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W-dispersion particles in repulsive potentials: Quasibound states and their lifetime
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We consider fundamental features which emerge in the mechanics of quasiparticles with nonmonotonic (as
a function of p?) dispersion law. Quasiparticles of this kind abound in modern physics, with examples ranging
from holes in quantum wells to edge magnetic states in quantum wires to photons in atomic vapors to polaritons
in photonic crystals and in trapped-atom lattices. The motion of such a particle in repulsive potentials gives rise
to a number of counterintuitive phenomena, which carry a promise of unusual optical manifestations. A classical
particle can be trapped by repulsive potentials, and the likelihood of this trapping may increase with the value
of the angular momentum. Further, in contrast to the usual quantum-mechanical notion, the particle always has
a quasibound state in a two-dimensional, central-force repulsive potential, while it may have no bound states
in a one-dimensional analog of this potential. The binding energy of these states and their inherent decay rate
are determined by a complex interplay of the parameters of the potential, the particle dispersion law, and the
value of the angular momentum. We construct the energy spectrum of quasibound states in a repulsive Coulomb
potential, estimate their lifetime, and predict their optical manifestations as inverted hydrogen spectral-line

series.
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I. INTRODUCTION

In modern physics and applications, a large number of
charge-carrying quasiparticles appear with essentially non-
quadratic dispersion, whose details can often be engineered.
This abundance calls for a general investigation of new
possibilities that arise when considering motion of such a
particle in external potentials.

Classical mechanics, in its Hamiltonian formulation, con-
tains the generalized coordinate, g, and generalized mo-
mentum, p, of a particle on equal footing: having started
with the Hamiltonian H(p, ¢), one is free to choose either
q(t) or p(t) to represent the particle motion. In practical
instances, however, the variable of choice is usually ¢, and
this preference becomes overwhelming in quantum mechanics.
The obvious rationale for this choice is the simple quadratic
dependence of kinetic energy upon momentum, which makes
it easy to exclude the momentum variable from equations of
motion in the classical case and makes for a second-order
partial differential equation of standard type (the Schrodinger
equation) in the quantum case. On a conceptual level, this
convenient quadratic dependence originates from the Galilean
relativity principle [1], and its hallmark is the absence of a
characteristic momentum scale.

An apparent deviation from this rule is the relativistic
dispersion, which does have a characteristic momentum scale,
moc. (This kind of dispersion is largely responsible for unusual
electronic and optical properties of graphene [2—4,5]). More
complex non-Galilean dispersion emerges naturally in various
systems with periodic potential. In this case, the characteristic
momentum scale is given by h/a where a is the period.
For electrons in crystal lattice, the earliest example of a
dynamic effect associated with such nonquadratic dispersion
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was probably the Bloch oscillations in strong electric fields [6].
The non-Galilean character of electron dispersion is reflected
in complex shapes of the Fermi surface in metals, which
determines response to external electric and magnetic fields [7]
and largely influences collective effects in electron system [8].
Non-Galilean dispersion of charge carriers of various kinds
can now be engineered in semiconductor heterostructures,
where the characteristic momentum is given by /L, where
L is the characteristic width of the quantum well or quantum
wire. Here, the effects of non-Galilean dispersion on optical
and transport properties have been explored for valence
subband [9-12], conduction subbands [13—18], and also hybrid
subbands [19], which carry promise of efficient terahertz
emission. All these studies, however, were concerned with
either free particles or particles in uniform external fields.
In contrast, we investigate classical and quantum-mechanical
behavior of a non-Galilean particle in a local potential and
show emergence of counterintuitive localized states, which
should manifest themselves optically as spectral anomalies. A
simplified one-dimensional case was considered in our prior
Rapid Communication [20]; here we concentrate on the role
of angular momentum.

