
PHYSICAL REVIEW A 91, 022125 (2015)

Ubiquitous problem of learning system parameters for dissipative two-level quantum systems:
Fourier analysis versus Bayesian estimation
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We compare the accuracy, precision, and reliability of different methods for estimating key system parameters
for two-level systems subject to Hamiltonian evolution and decoherence. It is demonstrated that the use of
Bayesian modeling and maximum likelihood estimation is superior to common techniques based on Fourier
analysis. Even for simple two-parameter estimation problems, the Bayesian approach yields higher accuracy and
precision for the parameter estimates obtained. It requires less data, is more flexible in dealing with different
model systems, can deal better with uncertainty in initial conditions and measurements, and enables adaptive
refinement of the estimates. The comparison results show that this holds for measurements of large ensembles
of spins and atoms limited by Gaussian noise as well as projection noise limited data from repeated single-shot
measurements of a single quantum device.
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I. INTRODUCTION

Quantum systems play an important role in atomic and
molecular physics, chemistry, material science, and many
important current technologies such as nuclear magnetic reso-
nance imaging [1] and spectroscopy [2], promising nascent
quantum technologies such as spintronic devices [3], and
potential future technologies such as quantum information
processing [4]. Novel applications require increasingly sophis-
ticated control, and accurate and precise models to facilitate
controlled manipulation of their dynamics.

Although theoretical device modeling remains important,
system identification and data-driven models are becoming
increasingly important in many areas of science and tech-
nology to accurately describe individual systems [5]. System
identification comprises a range of problems including model
identification, model discrimination, and model verification.
Once a model has been selected, the task often reduces to
identifying parameters in the model from experimental data.
In the quantum domain this is often data from one of the many
types of spectroscopy, from magnetic resonance to laser to
electron transmission spectroscopy, depending on the physical
system. More recently single-shot measurements of quantum
systems have also become important for quantum devices
relying on individual quantum states.

Fourier analysis of the spectra is frequently used to identify
model parameters such as chemical shifts and relaxation rates
by examination of the positions and shape of peaks in a free-
induction-decay (FID) spectrum [6]. Fourier analysis of Rabi
oscillation spectra has also been used to identify Hamiltonians
[7,8], as well as decoherence and relaxation parameters for
two-level systems [9], and concurrence spectroscopy [10] has
been applied to determine information about coupling between
qubits. For more complex systems, Bayesian techniques
and maximum likelihood estimation [11] have proved to be
extremely valuable to construct data-driven models to identify
Hamiltonian parameters [12] and decoherence parameters for
multilevel systems [13]. Bayesian techniques have also been
applied for adaptive Hamiltonian learning using sequential
Monte Carlo techniques [14].

In this work we revisit simpler systems: two-level systems
subject to decoherence, one of the simplest but arguably
most important models in quantum physics. The model is
ubiquitous in magnetic resonance imaging, where the mag-
netization signal from protons (spin- 1

2 particles) precessing
and dephasing in a magnetic field is the basis for noninvasive,
in vivo imaging. In quantum information it describes qubits
as the fundamental building blocks subject to decoherence.
Therefore, characterization of two-level systems is extremely
important. We compare two frequently used estimation strate-
gies based on Fourier analysis and a Bayesian approach com-
bined with maximum likelihood estimation, for the ubiquitous
parameter estimation problem of a two-level system subject to
decoherence. We consider accuracy, precision, and efficiency
for different systems and noise models, including Gaussian
noise, typically encountered for large ensemble measurements,
and projection noise, typically present in data from repeated
single-system measurements.

II. SYSTEM AND EXPERIMENTAL ASSUMPTIONS

In this section we introduce our dynamic model of the
physical system and our assumptions about initialization and
measurement of the system. We focus in particular on the
different options for the measurements depending on the nature
of the physical system and hence the measurements from
which we wish to estimate the parameters.

A. Dynamic system model

The state of a quantum system is generally described by a
density operator ρ, which, for a system subject to a Markovian
environment, evolves according to a Lindblad-type master
equation

ρ̇(t) = [H0,ρ(t)] + D[V ]ρ,

D[V ] = VρV † − 1
2 (V †Vρ + ρV †V ),

(1)

where H represents the Hamiltonian and V the dephasing
operator. If the dephasing occurs in the same basis as the
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Hamiltonian evolution then we can choose a basis in which
both H0 and V are diagonal. For a two-level system we can
thus write H = ωσz and V = γ̃ σz, where γ̃ � 0, leaving us es-
sentially with two core system parameters to identify, ω and γ̃ .

B. Initialization and readout

A basic experiment involves initializing the system in some
state |ψI 〉 and measuring the decay signal, a so-called free-
induction decay experiment. The measured signal depends on
the system parameters as well as the initial state and the mea-
surement. Taking the measurement operator to be of the form

M =
(

cos θM sin θM

sin θM − cos θM

)
, (2)

and taking the initial state to be

|ψI 〉 = cos(θI )|0〉 + sin(θI )|1〉, (3)

the measurement signal is of the form

p(t) = e−γ t cos(ωt) sin(θI ) sin(θM ) + cos(θI ) cos(θM ). (4)

Assuming the system is initially in the ground state |0〉, e.g.,
corresponding to spins being aligned with an external magnetic
field, the initialization procedure corresponds to applying a
short pulse to put the system into a superposition of the ground
and excited state. Notice if the system is not well characterized
then it is likely to be infeasible to prepare the system in
a well-defined superposition state with a known angle θI .
Rather, θI becomes an additional parameter to be estimated.

The operator M corresponds to measuring the system with
regard to an axis tilted by an angle θM from the system
axis in the (x,z) plane, which can describe many different
experimental situations. In an FID experiment in NMR, for
example, an x-magnetization measurement corresponds to
setting θM = π

2 . In a Rabi spectroscopy experiment of a
quantum dot, where the population of the ground and/or
excited state is measured, e.g., via a fluorescence measurement,
we would typically set θM = 0. In some situations, such as the
examples mentioned, the Hamiltonian and measurement bases
may be well known. In other situations, however, such as in
a double quantum dot system with charge state readout via a
single electron transistor perhaps, θM may a priori at most be
approximately known. In this case θI becomes an additional
parameter to be estimated. In this work we employ a formalism
that does not require either the initial state or measurement to
be known a priori.

