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Non-Markovian qubit dynamics in a circuit-QED setup
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We consider a circuit-QED setup that allows the induction and control of non-Markovian dynamics of a
qubit. Non-Markovianity is enforced over the qubit by means of its direct coupling to a bosonic mode which
is controllably coupled to another qubit-mode system. We show that this configuration can be achieved in
a circuit-QED setup consisting of two initially independent superconducting circuits, each formed by one
charge qubit and one transmission-line resonator, which are put in interaction by coupling the resonators to a
current-biased Josephson junction. We solve this problem exactly and then proceed with a thorough investigation
of the emergent non-Markovianity in the dynamics of the qubits. Our study might serve the context for the first
experimental assessment of non-Markovianity in a multielement solid-state device.
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I. INTRODUCTION

The modeling of real physical systems in terms of bosonic
and two-level systems, and their interaction, is ubiquitous
in physics, especially in optical or atomic scenarios [1].
A well-known example is the celebrated Jaynes-Cummings
model describing the interaction of a two-level atom with
a single mode of the quantized electromagnetic field in the
rotating-wave approximation [2]. Many interesting physical
phenomena arise in this kind of system, depending on the
details of the interaction between its parts. One may mention
the appearance of quantum phase transitions [3], polariton
physics [4], and phononic nonlinearities [5], to name just a few.
Interacting two-level atoms and bosonic modes provide also a
natural (and somehow historical) route to address questions of
quantum open-system dynamics [6,7] and may be applied to
a great variety of systems, ranging from superconductivity [8]
to chromophores in biological complexes [9].

Modern circuit-QED setups are good examples of well-
controlled systems where the interaction between two-level
systems and bosonic modes can be experimentally investigated
[10–13]. They involve manipulation and control of the inter-
action between superconducting circuits behaving as artificial
atoms (two-level systems) and one-dimensional transmission-
line resonators (bosonic systems). The low dissipation and
the small mode volume of the circuits together with the
big effective dipole moments of the superconducting qubits
favor the achievement of the strong-coupling regime, where
quantum behavior can be observed [10,11,13].

On the other hand, memory effects in open systems
are another topic of great interest [14,15]. Memoryless or
Markovian evolutions represent a limited portion of the rich
scenario of open system dynamics. Much effort has then
been directed to characterizing, quantifying, and manipulating
the degree of non-Markovianity of physical systems [15]. In
this work, we propose a circuit-QED scheme to study the
emergence of non-Markovianity in the dynamics of the qubits,
tuning the details of the evolution by exploiting the great
flexibility of the setup that we address. We start in Sec. I
by presenting the system and solving the associated model
exactly. We then move to Sec. II, where we evaluate the

degree of non-Markovianity for the qubits in the case of modes
initially prepared in coherent states. Section III addresses
the role that phase coherence plays in the phenomenology
highlighted here by studying the case of phase diffused
coherent states. We draw our conclusions in Sec. IV.

II. MODEL AND SETUP

The circuit-QED system we propose for studying the effect
of cross couplings of localized modes in spin-boson systems
is depicted in Fig. 1. It combines two circuit-QED setups in
a single versatile setup. On one hand, Cooper-pair box qubits
with tunable Josephson coupling [8] are capacitively coupled
to different single-mode high-Q superconducting coplanar
resonators a and b (frequencies ωa and ωb). This forms two
local and noninteracting spin-boson systems. Each of these
local circuits is essentially the well-developed setup used
in many experiments involving superconducting qubits and
transmission-line resonators [12]. It is important to emphasize
that today there are improved noise-robust superconducting
qubit architectures, like the transmon [16], but the basic
elements of our proposal do not depend strongly on the specific
type of qubit. Of course, in practice, the more protected
the design is against decoherence, the better for observing
quantum coherence effects.