To capture alternative physics stemming from non-Galilean
dispersion and be able to trace it analytically all the way
to optical manifestations, we consider a particular form of
well-pronounced non-Galilean dispersion, when the kinetic
energy, £(p), is a nonmonotonic function of the momentum
magnitude p: It initially decreases as p grows from zero
to some specific p = py, and then increases with p when
p — oo. (It is convenient to call particles with this type
of non-Galilean dispersion W-dispersion particles, since in
the one-dimensional case they have a W-shaped dispersion
curve.) The energy reference point is set as £(0) = 0; the
function e(p) reaches at p = py its negative minimum value
&(po) = —A. The dispersion law of this kind frequently
emerges in electron and/or hole subbands of quantum wells,
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where the values of parameters py and A can be engineered by
the well width and material composition [19]. For numerical
estimates, we will refer to a particular instance of particles
with exactly this dispersion law: hole subband in a realistic
GaSb/AlSb quantum well of 100 A width, where A = 6 meV
and po = (1.82 x 106)megcm/s where m, is the electron
mass [11]. This structure of the dispersion law should lead
to the most pronounced dynamical consequences when the
particle interacts with a repulsive potential. Indeed, in this case
the values of p that lie in the positive-mass region (p > py)
will correspond to a regular repulsion, while the values of p
that lie in the negative-mass region (p < pg) will correspond
to effective attraction. In a simplified one-dimensional case,
it was shown that the dynamics of such a particle exhibits
a number of counterintuitive effects [20]. In particular, (1) a
classical particle can penetrate under a barrier; (2) a classical
particle can be trapped by a finite repulsive potential if
the magnitude of this potential is smaller than A; and (3)
a stronger, divergent potential loses the ability to trap the
particle. Further, in the quantum realm, these effects are
transformed into unusual patterns of scattering resonances.

In the present communication, we investigate the pos-
sibilities for a non-Galilean particle to form bound states
in realistic, two-dimensional, axially symmetric repulsive
potentials, including Coulomb potential. We obtain the energy
spectrum and lifetime values for the bound states as depending
on the characteristic parameters of both the dispersion law
and the repulsive potential. In particular, we show that in this
case the canonical angular momentum becomes the crucial
parameter on which the very existence of bound states hinges
and which determines their key characteristics. As a specific
application of this general approach, we predict an anomalous
optical effect in the mentioned GaSb/AISb quantum well
structures, where existence of quasibound hole-hole pairs
should result in experimentally verifiable “inverted hydrogen”
spectral-line series.

II. THE MODEL: CLASSICAL MECHANICS

We assume the two-dimensional dispersion law to be
axially symmetric, that is, to depend only on the magnitude
of the particle momentum, p. It is convenient to express
the dispersion law as a function of squared variable, e(p) =
e(p) = &(p?). Then, in the cylindrical coordinate system,
(p,0), the Hamiltonian of a free particle has the form

Ho(pp,pe,p) = g(Pf, +r3/0%), (D

where p, and py are the canonical momenta corresponding
to the coordinates p and 6. When the particle moves in a
central-force repulsive potential U(p) that depends only on
the magnitude of the two-dimensional position vector, p,
the Hamiltonian is augmented to H(p,,ps,p.0) = U(p) +
Hy(p,,po,p). As seen in Eq. (1), in the case of a nonparabolic
dispersion law, the radial and angular canonical momenta are
effectively intermingled, thus preventing their separation in
the usual way. Nevertheless, the coordinate 6 is not present
explicitly in the Hamiltonian, and this leads to the conservation
of the corresponding canonical momentum, py = M = const.
This conservation law taken into account, the two-dimensional
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problemis reduced to a one-dimensional one, with the effective
Hamiltonian:

Hu(p,p) = U(p) + &(p*> + M*/p?). 2)

(From this point on, we drop the index p when denoting the
radial canonical momentum.) Characteristically, the contribu-
tion M?/p? is not separated in Eq. (2) in the form of a simple
centripical potential, but produces instead compound p — p
terms, which are the signature of the non-Galilean nature of
the particle.

To glean the essential features of the classical motion of
a particle that is described by the Hamiltonian, we consider
phase trajectories in the plane (p,p). These trajectories are
determined by the equation Hy(p,p) = E; they can be
classified by the value of M and the value of energy, E. As
seen in Eq. (2), all phase trajectories have mirror symmetry
with respect to the p axis. In the trivial situation of a free
particle, U(p) = 0, the phase trajectories are the line(s) p(p) =

+VE N(E) + M%/p2, where & )(E) are the solutions to the
equatfon &(z) = E. For E > 0, this equation has one solution,
and each energy value is represented by one phase trajectory.
In the interval —A < E < 0, there are two solutions and two
phase trajectories per each energy value. Finally, £ = —A
corresponds again to one trajectory, p(p) = £+ p3 + M?/p?.
All the trajectories approach asymptotically the straight lines
p= :I:\/EH(E) when p — 0o, and they cross the p axis
vertically at the points py g = M/~ él_é(E ). The smaller the
value of M, the closer the position of ‘this crossing point to
p =0; at M =0, each trajectory degenerates into a pair of
straight lines p = £+ él_é(E). A typical Hy(p, p) surface and
the corresponding pattefn of open phase trajectories pattern
are shown in Fig. 1, left panel.