C. Continuous versus discrete-time and adaptive measurements

In an FID experiment we could in principle measure
the decay signal continuously. However, modern receivers
typically return a digitized signal, i.e., a vector of time samples,
usually the signal values averaged over short time intervals 	t .
For this type of readout, the number N of time samples and
their spacing 	t are usually fixed, or at least selected prior to
the start of the experiment. In this setup there is usually little
opportunity for adaptive refinement short of simply repeating
the entire experiment with shorter 	t or larger N .

In other situations, such as Rabi spectroscopy [15], each
measurement corresponds to a separate experiment. For
example, we prepare the system in a certain initial state,

let it evolve under some Hamiltonian (with parameters to be
estimated) for some time t before performing a measurement
to determine the state of the system. In this case we are
more flexible and can in principle choose the measurement
times adaptively, trying to optimize the times to maximize the
amount of information obtained in each measurement.

Here we mainly consider the case of a regularly sampled
measurement signal but we also briefly consider how the
estimation can be improved in the latter case by adaptive
sampling with particular focus on the comparison between
the different estimation strategies.

D. Ensemble versus single-system measurements

In many settings from NMR and MRI to electron spin
resonance (ESR) to atomic ensembles in atom traps, large
ensembles of spins or atoms are studied resulting in ensemble
average measurements. In this setting, the back action from
the measurement is negligible and the system can be measured
continuously to obtain a measurement signal s(t). The noise
in the signal is well approximated by Gaussian noise, which
can be simulated by adding a zero-mean Gaussian noise
signal g(t) to the ideal signal p(t), i.e., the measured signal
d(t) = p(t) + g(t). By the law of large numbers and iterated
logarithm law [16] this gives a Gaussian distribution for d(t)
with mean p(t) and variance σ 2 ∼ log log Ne

2Ne
for Ne → ∞. This

is a good error model for simulating physical systems and
estimating the noise in actual measurement data when the
ensemble size Ne is large.

More recently single quantum systems, such as trapped ions
[17], trapped atoms [18], single electron spins [19], and charge
states in Josephson junctions [20], have become an important
topic for research because of their potential relevance to
quantum technologies. Given a single copy of a two-level
system, measurement of any observable yields only a single
bit of information indicating a 0 or 1 result. To determine the
expectation value of an observable the experiment has to be
repeated many times and the results averaged. Furthermore,
due to the back action of the measurement on the system, we
can generally only perform a single projective measurement.
To obtain data about the observable at different times the
system has to be reinitialized and the experiment repeated
for each measurement. In this context the ensemble size Ne

is the number of times each experiment on a single copy
of the system is repeated. As repetitions are time intensive
and resource intensive, it is desirable to keep Ne small.
However, this means the precision of the expectation values of
observables becomes limited by projection noise, following a
Poisson distribution. To simulate experiments of this type we
compute the probability p̂1 of measurement outcome 1 for the
simulated system, generate Ne random numbers rn between 0
and 1, drawn from a uniform distribution, and set p1 = N1/Ne,
where N1 is the number of rn � p̂1.

III. PARAMETER ESTIMATION STRATEGIES

This section introduces the three parameter estimation
strategies based on Fourier and Bayesian analysis we wish
to compare.
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A. Fourier-spectrum-based estimation

A common technique to find frequency components in
a noisy time-domain signal is spectral analysis. Consider a
measurement signal of the form

p(t) = a + be−γ t cos(ω0t), t � 0, (5)

which corresponds directly to measurement (4) if we set a =
cos θI cos θM and b = sin θI sin θM . Subtracting the mean of
the signal 〈p(t)〉 = a and rescaling gives f (t) = (p(t) − a)/b.
To account for the fact that f (t) is defined only for t � 0 we
multiply f (t) by the Heaviside function

u(t) =
{

0 if t < 0
1 if t � 0.

The Fourier transform of u(t)f (t) = u(t)e−γ t cos(ω0t) is

F (ω) = γ + iω

(γ + iω)2 + ω2
0

and the power spectrum is P (ω) = |F (ω)|2. Differentiating
with respect to ω and setting the numerator to 0 shows that
|F (ω)|2 has extrema for ω = 0 and (γ 2 + ω2)2 − ω2

0(4γ 2 +
ω2

0) = 0. The real roots ω∗ of this equation satisfy

E1(ω0,γ ) = ω2
∗ + γ 2 − ω0

√
4γ 2 + ω2

0 = 0 (6)

and the corresponding maximum of the power spectrum

P∗ = P (ω∗) =
ω2

0 + ω0

√
4γ 2 + ω2

0

8γ 2ω2
0

= ω2
0 + ω2

∗ + γ 2

8γ 2ω2
0

.

Defining the error term

E2(ω0,γ ) = 8γ 2ω2
0P∗ − ω2

0 + γ 2 + ω2
∗, (7)

we estimate the frequency ω0 and dephasing rate γ from the
peak height P∗ and position ω∗ via Strategy 1:

{ω0,γ } = arg min
ω′

0,γ
′
{|E1(ω′

0,γ
′)| + |E2(ω′

0,γ
′)|}. (8)

Determining the maximum P∗ and its location ω∗
from |F (w)|2, we may choose ω′

0 = ω∗ and γ ′ =√
2ω∗/(8ω2∗P∗ − 1) as starting point for a local minimization

routine provided γ 	 ω0 as is usually the case.
Instead of estimating the height of the peak, estimates

for ω0 and γ can also be obtained using the width of the
peak. Let ω1,2 be the (positive) frequencies for which |F (ω)|
assumes half its maximum. One way to estimate ω1,2 is to take
the minimum and maximum of {ω : |F (ω)| � max(|F |)/2},
assuming that sufficient measurements have been made such
that F is symmetric and peaked, i.e., it has low skewness and
high kurtosis.