We employ a third qubit, C, now a current biased Josephson
junction (CBJJ), in order to dispersively induce an indirect
coupling between the resonators. This kind of qubit is specially
suited for this task since small changes in the bias current
can strongly change the detuning with the resonators. This
has been shown in [17] and employed in [18] to implement
single-qubit operations in linear optics quantum computing
using circuit-QED. Coupled modes interacting with qubits are
also the basic elements in Jaynes-Cummings-Hubbard lattices
[19]. However, it is important to note that the form of the
interaction term involving the fields and qubits in our case is
not the Jaynes-Cummings one, as discussed below. A similar
setup has been proposed to generate entanglement between
superconducting qubits using the dynamical Casimir effect
[20]. Coupled circuits have also been proposed to simulate
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FIG. 1. (Color online) Sketch of the elements comprising the
circuit-QED model used in this work. Charge qubit A is coupled
to transmission line resonator a, while charge qubit B is coupled
to transmission line resonator b. These are Cooper pair boxes with
tunable Josephson coupling. The coupling between the resonators is
achieved by dispersively coupling a CBJJ qubit C to both resonators.

particular quantum environments for superconducting qubits
with the purpose of simulating exciton transfer in photosyn-
thetic systems [21]. In what follows, we pursuit a different
line of investigation by considering how the coherent coupling
of one of the superconducting qubits with a resonator mode,
which is controllably coupled to another qubit-resonator sys-
tem, competes with dephasing to bring about memory effects.
These effects are then quantified by using modern quantum
information tools and by exactly solving the dynamics as
explained later.

The full Hamiltonian for this system is given by H = H0 +
HSB + HBB (we choose units such that � = 1 throughout the
paper), with

H0 = ωA

2
σz,A + ωB

2
σz,B + ωC

2
σz,C + ω̃aa

†a + ω̃bb
†b, (1)

where ωC is the transition frequency of the CBJJ qubit and
ωA(B) =

√
E2

JA(B)
+ E2

elA(B)
the transition frequency of qubit

A (B). All these are determined by the electrostatic en-
ergy EelA(B) = 4ECA(B) (1 − 2ngA(B) ), with ECA(B) = e2/2C�A(B)

being the charging energy, EJA(B) = Emax
Jj

cos(π�j/�0) the
Josephson coupling energy, C�A(B) the total box capacitance,
ngA(B) = CgA(B)VgA(B)/2e the dimensionless gate charge, and
Emax

JA(B)
the maximum Josephson energy. Finally, CgA(B) is the

gate capacitance, VgA(B) is the gate voltage, and �A(B) is an
externally applied flux (with �0 being the flux quantum). Any
dispersive shift of the natural frequencies of the resonators due
to coupling with qubit C is absorbed into ω̃i (i = a,b) [18]. We
now proceed to the discussion of the qubit-mode (spin-boson)
Hamiltonian, which reads

HSB = ga(μA − cos θAσz,A + sin θAσx,A)(a† + a)

+ gb(μB − cos θBσz,B + sin θBσx,B )(b† + b), (2)

where μA(B) = 1 − 2ngA(B), ga(b) = e(Cg,A(B)/

C�,A(B))V 0
rms,a(b) is the coupling strength of the

interaction between qubit A (B) and mode a (b), θA(B) =
arctan[EJj

/ECj
(1 − 2ng,j )], and V 0

rms,a(b) = √
ωa(b)/2Ca(b) is

the rms value of the voltage in the ground state of resonator
a (b), with Ca(b) being the total capacitance of transmission
line a (b). Finally, the boson-boson coupling Hamiltonian

HBB, which is indirectly induced by mutual coupling with
qubit C, reads [17]

HBB = λ(a†b + b†a), (3)

where the value of the coupling strength λ can be tuned by
addressing the CBJJ (qubit C) and choosing a properly bias
current [17]. From now on, we drop (ωC/2)σz,C from H0 since
we now assume this qubit to be prepared in an eigenstate of
σz,C .

Our goal is to engineer an effective interaction Hamiltonian
for each local spin-boson system having the form VJj ∝
σz,J (j † + j ) for j = a (j = b) if J = A (J = B). Conse-
quently, we need θj = 0, a condition that can be achieved
by imposing ng,j �= 1/2 and by tuning the external flux on the
charge qubits so as to satisfy the relation �j = (k + 1/2) �0

with k ∈ Z. Although in the remainder of the paper we work
very closely to the charge degeneracy point ng,j = 1/2, we
cannot be exactly at it, as this would lead to cos θj = 0.
Working at the degeneracy point reduces the impact of
dephasing on the qubit state [22,23]. Consequently, we have
to explicitly include dephasing for the qubits in the dynamical
equation of motion, which is discussed later.