When U(p) # 0, the topology of the described phase
trajectories may change drastically, depending on the char-
acteristics of U(p). For the sake of simplicity, we assume
the repulsive potential U(p) to decrease monotonically as p
grows, and dU /dp to have no more than one extremum point.
The character of the phase trajectories is determined by the
number and character of the extremum points of the function
Hy(0,0). When U(p) = 0, this function has one extremum
point, the minimum at py = M/py. When U(p) # 0, the
potential pulls up the low-p part of the curve Hy(0,p), and
the positions of possible extremum points are determined by
the equation

2M? 38
7 =0. (3)

'8U .
dp z=M?/p?

Given the properties of the functions U(z) and &(z), this
equation may have up to three solutions, all lying in the
negative-mass region of &(z) so that 82HM(p,,o)/82p is
definitely negative at each of these points. The number of
solutions that actually materialize is determined by a complex
interplay of M, A, po, and the parameters of the repulsive
potential: its magnitude, U(0), its range being greater or
smaller than p,, (in the case of a finite-range potential), and/or
its asymptotic decrease at p — 00 being slower or faster than
02 (in the case of an infinite-range potential). If all three
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FIG. 1. (Color online) Left panel: Top: a typical surface of the effective Hamiltonian Hy(p,p) in the case of free particle with W-shape-
dispersion law. The coordinates are normalized with respect to the parameters of the dispersion law, py and A, and the value of the angular
momentum, M. Bottom: the corresponding pattern of phase trajectories. Right panel: Top: a typical Hy(p,p) surface for a particle in an
axially symmetric repulsive potential. Bottom: the corresponding pattern of phase trajectories; closed phase trajectories signify the particle

localization.

extremum points exist, the first one (in the order of growing
p) is a minimum of H,,(0, p), the second one is a maximum,
and the third one is a minimum again. Then, the first point is
a saddle point of the function Hy(p,p), the second point is
a maximum, and the third point is a saddle point again. The
emerging local maximum of Hy(p,p) implies the existence
of closed phase trajectories running around this maximum.
Moving along such a closed trajectory, the particle is localized
by a repulsive potential. The area of closed trajectories lies
between the two saddle points positioned on the p axis. It
should be emphasized that the divergence of the potential
at p — 0 per se does not preclude existence of the closed
trajectories (i.e., localized states), in contrast to the situation
in the one-dimensional case [20]. The physical reason for this
insensitivity is that at finite M the particle is prevented from
approaching the point p = 0.

The interplay of M, A, po, and the mentioned parameters of
the repulsive potential generates a variety of cases of the global
pattern of phase trajectories. We relegate systematic study of
these cases to further publications. Here, we concentrate on the
important case of repulsive Coulomb potential U(p) = ¢*/p,
where e is the effective charge, properly reduced by the
polarization of the medium. As at p — oo the potential
decreases slower than 1/p? and the function Hy(0,p) is
positive, Eq. (3) may have at most two solutions. If these
two solutions exist, the smaller one corresponds to a saddle
point of the Hy(p,p) surface; the greater one corresponds
to a maximum (at £ = E,c). The condition for these two
solutions to exist can be conveniently expressed from Eq. (3)
if this equation is rewritten as

(38/92).=myp = —€*/ M. 4
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The expression on the left-hand side is formally the velocity
of a particle whose momentum is M/ p. Thus, the prerequisite
condition for the maximum to emerge is that the velocity in the
negative-mass region should become greater by modulus than a
given value, e?/ M. As this given value decreases to zero when
M increases, the maximum necessarily emerges, provided
there are sufficiently large values of the angular momentum
M. [The degenerate case of one solution corresponds to an
inflection point on the curve Hy;(0,p)].

The phase trajectories corresponding to the two-extrema
situation (i.e., to a sufficiently large M) are shown in Fig. 1,
right panel. The closed trajectories exist in the energy range
0 < E < Enux, and they coexist with the open trajectories.
When E — 4-0, these closed trajectories extend to ever larger
values of p. We would like to emphasize a counterintuitive
fact: there are no classical bound states with small angular
momenta, while particles with large angular momenta can be
localized.