The full-width-half-maximum 2d of |F (ω)| is |ω2 − ω1|
and we can derive the following expression:

d =
[√

ω2
0 − γ 2 + 2

√
3ω0γ −

√
ω2

0 − γ 2

]

=
[√

ω2∗ + 2
√

3γ

√
ω2∗ + γ 2 − ω∗

]
.

Hence, given the location ω∗ and half-width d of the peak
solving for γ gives the alternative Strategy 2:

γ = 1

6

√
6g(ω∗,d) − 18ω2∗, ω0 =

√
ω2∗ + γ 2, (9)

where g(ω∗,d) = √
9ω4∗ + 12d2ω2∗ + 12d3ω∗ + 3d4.

Strategy 2 based on peak positions and linewidths is prob-
ably the most common approach for estimating frequencies
and R2-relaxation rates from FID signals in NMR and in many
other contexts. The expressions for |P (ω)|2, the peak heights
and linewidth are more complicated than those for quadrature
measurements as we only have a real cosine signal but the
approach is fundamentally the same.

B. Bayesian and maximum likelihood approach

Given discrete time-sampled data represented by a row
vector d of length Nt containing the measurement results
obtained at times tn for n = 1, . . . ,Nt , let p be the vector
of the corresponding measurement outcomes predicted by the
model. p depends on the model parameters, here ω0 and γ .
Assuming Gaussian noise with variance σ 2 we define the joint
likelihood [11]

P (p,d,σ ) = 1

(
√

2πσ )Nt

exp

[
−||p − d||22

2σ 2

]
. (10)

If the noise level σ of the data is not known a priori, we
can eliminate this parameter following the standard Bayesian
approach by integrating over σ from 0 to ∞, using the Jeffrey’s
prior σ−1. This gives

P (p,d) = 
(Nt/2)

(2π (Nt/2))
(||p − d||22)−Nt/2, (11)

where 
 is the 
 function. It is usually more convenient and
numerically robust to work with the (negative) logarithm of
the likelihood function, the so-called log likelihood. When the
noise level σ is known the log likelihood reduces to

L(p,d,σ ) = − ln P (p,d,σ ) = 1

2σ 2
||p − d||22 + const., (12)

where the constant is usually omitted; when σ is not known a
priori we obtain instead

L(p,d) = − ln P (p,d)=−Nt

2
ln ||p − d||22 + const. (13)

The idea of maximum likelihood estimation is to find the model
parameters that maximize this (log) likelihood function. To
simplify this task, we follow a similar approach as in previous
work [11–13] and express the signals as linear combinations
of a small number mb of basis functions gm(t) determined by
the functional form of the signals. In our case the measurement
signal p(t) can be written as a linear combination of mb = 2
basis functions

p(t) = α1g1(t) + α2g2(t) (14)

with g1(t) = 1 and g2(t) = e−γ t cos(ω0t). As the basis func-
tions are not orthogonal, we define an orthogonal projection of
the data onto the basis functions sampled at times tn as follows.
Let G be a matrix whose rows are the basis functions gm(t)
evaluated at times tn, Gmn = gm(tn), and E diag(αm) E† be the
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TABLE I. Model parameters for 10 models compared below (in units of ω̄).

ω 1.0000 0.9000 0.5003 0.7304 1.2161 1.6211 0.2218 1.5195 0.7551 0.8029
γ 0.1000 0.1000 0.1243 0.1875 0.2031 0.0993 0.1234 0.0751 0.0533 0.1921

eigendecomposition of the positive-definite matrix GG†. Then
H = diag(α−1/2

m )E†G is a matrix satisfying H †H = GG†,
whose rows form an orthonormal set, HH † = I , and we define
the orthogonal projection of the data vectors onto the basis
function by h = Hd†.

Projecting the data onto a linear combination of basis func-
tions introduced mb nuisance parameters αm. Using a standard
Bayesian approach we can eliminate them by integration using
a uniform prior, and following further simplifications [11], it
can be shown that the log likelihood (11) becomes

L(ω0,γ |d) = mb − Nt

2
ln

[
1 − mb〈h2〉

Nt 〈d2〉
]

, (15)

where 〈d2〉 = 1
Nt

∑Nt−1
n=0 d2

n and 〈h2〉 = 1
mb

∑mb−1
m=0 h2

m and we
have dropped the constant offset. This log-likelihood function
can be evaluated efficiently, and we can use standard optimiza-
tion algorithms to find its maximum, motivating Strategy 3:

{ω0,γ } = arg max
ω′

0,γ
′
L(ω′

0,γ
′|d). (16)

Note that in general, finding the global maximum of the
log-likelihood function is nontrivial as it is nonconvex, tends
to become sharply peaked, especially for large data sets, and
may have many local extrema, necessitating global search
techniques. However, for our two-parameter case, finding
the global optimum over reasonable ranges for ω and γ

proved straightforward using either standard quasi-Newton or
even Nelder-Mead simplex optimization. For more complex
functions a density estimator such as particle filters (sequential
Monte Carlo methods) or kernel density estimators may be
used, which also enable effective determination of the
maximum.

IV. EVALUATION AND COMPARISON OF ESTIMATION
STRATEGIES

We now compare the three strategies introduced in the
previous section for ensemble and single-shot measurements
and also discuss the uncertainty in the estimated parameters
and show how Strategy 3 enables the estimation of additional
initialization and measurement parameters. For this we use 10
systems with different values for ω and γ , given in Table I,
and collect measurement data from simulations with the
relevant noise models. For each system the signal was sampled
uniformly at Nt = 100 time points tk ∈ [0,30]. We assume that
we have some order of magnitude estimate of the system fre-
quency ω̄ based on the physical properties of the system, giving
us a range for the values of ω. Without loss of generality we
can express both ω and γ in units of ω̄. Accordingly all times
quoted in the following will be in units of ω̄−1. In our simula-
tions we choose ω ∈ [0.2,2] and γ ∈ [0.05,0.4] in units of ω̄.

