) = 1
2N , and, hence, EH (|ak|2)2 = 1

22N .
Focusing on the remaining component of the variance,

|ak|4 = 〈k|U |0〉〈0|U †|k〉〈k|U |0〉〈0|U †|k〉
= tr[(|k〉〈k|)⊗2U⊗2(|0〉〈0|)⊗2U †⊗2]. (A7)

To further evaluate the trace, we follow the treatment in [46]
which uses the spectral theorem to derive orthogonal projectors
onto symmetric and antisymmetric subspaces. This begins by
defining a flip operator, F ∈ C22N ×22N

,

F(|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉. (A8)

From this definition it is clear that

F = πsym − πantisym, (A9)

1⊗2 = πsym + πantisym. (A10)

Thus,

πsym = 1
2 (1⊗2 + F), (A11)

πantisym = 1
2 (1⊗2 − F). (A12)

Since tr[1⊗2] = 22N and tr(F) = 2N ,

tr[πsym] = 2N (2N + 1)

2
, (A13)

tr[πsym] = 2N (2N − 1)

2
. (A14)

Since |0〉〈0| ⊗ |0〉〈0| is entirely symmetric, it is straightfor-
ward to see from unitary invariance that∫

U (n)
[U⊗2(|0〉〈0|)⊗2U †⊗2] dU = 2

2N (2N + 1)
πsym. (A15)

Thus,

EH (|ak|4) = 2

2N (2N + 1)
tr[πsym(|k〉〈k|)⊗2]

= 2

2N (2N + 1)
. (A16)

Finally, we arrive at the variance of |ak|2,

VH (|ak|2) = 2

2N (2N + 1)
− 1

22N
. (A17)

This gives us the variance in the |ak|2 terms, which, in turn,
allows us to find the deviation from the expected error for
a quantum chemistry simulation. The key point here is that
the standard deviation is on the order of the expectation value
which means that we expect relatively large fluctuations in the
probabilities that correspond to particular eigenvalues of the
Trotter error operator. Hence, we do not expect a concentration
of measure result to hold in high-dimensional spaces.

APPENDIX B: CONTRIBUTIONS OF ORBITALS
TO TROTTER ERROR OPERATOR

In Sec. II, we provided evidence that transitions involving
the innermost electrons contribute most to the error in the
quantum simulation. This is perhaps surprising given that
transitions involving the valence electrons, rather than the
core electrons, are typically more relevant for understanding
the properties of a molecule. We present additional numerical
results in Fig. 11 that examine this for water and beryllium
hydride. These results confirm the intuition developed earlier
that interactions involving the two innermost orbitals signifi-
cant impact the errors in the ground-state energy.

We also observe a rough correlations between the magni-
tudes of the error coefficients in the expansion of the error
operator and their contribution to the ground state error in
the local orbital basis. This suggests that looking at the
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(a) Water, local basis, Hamiltonian
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(b) Water, local basis, error coefficients.

2 4 6 8 10 12 14

Orbital number

2

4

6

8

10

12

14

O
rb
ita
ln
um
be
r

|Ground state contributions|

0

4

8

12

16

20

24

28

32

(c) Water, local basis, error contributions
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(d) Water, natural basis, Hamiltonian

coefficients.
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(e) Water, natural basis, error coefficients.

2 4 6 8 10 12 14

Orbital number

2

4

6

8

10

12

14

O
rb
ita
ln
um
be
r

|Ground state contributions|

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(f ) Water, natural basis, error

contributions.
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(g) Beryllium hydride, local basis,

Hamiltonian coefficients.
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(h) Beryllium hydride, local basis, error

coefficients.

2 4 6 8 10 12 14

Orbital number

2

4

6

8

10

12

14

O
rb
ita
ln
um
be
r

|Ground state contributions|

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

(i) Beryllium hydride, local basis, error

contributions.
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FIG. 11. (Color online) These plots show the coefficients of normal-ordered terms in the Hamiltonian and error operator as well as
expectation values of the error operator terms for the ground state. The terms are binned according to the orbitals involved in the term. This
plot shows the marginal distribution of the magnitudes of these terms.
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contribution of the inner orbitals is the most significant for the
error for these molecules and that the aggregate contributions
of the error coefficients correlates roughly with the ground
state error. The analogous data for the natural orbital basis in
Fig. 11 defies this approximate correspondence for both water
and beryllium hydride. For the case of water, interactions that
involve orbitals 7 and 8 are the second-largest contributors
to the error in the ground-state energy. The significance of
these transitions is not apparent in the corresponding plots

of the magnitude of the Hamiltonian coefficients nor the
magnitudes of the error coefficients in the expansion of the
error operator. Similarly, for beryllium hydride, interactions
involving orbitals 7 and 8 may be expected to have a
significant impact on the error in the ground-state energy but
the data suggests that they do not. These results underscore the
challenges faced when attempting to understand the nature of
the error operator from solely looking at the magnitudes of the
error coefficients.
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