III. QUANTUM MECHANICS: QUASIBOUND STATES

In building a quantum-mechanical description, we start
with the generalized Schrodinger equation, &(—h%Ax) Yy +
U(p)y = Ev, where A, is the two-dimensional Laplace
operator. As with the classical motion, we use the cylindrical
coordinate system, (p,¢); the angular momentum conservation
allows us to look for the wave function in the form {(p,¢) =
x(p)exp(ilp), where an integer [ = M/h is the angular
quantum number. Then, the equation for the radial wave
function x(p) reads

. , [ 0? 19 R*1?
g [—h <—2 + ——> + —2} x+Ux=Ex.
ap=  pap P
Note that due to nonparabolicity in Eq. (5) the p derivatives
act on the term /212 /p? as well as on the wave function, thus
producing complicated cross terms with higher powers of p in
their denominators. To build a semiclassical approximation,
we substitute in Eq. (5) the wave function in the form
x(p) = (p)~2expl[iS(p)/h], look for the action function
S(p) in the series form S(p) = So(p) + AS1(p) + -+, and
solve iteratively for So(p) and Si(p). After some tedious
algebra, the radial wave function is obtained as ng)(p) =

ALQE?(0)] 72 expl(i /) [ ©%P(p)dp], where

MZ
0%?(p) = \/ ELE —Up)] — o5

(6)
9z
52(51’2)(,0) = ,08(51'2) (p) %

2 2 ’
=10 ()] + 2

and A is the normalizing constant. Here, the solutions marked
by the indices 1 and 2 correspond to the two isoenergetic
classical trajectories which coexist in the region —A < E —
U(p) <0.

Now, we apply these general results to a particular case of
the Coulomb potential. To obtain analytic results, we model
the nonmonotonic dispersion law as &(p?) = —p?/(2m) +
B(p*)?. Here, parameter m quantifies the negative-mass
behavior at small p, and the physical meaning of param-
eter 8 is that it determines the relative depth of the side
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minimum of the dispersion law: 8 = A/ pg. (In the mentioned
particular case of GaSb/AlISb quantum well, m ~ 0.117m,
and B = (9.6 x 107'%m3 s2/g3 cm?). Then, the character-
istic constants that determine the position of the minimum
point are pj = (4mp)~', A = (16m*B)~! and the inverse
function in Eq. (6) is given by the simple formula, El_é(z) =
pa(1 £ /z/A+1). It is convenient to use the characteristic
length, py = €?>/A = 168m?e?, whose physical meaning is
the distance at which the Coulomb energy is equal to
the characteristic energy of the dispersion law. Using the
dimensionless variable, x = p/pp, the functions in Eq. (6)
are obtained as

E 1 (2
(1,2) _ -
O (x)—Popo\/li,ll—i-A Pl
4e? [ E 1

(1,2) (1,2)

where the angular momentum M is represented by a dimen-
sionless constant, ¢2 = Mz/(pgpg) = MzAz/(p§e4). Zeros of
Qg’z)(x) determine the turning points of the quasiclassical
motion. As seen in Eq. (7), these turning points are of two
kinds: (i) zeros of the function ®(EI’2)(x) that correspond to
the regular quasiclassical turning points, and (ii) the irregular
turning point, x, = A/(A + E), which emerges due to the
nonmonotonic form of the dispersion law. The respective
positions of these regular and irregular turning points on
the x axis determine qualitatively the quasiclassical behavior
of the particle. We consider only the situation of a large
angular momentum, i.e., ¢ > 1. In this case, the regular
turning points of both the closed trajectory and the open
trajectory lie at x ~ c, that is, far to the right from the irregular
turning point. The closed trajectory corresponds to ®(§)(x) in

(7

Eq. (7); it has two turning points, xl(z) and x®. The expression
under the square root behaves linearly in x near both of
the turning points. Consequently, the usual Bohr-Sommerfeld
quantization formula for the discrete energy spectrum is valid;
and it gives

/x' dxOP (x) = Th(n + 1/2)

x,(Z)
where 7 is a natural number. In particular, when xl(z),xﬁz) < xp,
the quantized energy levels are determined by the algebraic

equation,
4h 1
—4c=—— <n + —) .
PoPo 2

(®)
The condition ¢ > 1 implies E, < A; in this case, the
approximate solution to Eq. (8) is easily obtained as