To calculate an average relative error for the parameter
estimates, Ns = 1000 runs were performed for each system
and noise level and the error computed as

e(ω) = 1

Ns

Ns∑
n=1

ω−1|ω(n)
est − ω| (17a)

e(γ ) = 1

Ns

Ns∑
n=1

γ −1
∣∣γ (n)

est − γ
∣∣, (17b)

where ω and γ are the actual parameters of the simulated
system and ω

(n)
est and γ

(n)
est are the estimated values for the nth

run.

A. Ensemble measurements with Gaussian noise

To compare the different estimation strategies for discretely
sampled signals with Gaussian noise we simulate the mea-
surement result dk at time tk . The expected signal p(tk) was

FIG. 1. (Color online) Example of ideal measurement signal and data from simulated experiments with Gaussian noise with σ = 0.05 on
the left and projection noise on the right where each data point is the average of Ne = 100 binary-outcome single-shot measurements.
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FIG. 2. (Color online) Minimum, maximum, and median of relative error of ω on the left and γ estimates on the right as a function of the
magnitude of the Gaussian noise for the 10 model systems in Table I, averaged over 1000 runs for each system and noise level.

calculated based on the selected model and Gaussian noise of
mean 0 and standard deviation σ added to each value. Figure 1
(left) shows an example of an ideal measurement signal and
simulated data with uniform sampling at times tn = n	t with
	t = 0.3.

Figure 2 compares the errors according to (17) for the three
strategies. Strategy 2, probably the most common technique
for estimating the frequency and dephasing parameter using
the position and width of the peak in the Fourier spectrum,
actually gives the least accurate and least precise estimates
— the median error of the estimated values is large, as is
the spread of the errors for different systems as indicated by
the large error bars. Strategy 1 produces slightly improved
estimates, but parameter estimates based on Strategy 3 are
significantly better. The results are similar for ω and γ .
Figure 3 furthermore suggests that Strategies 1 and 2 are not

unbiased estimators. The mean of the distribution over the
estimation runs does not appear to converge to the true value
of the parameter even for very low noise levels and 1000
runs. Strategy 3, however, appears to be an unbiased Gaussian
estimator.

One interesting feature of Strategies 1 and 2 is that the
median estimation errors appear to be almost constant over the
range of noise levels considered, while for Strategy 3 the error
increases with increasing noise level, as one would expect. A
probable reason for this is that the uncertainties in the position,
and indirectly the width, of the peaks in the Fourier spectrum
primarily depend on the length of the signal T . Specifically, for
a fixed number of samples, Ref. [9] found that the uncertainty
in the parameter estimates was mainly proportional to 1/

√
T .

This would explain why the accuracy of the estimates obtained
from the Fourier-based strategies appears roughly constant as

FIG. 3. (Color online) Distribution of ω estimates in (a), (b), (c) and γ estimates in (d), (e), (f) for 1000 runs for Model 1 with 1% Gaussian
noise for Strategy 1 in (a) and (b), Strategy 2 in (b) and (e), and Strategy 3 in (c) and (f).

022125-5



SOPHIE G. SCHIRMER AND FRANK C. LANGBEIN PHYSICAL REVIEW A 91, 022125 (2015)

FIG. 4. (Color online) Limits of Fourier resolution and difficulty in estimating peak width for short, noisy signals with (a) 1% Gaussian
noise, (b) 5% Gaussian noise, (c) 10% Gaussian noise.

the signal length and number of samples were both fixed in
our simulated experiments (T = 30, Nt = 100). So it might
be argued that the Fourier-based strategies are less sensitive
to noise. However, it is important to notice that even for noise
with σ = 0.1, Strategy 3 still outperforms the other strategies
in all cases.

Furthermore, accurately and precisely estimating location
and width of a peak in the Fourier spectrum for a relatively
short, noisy signal can be challenging, as illustrated by the
power spectrum examples in Fig. 4. The bars show |F (k)|2,
where F (k) is the discrete Fourier transform of the measured
discrete signal

F (k) =
Nt∑

n=1

d ′
ne

−2πi(k−1)(n−1)/Nt , 1 � k � Nt, (18)

computed using the fast Fourier transform (FFT), after cen-
tering and rescaling, d′ = (d − d̄)/dmax with d̄ = 1

Nt

∑Nt

n=1 dn

and dmax = max |dn − d̄|. The continuous curve is an approx-
imation to the continuous Fourier transform

F (ω) =
∫ ∞

−∞
f (t)e−iωtdt ≈

Nt∑
n=1

d ′
ne

iωtn
1

2
(	tn+	tn−1), (19)

where the integral has been approximated using the trapezoidal
rule with 	tn = tn+1 − tn = T/Nt for n = 1, . . . ,Nt − 1 and
	t0 = 	tNt

= 0. The left figure shows a good power spectrum
for a low-noise input signal. Even in this case the frequency
resolution is limited but the peak has a more or less Lorentzian
shape and the width is well defined. However, for increasing
noise the peak can become increasingly distorted (center) and
for very noisy signals it may even become split (right) making

width estimation difficult and rendering assumptions about
kurtosis and skewness invalid.

A further advantage of Strategy 3 is that it also provides
direct estimates for the noise variance [11]

σ = 1

Nt − mb − 2
(Nt 〈d2〉 − mb〈h2〉) (20)

and Table II shows that the estimates are very accurate across
the board.

B. Single-system measurements

To assess if there are significant differences in the per-
formance of different estimation strategies in the presence
of projection noise, we repeat the analysis in the previous
section for the same 10 model systems, sampled over the
same time interval [0,30], but with various levels of projection
noise added instead of Gaussian noise. Figure 1 (right) shows
an example of an ideal measurement signal and simulated
data. Figure 5 shows the relative errors for the different
estimation strategies for the same model systems but subject
to (simulated) projection noise. Strategy 3 again performs
significantly better than the other strategies. Figure 6 shows
that the likelihood of the estimates increases with increasing
number of repetitions Ne, as expected. It also shows again
that the maximum likelihood for some model systems is
consistently higher than for others, as was observed for
Gaussian noise.

Table III shows that even the estimates for the noise variance
σ 2 obtained automatically with Strategy 3 are very accurate
in that the results obtained closely track the theoretical values
σ 2 = 1/Ne expected for projection noise.

Overall this shows that although the noise strictly follows
a Poisson distribution in this case, we still obtain very good

TABLE II. The estimated noise level σ of the measurement data obtained from Strategy 3, for 10 model systems of the type described by
Eq. (5), closely track the actual noise levels of the simulated data listed in the first column.

σ (%) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 1.99 2.00 2.01
4.00 4.00 4.00 3.99 4.01 4.03 4.01 4.01 4.00 4.00 4.00
5.00 4.99 5.02 5.00 4.99 5.01 5.02 4.99 4.99 4.98 5.02
6.00 5.99 6.02 6.00 6.01 6.01 6.00 5.99 6.00 6.01 5.98
8.00 8.00 8.00 7.99 8.03 8.01 7.99 7.98 8.04 8.02 8.01
10.00 9.98 9.97 9.98 10.01 9.97 9.99 9.97 9.97 10.01 10.03
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FIG. 5. (Color online) Minimum, maximum and median of relative error of ω on the left and γ estimates on the right as a function of the
number of single-shot measurement repetitions per data point, Ne, for the 10 model systems in Table I.

estimates of the noise level for typical values of Ne using
a Gaussian error model in the derivation of the maximum
likelihood estimation strategy. So overall Strategy 3 appears
to be consistently better than Strategies 1 and 2, independent
of the types of measurements and their associated noise for the
two-level frequency and dephasing estimation problem.

C. Uncertainty in parameter estimates

The error statistics are useful for comparing different strate-
gies in terms of both the accuracy (mean or median of error)
and precision (spread of errors) of the estimated parameters,
and the graphs above show that Strategy 3 outperforms the
other strategies on both counts. However, obtaining such
statistics requires data from many simulated experiments as
well as knowledge of the actual system parameters. In practice,
the actual values of the system parameters to be estimated
are usually unknown, as otherwise there would be no need
to estimate the parameters in the first place, so we cannot use
error statistics directly to determine the accuracy and precision
of our estimates. However, we can estimate the uncertainty of
the parameter estimates, as discussed next.

For the Fourier-based strategies we have already mentioned
that the uncertainty in the parameter estimates is mainly

FIG. 6. (Color online) Maximum likelihood for 10 model sys-
tems, averaged over 100 runs each, obtained from Strategy 3.

determined by the frequency resolution, limited by the sam-
pling rate based on the Nyquist-Shannon sampling theorem,
which is fixed Nt/T in our case, and the length of the sampled
input signal as the Gabor limit implies as tradeoff between
time and band limits.

For the maximum likelihood estimation we can obtain
uncertainty estimates for the parameters from the width of the
peak of the likelihood function around the maximum. We use
the following simple strategy. Let (ω,γ ) be the parameters for
which the log likelihood assumes its (global) maximum Lmax.
To estimate the uncertainty in ω we compute the log likelihood
L(ω + δω,γ |d) for values δω where L is significantly larger
than 0 (implemented by sampling under the assumption that
L is not too far off a peaked distribution). Then we find the
range of δω for which the actual likelihood

exp(L(ω + δω,γ |d) � 1
2 exp(Lmax) (21)

to determine the full width at half maximum (FWHM) δωFWHM

of the likelihood peak in the ω direction. Assuming a roughly
Gaussian peak the uncertainty in ω is then given by

	ω = 2
√

2 ln(2) δωFWHM, (22)

and similarly for γ . Figure 7 shows the resulting peaks in
the likelihood function for a typical experiment together with
the FWHM estimates, showing greater uncertainty in the γ

estimates.
Figure 8 show the resulting uncertainties for parameter

estimates obtained by Strategy 3 for the ensemble measure-
ments. The uncertainty in the ω and γ estimates increases
with the noise level, as one would expect, but for some
systems the increase is steeper than for others. In particular, the
uncertainties are greater for models 4, 5, and 10, for which γ is
large, and lowest for model system 9, which has the lowest γ

of the 10 models. The higher uncertainties coincide with dips
in the maximum of the log likelihood in Fig. 9. Although there
is some variation in the value of the maximum log likelihood
between different runs for the same model and error level,
the differences between the average of the maximum log
likelihood over many runs for model systems 1 and 5 are
several standard deviations, e.g., max log L ≈ 47.9 ± 3.2 (for
model 1, σ = 0.1) vs 34.3 ± 3.3 (model 5, σ = 0.1). This is
consistent with the peak of the (log) likelihood being lower
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TABLE III. Estimated Ne = 1/〈σ 2
est〉 for single-shot measurements for 10 model systems, averaged over 100 runs each, obtained from

Strategy 3. The estimates closely track the actual number of repetitions of the single-shot measurements for the simulated data listed in the first
column.

Ne Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

100 106 109 105 102 104 108 109 111 120 108
500 549 539 532 526 525 546 543 555 580 519
1000 1087 1089 1056 1029 1018 1071 1097 1101 1200 1028
5000 5527 5364 5261 5076 5098 5515 5424 5563 5868 5178
10000 10957 10325 10562 10299 10430 10772 10667 11310 11660 10407

and broader for model 5, resulting in higher uncertainty, and
narrower and higher for model 1, resulting in less uncertainty.
Figure 10 shows that the uncertainties for parameter estimates
behave the same ways for single shot measurements as a
function of the projection noise level 1/

√
Ne.

This suggests that given the same amount of data the
uncertainty of our estimates increases slightly with larger
dephasing rate. A probable explanation for this is that the signal
decays faster for higher dephasing and thus the signal-to-noise
ratio of the later time samples is reduced. For higher dephasing
rates the results could likely be improved by adding more
samples for shorter times or introducing weights and reducing
the latter for measurements obtained for longer times.