E,=Em+1+1/2)72, ©)

where the energy scaleis £ = p2e*/(8h*A) = me* /(2h?). For
the mentioned example of GaSb/AISb quantum well, taking for
estimates an averaged value of the dielectric constant ¢ & 14,
the characteristic energy scale is estimated as £ = 8 meV for
the hole localization in external potential and E = 4 meV for
hole-hole interaction. As A = 6 meV, the use of Eq. (9) is

VITE,JA/JTT E,JA — 1
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completely justified only for nonzero values of [, especially
in the first of these two cases. As expected, these energy
levels form the inverse hydrogen series, which correspond
to quantization of a negative-mass particle localized in the
repulsive Coulomb potential. Note that the restriction E,, < A
implies 1% > me*/(2R*A).

The obtained quantum states are quasistationary, because
the particle can tunnel to the isoenergetic open trajectory. This
tunneling occurs mainly in the vicinity of the saddle point of
the Hy(p,p) surface, i.e., near the turning point xl(z) . However,
peculiarities of this tunneling process allow the localized states
to exist for a considerably long time. Indeed, the tunneling
implies alteration of the trajectory type @gj (x) to ®(El: (x). To
achieve this alteration, it is not enough for the particle to just
penetrate through the under-barrier intertrajectory distance.
The particle has to reach the remote branching point of the
function ® g, (x) [the function whose two branches are 8(,? (x)

and @%3 (x)] in the complex plane of the variable z. According
to Eq. (7), the position of this branching point is determined
by the condition 1 + E/A — 1/x = 0; i.e., this is the would-
be irregular turning point x; that is moved very far in the
under-barrier region. According to this scenario, the lifetime
of a localized quantum state, 7, & W(dE, /dn)’1 exp(®,), is
determined by the exponent

(1)

_ _.popo (7 o)
b, = —i W (/x}z’ dx©p (x)

+ /Xh dx (09 (x) — @g;@c))). (10)

(I

(Here, x(V is the single turning point of the open trajectory.)
Using the fact that at small values of x the behavior of the
functions @g) (x) and ®(El) (x) is mainly determined by the
term c¢/x” under the square root in Eq. (7), we obtain from
Eq. (10) a rough estimate of the exponent ®,, as

@, & (popoc/M[In (x? /x V) + (1/2)1 + E,/A)'*]
~ (popoc/MIn(dv/2¢) + 1/2]. (11)

At large values of ¢ (that is, of [), ®, grows large and thus
allows for considerably long lifetimes of the localized states.
These localized states can be characterized by a dimensionless
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figure of merit, constructed as the product of the lifetime of
the n = 0 state, 7o, and the energy distance between this state
and the next one, Ey — Eq:

k =19(Ey — E))/h o e2(4AJE)/A(1). (12)

The steep dependence on [ in Eq. (12) ensures that the
localized states with large [ will exist long enough to be
physically relevant. The comparison of Egs. (9) and (12) shows
also that there is a trade-off between the energy distances in the
quasidiscrete spectrum and the lifetimes of the corresponding
localized states: the larger I, the longer the localized states
exist but the smaller the distance between their energy levels.

IV. CONCLUSIONS

In conclusion, we have shown that the classical and
quantum mechanics of non-Galilean particles are rich in
unusual phenomena. We have described the properties of
counterintuitive two-dimensional quasistationary quantum
states, localized in a repulsive Coulomb potential only with
sufficiently large values of angular momentum. Model energy
spectrum and lifetimes of these states have been calculated
analytically. The most obvious optical manifestation of these
states should be unusual “inverted hydrogen” spectral-line
series in hole-type quantum wells, with the characteristic
energy scale in the single-meV range. These series would be
the signature of quasibound hole-hole pairs (charged bosons),
whose possible existence has been discussed recently [11,12].
In a broader sense, trapping of W-dispersion quasiparticles by
repulsive potentials may result in experimentally observable
effects in all the diverse systems mentioned in the Introduction.
Moreover, as dispersion-law engineering extends to systems
with inherently nonquadratic dispersion such as magnetoex-
citons in quantum-Hall situation [21-24], photons in atomic
vapors [25,26], or in photonic crystals [27] and polaritons in
trapped-atom systems [28], analogs of counterintuitive particle
trapping may be expected in those systems as well.
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