D. Estimating initialization and measurement parameters

According to (14) Strategy 3 also provides information
about the initialization and measurement procedure via es-
timates for the parameters α1 and α2. For this model we obtain

α1 ± α2 = cos θI cos θM ± sin θI sin θM = cos(θI ∓ θM )

and thus

θI = 1
2 [arccos(α1 − α2) + arccos(α1 + α2)], (23a)

θM = 1
2 [arccos(α1 − α2) − arccos(α1 + α2)]. (23b)

Figure 11 shows the estimates for the parameters α1 and
α2 with error bars indicating uncertainty for the ensemble
measurements. From the plot it is evident that α1 → 0 and
α2 → 1 for σ → 0, which suggests θI = θM = π

2 , which

FIG. 7. (Color online) Estimation of width of likelihood peak
with regard to ω and γ .

agrees with the values of the initialization and measurement
angles used in the simulated experiments. Figure 12 shows that
the same is true in the case of projection noise for single-shot
measurements. The associated estimates for the parameters α1

and α2 converge to α1 → 0 and α2 → 1 for Ne → ∞, which
suggests θI = θM = π

2 , which also agrees with the values of
the initialization and measurement angles used in the simulated
experiments. Similar behavior is observed for other choice of
the initialization and measurement angles.

E. Fisher information and Cramer-Rao bound

The Fisher information matrix I = (Iij ) is defined by

Iij=E

[
∂L

∂θi

∂L

∂θj

]
=

∫
∂L

∂θi

∂L

∂θj

f (x|θ )dx = −E

[
∂2L

∂θi∂θj

]
(24)

where L(x,θ ) is the log likelihood of the measurement
outcome x given θ and E the expectation with respect to x.
If the estimator T for the parameters θ is unbiased, i.e., the
mean-square error of T is

MSE(T ) = Bias(T )2 + Var(T ) = Var(T ) (25)

where Var(T ) is the covariance matrix of the estimator, then
the matrix C = Var(T ) − I−1 must be positive semidefinite
and ||C|| gives an estimate of how close we are to the
Cramer-Rao limit.

Applied to our case, θ = (ω,γ ) and

L(x|θ ) = −N log(
√

2πσ ) − 1

2σ 2

N∑
n=1

|p(θ,tn) − xn|2

with p(θ,t) = e−θ2t cos(θ1t), we get

∂L

∂θ1
= − 1

σ 2

N∑
n=1

[p(θ,tn) − xn]
∂p(θ,tn)

∂θ1
(26a)

∂L

∂θ2
= − 1

σ 2

N∑
n=1

[p(θ,tn) − xn]
∂p(θ,tn)

∂θ2
(26b)

and

∂p(θ,tn)

∂θ1
= −tne

−θ2tn sin(θ1tn) =: αn (27a)

∂p(θ,tn)

∂θ2
= −tne

−θ2tn cos(θ1tn) =: βn. (27b)

022125-8



UBIQUITOUS PROBLEM OF LEARNING SYSTEM . . . PHYSICAL REVIEW A 91, 022125 (2015)

FIG. 8. (Color online) Uncertainties of ω estimates (left plot) and γ estimates (right plot) as a function of the Gaussian noise level for the
10 model systems in Table I shows that the uncertainty increases linearly with the noise level but for some models the slope is steeper than for
others.

Setting pn = p(θ,tn) we have

∂L

∂θ1

∂L

∂θ2
= 1

σ 4

(
N∑

n=1

αnpn − αnxn

)(
N∑

n=1

βnpn − βnxn

)

= σ−4

(
AB −

N∑
n=1

cnxn +
N∑

m,n=1

αmβnxmxn

)

with A = ∑
n αnpn and B = ∑

n βnpn, cn = αnB + βnA.
Similarly for the other partial derivatives. Noting

1√
2πσ

∫ ∞

−∞
xn exp

[−|pn − xn|2|
2σ 2

]
dxn = pn (28)

FIG. 9. (Color online) Maximum of log likelihood, Strategy 3,
for the 10 model systems in Table I for different noise levels.
The dips in the maximum likelihood for models 4, 5, and 10
correlate with steeper slopes in the uncertainty vs noise level plots in
Fig. 8.

and assuming the estimator is unbiased, we finally obtain the
entries of the Fisher information matrix

I11 = σ−4

(
A2 − 2A

∑
n

αnpn +
∑
m,n

αmαnpmpn

)

I12 = σ−4

(
AB −

∑
n

cnpn +
∑
m,n

αmβnpmpn

)

I22 = σ−4

(
B2 − 2B

∑
n

βnpn +
∑
m,n

βmβnpmpn

)
.

(29)

While our simulations suggest that the estimators based on
Strategies 1 and 2 are not unbiased, Strategy 3 appears to
be unbiased. Figure 13, showing the smallest eigenvalue of
the matrix C for our various test systems subject to projection
noise, suggests that we indeed approach the Cramer-Rao bound
for Ne → ∞ and σ = N

−1/2
e .

V. ADAPTIVE ESTIMATION STRATEGIES

We may find that the accuracy or precision of the parameters
obtained from an initial data set is not sufficient and we
would like to improve it by acquiring additional data. Adaptive
refinement strategies depend on the experimental setup and
system and a detailed analysis of specific strategies is beyond
the scope of this paper. However, we shall briefly discuss
general approaches for iterative refinement for the Fourier and
Bayesian estimation approaches and compare these for a few
examples.

In some settings an entire measurement trace is obtained in
a single experimental run and we are only able to sample the
signal at regular time intervals restricted by the experimental
equipment available. In this case the only options available to
us are extending the signal length (keeping sampling density or
number of sample points constant) or repeating the experiment.
If Fourier-based estimation strategies are used, the only way
to really improve the resolution of the Fourier spectrum,
and thus the accuracy and precision of our estimates, is by
increasing the signal length. However, for a decaying signal
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FIG. 10. (Color online) Uncertainties of the ω estimates on the left and γ estimates on the right as a function of projection noise level for
our 10 model systems show a linear increase with respect to the noise level, with the slope for models 4, 5, and 10 being greater than for the
others, as was observed for Gaussian noise.

the signal-to-noise ratio progressively deteriorates until the
signal vanishes, limiting the accuracy and precision that are
attainable. This is illustrated in Fig. 14 (left), which shows
the (normalized) power spectrum for 1–1000 repetitions of the
experiment for model parameters 4, assuming each individual
measurement trace is subject to Gaussian noise at σ = 0.1 and
the signals are averaged. For a single run of the experiment
with this level of noise, the peak is distorted but the power
spectrum quickly converges. The corresponding estimates for
ω and γ (Fig. 14, center and right) also converge but not
to the true value. For Strategy 2 the ω and γ estimates are
inaccurate. The optimization step in Strategy 1 appears to
improve the accuracy of the ω estimates but the γ estimates
are still inaccurate. Strategy 3 does not suffer from these
limitations and averaging multiple short traces should increase
the accuracy of our estimates. Indeed, the figure shows that this
appears to be the case: both the ω and γ estimates converge to
the true values.

This shows that Strategy 3 allows adaptive refinement even
if all we are able to do is to repeat the experiment multiple
times and average the measurement traces. However, in some
situations we have more freedom. For Rabi spectroscopy, for

FIG. 11. (Color online) Estimates for parameters α1 and α2 in-
cluding uncertainty as a function of the noise level σ for 10 model
systems.

example, each data point, corresponding to a measurement at
a particular time tn, may be obtained in a separate experiment,
and we may be free to choose the measurement times tn
flexibly. In this case, having obtained Nt measurements we
can try to choose the next measurement time tNt+1 such that
it optimizes the amount of information we gain from the ex-
periment. We could ask, for example, considering all possible
outcomes of a measurement at time t and their probability
based on our current knowledge, at what time should we
measure next to achieve the largest reduction in the uncertainty
of our estimates. However, this would require calculating the
uncertainty of the parameters (e.g., by estimating the width of
the likelihood peaks) for all possible measurement times and
outcomes. Given the continuum of measurement outcomes and
measurement times, this is generally too expensive to calculate.

We therefore consider a simpler heuristic. We generate a
number of guesses {(ωj ,γj ),j = 1, . . . ,J } for the parameters
based on the current likelihood distribution for the parameters.
We then calculate the measurement signal p(t,{ωj ,γj }) for a
set of discrete times and select the next measurement time
where the variance of the predicted measurement results is

FIG. 12. (Color online) Estimates for parameters α1 and α2 as a
function of the number of single-shot repetitions Ne for 10 model
systems of the type described by Eq. (5), averaged over 100 runs
each.
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FIG. 13. (Color online) Plot of the minimum eigenvalue of the
covariance matrix of the estimator minus the inverse Fisher informa-
tion for various models as a function of Ne.

greatest. The idea behind this strategy is that a larger spread
in the predicted results indicates greater uncertainty, and a
measurement at such a time should result in a greater reduction
of the uncertainty. We illustrate this strategy in Fig. 15. The
variance of the predicted traces pj (t) = p(t,{ωj ,γj }) exhibits
oscillations at about twice the frequency of the signal, being
largest around the minima and maxima of the oscillatory
signal but due to the damping of the signal there is an
overall envelope and a global maximum around 3 in units
of πω̄−1. To avoid repeated sampling at the same time it
is desirable to introduce a degree of randomness, e.g., by
selecting the next measurement time based on the maximum
of the variance of pj (ts) sampled over a discrete set of times
ts , such as a nonuniform low-discrepancy sampling of the
time interval [0,T ]. Furthermore, in practice it may be rather
inefficient to recalculate the variance of the traces after a single
measurement. Instead, we shall acquire an initial set of N0

data points and then select the next N1 measurement times
to coincide with peaks in the variance of the traces where we
allow N1 to vary depending on the number of peaks. In Fig. 15,
for example, there are eight local peaks and we choose the next
eight measurement times to coincide with these maxima and
then iterate the process.

An even simpler way of iterative refinement is via low-
discrepancy (LD) time sampling, a generalization of uniform
sampling that lends itself to easy iterative refinement. The
basic idea of LD sequences is to ensure the largest gap
between samples is asymptotically optimal, while there is little
uniformity in the sampling points to avoid aliasing effects (blue
noise criterion). In this case the initial measurement times
are chosen to be the first N0 elements in a low-discrepancy
quasirandom sequence such as the Hammersley sequence
[22], and in each subsequent iteration the next Ni elements
of the sequence are used. We have chosen the Hammersley
sequence in particular as it does not require us to fix the
number of sample points at the beginning. The number of
initial measurements N0 and subsequent measurements per
iteration Ni are completely flexible, the elements of the
sequence can be scaled to uniformly cover any desired time
interval, and we can perform as many iterations as desired.
Figure 16 shows the measurement times as a function of the
iteration as determined by the Hammersley sequence with
N0 = 20 and Ni = 8 for 10 iterations and total sampling
times T = 30, showing that uniform coverage of the sampling
interval is maintained. For a fixed number of measurements
Nt = 100, we verified that there was no significant difference
in the errors and uncertainties of the parameter estimates
between low-discrepancy and uniform sampling for the cases
considered above. Furthermore, iterative refinement based on
LD sampling performed very well. Figure 17 for model system
4 with measurements subject to 5% Gaussian noise shows that
simple iterative LD sampling actually outperforms the adaptive
refinement strategy based on the trace variance described
above. While this may not be universally the case, and may
be due to the variations in the trace variance being relatively
small in our example, it shows that simple strategies such as
iterative LD sampling can be highly effective.

VI. GENERALIZATION TO OTHER MODELS

So far we have considered a particular model of a
dephasing two-level system with dephasing acting in the
Hamiltonian basis. However, if control fields are applied, as in
a Rabi oscillation experiment for example, then the effective
Hamiltonian and the dephasing basis may not coincide. For
example, for two-level atoms in a cavity driven resonantly by

FIG. 14. (Color online) Iterative refinement by averaging of signal traces. The power spectra on the left were obtained from averaging the
signals over multiple runs effectively coincide. Increasing the number of averages smooths out the spectrum but does not reduce the width
of the peak. For Strategy 2 neither the ω estimates in the center nor the gamma estimates on the right converge to the true values (shown as
dash-dot line), while for Strategy 3 both estimates appear to converge to the true values. For Strategy 1 the ω estimates improve and converge
to the correct value, but the γ estimates remain biased, here converging to a value larger than the true value.
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FIG. 15. (Color online) Prior likelihood after 25 time samples (tn = 1.2n) for model 1 on the left with {ωj ,γj } samples shown as white
dots, and corresponding predicted measurement traces pj (t) = p(t,{ωj ,γj }) and variance of pj (t) as function of t on the right.

a laser, the effective Hamiltonian with regard to a suitable
rotating frame is H = �σx , where � is the Rabi frequency
of the driving field. Assuming the driving field does not alter

the dephasing processes, so that we still have V =
√

γ

2 σz,

the resulting measurement trace is given by [21]:

p(t) = e−γ t sin θI sin θM + �x
3(t) cos θI cos θM, (30)

where

�x
3(t) = e

− γ

2 t
[
cos(ωt) + γ

2ω
sin(ωt)

]
. (31)

ω =
√

�2 − γ 2

4 . (32)

If �2 < γ 2/4 then ω is purely imaginary and the sine and
cosine terms above turn into their respective hyperbolic
sine and cosine equivalents. If �2 = γ 2/4, the expression
ω−1 sin(ωt) must be analytically continued.

Due to the more complex nature of the signal, the Fourier
estimation strategies are not directly applicable. However, we
can very easily adapt Strategy 3. All that is required is a change
in the basis functions, setting g1(t) = e−γ t and g2(t) = �x

3(t).

FIG. 16. (Color online) Selection of measurement times for iter-
ative low-discrepancy sampling. The new measurement times in each
iteration as chosen such as to fill in the largest existing gaps.

Figure 18 shows the log-likelihood functions for a very
sparsely sampled signal with significant projection noise for
a system described by Eq. (30) for a simulated experiment
performed with θM = π

4 and θI = π
3 . The signal is a damped

oscillation, though not a simple damped sinusoid. Strategy
3 easily succeeds in identifying the model parameters and
the log-likelihood function has a clearly defined peak. In
fact, we are showing the log likelihood here as the actual
likelihood function is so sharply peaked that its internal
structure, especially the squeezed nature, is not easy to see.

Finally, Fig. 19 (left) shows the error statistics for the ω

and γ estimates obtained using Strategy 3 for 10 models given
by Eq. (30) with the same values for � and γ as in Table I.
We compare two experimental conditions: (a) θI = θM = 0,
which corresponds to maximum visibility of the oscillations
and (b) θI = π

3 , θM = π
4 , for which the signal is more complex

and the visibility of the oscillations is reduced as shown in
Fig. 18. The estimation errors are very similar to those for

FIG. 17. (Color online) Median error of ω (open symbols) and γ

(filled symbols) parameter estimates for iterative LD sampling (solid
lines) and adaptive sampling based on trace variance (dashed lines)
for model system 4 with measurements subject to 5% Gaussian noise
(circles) and projection noise σ = N−1/2

e (squares), respectively. The
solid lines are below the dashed lines, suggesting that low-discrepancy
sampling is actually preferable to our simple adaptive sampling
strategy.
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FIG. 18. (Color online) Ideal signal as continuous blue curve and sparsely sampled noisy data as green stars ∗ for Nt = 100, t ∈ [0,25]
with Ne = 100 single-shot experiments per data point for a system described by Eq. (30) with ω = 1, γ = 0.1 on the left and corresponding
log likelihood on the right.

models described by Eq. (5) considered above: For the γ

estimates they are effectively identical for both experimental
conditions; for � they are slightly larger in case (2b), as might
be expected as the visibility of the oscillations is reduced in
this case.

In both cases we also obtain excellent estimates of the noise
level σ of the data as well as estimates for the parameters α1

and α2. As before, if the initial state prepared or the precise
measurement performed are unknown a priori, as may well be
the case for a system that is not yet well characterized, we can
use these parameters to derive estimates for θI and θM :

θI = 1
2 [arccos(α2 − α1) + arccos(α2 + α1)] (33a)

θM = 1
2 [arccos(α2 − α1) − arccos(α2 + α1)]. (33b)

Figure 19 (right) shows the estimates derived for the angles
θI and θM for both experimental conditions. The markers
indicate the average of the estimate for all runs and all model
systems, the error bars indicate the standard deviation of
the estimates. The estimates are not as accurate as those

for the system parameters, as one would expect as we have
marginalized the amplitudes α1 and α2 and thus θI and θM .
However, they are still quite close to the actual values (black
dash-dot lines) with the exception of the θI estimate for case
(2a), which is slightly more biased and less accurate—it should
be 0, coinciding with the measurement angle θM .

VII. CONCLUSIONS

We have investigated the ubiquitous problem of identifying
crucial parameters from experimental data for two-level sys-
tems subject to decoherence. Comparing different strategies
based on the analysis of Fourier spectra as well as Bayesian
modeling and maximum likelihood estimation, the latter
approach was found to be vastly superior to commonly used
Fourier-based strategies in terms of accuracy and precision of
the estimates obtained.

Strategies based on simple Fourier analysis are limited by
the accuracy with which the positions, heights and widths of
the Fourier peaks can be determined. As the spectral resolution
is limited by signal length and sampling rate, the accuracy of

FIG. 19. (Color online) Minimum, maximum and median of relative error (averaged over 100 runs for each system and noise level) of ω

and γ estimates as a function of noise level σ on the left and estimates for the initial state and measurement angles θI and θM on the right
for 10 model systems described by Eq. (30) with model parameters given in Table I for two experimental conditions: 2a maximum visibility:
θI = θM = 0 and 2b: θI = π

3 , θM = π

4 .
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Fourier-based estimation schemes for short, decaying signals
or sparse noisy data is limited. The Bayesian approach is not
constrained in this way and yields uncertainties for the system
parameters as well as information about the noise in the data.

An additional advantage of the Bayesian estimation is that
it does not require a priori knowledge of the initialization
or measurement angles θI and θM . Rather, the estimation
procedure provides values for the coefficients of the basis
functions, which are related to the parameters θI and θM .

The results are widely applicable to many experimental
settings from the analysis for free-induction decay signals
for spin systems, e.g., in NMR, MRI, and ESR to Rabi

spectroscopy of atomic ensembles, trapped ions, quantum dots,
or Josephson junction devices.
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