By assuming identical resonators (ω̃a,b = ω) as well as
identical qubits [ngA(B) = ng , ωA,B = ω0, and gA = gB], the
full Hamiltonian becomes

H = ω0

2
(σz,A + σz,B ) + ω(a†a + b†b) + λ(a†b + b†a)

+ g(σz,A + μ1A)(a† + a) + g(σz,B + μ1B)(b† + b).

(4)

As a consequence of working slightly out of the degeneracy
point (μ �= 0), we get driving-like terms on the modes
proportional to (a† + a) and (b† + b).

We are now in a position to present the equations of
motion for the system. As discussed before, we are not
working exactly at the degeneracy point and thus qubit
dephasing should be taken into account [23]. Regarding other
decoherence mechanisms, dissipation affecting the qubits or
the transmission lines, as well as dephasing of the latter, can
be made negligibly small compared to dephasing in the qubits
[12]. Therefore, by keeping only the dominant terms, the
dynamics will be governed by the master equation

∂ρ

∂t
= −i[H,ρ] + γ

2

∑
J=A,B

(σz,J ρσz,J − ρ), (5)

with γ the single-qubit dephasing rate and H given by Eq. (4).
Using the two-mode displacement operator T = eξa†−ξ∗a ⊗

eξb†−ξ∗b [with ξ = μg/(ω + λ)] and the beam-splitter transfor-
mation T ′ = exp[π (a†b − ab†)/4] [24], it is straightforward
to derive the effective Hamiltonian model

H ′′ = ω′
0

2
(σz,A + σz,B ) + ω+a†a + ω−b†b

+ g√
2

[σz,A(a†+a − b†−b) + σz,B (b†+b+a† + a)],

(6)

where ω′
0 = ω0 − 4gξ , ω± = ω ± λ, and no direct interaction

between the field modes is present in this picture. It is now
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possible to decouple the spin and boson degrees of freedom
using the polaron transformations [25]

T ′′ = exp[λ+(σz,B + σz,A)(a† − a)

+ λ−(σz,B − σz,A)(b† − b)], (7)

with λ± = g/(
√

2ω±). The correspondingly diagonalized
Hamiltonian reads

H ′′′ = ω′
0

2
(σz,A + σz,B ) + χ

2
σz,Aσz,B + ω+a†a + ω−b†b,

(8)

with χ ≡ 4g2λ/(ω−ω+). The qubit part of Eq. (8) has the form
of an Ising Hamiltonian, demonstrating that the qubits come
into interaction with each other through the coupled localized
modes. As expected, this coupling constant goes to 0 if the
modes are decoupled (λ = 0) or one of the qubits is detached
from its local mode (g = 0). Finally, as T ′′T ′T commutes with
the free energy of the qubits, the dephasing part of Eq. (5) is
not affected by the transformations. Therefore, the dynamics
in this transformed space is that of an Ising system subjected
to dephasing with no influence from the modes. However, in
the process of transforming the observables, the modes and
qubits in fact become correlated. The system dynamics in the
transformed space is governed by

∂ρ ′′′

∂t
= −i[ω+a†a + ω−b†b,ρ ′′′]

− i

2
[ω′

0(σz,A + σz,B ) + χσz,Aσz,B,ρ ′′′]

+ γ

2
{(σz,Aρ ′′′σz,A − ρ ′′′) + (σz,Bρ ′′′σz,B − ρ ′′′)}.

(9)

As this equation is diagonal in the common basis of the
observables {σz,A,σz,B,a†a,b†b}, it is straightforward to solve
it for any initial condition.

Here, we explore the solution of this problem for a particular
set of initial conditions which are useful to harness the non-
Markovian character of the evolution of the qubits and how this
depends on the bosonic environment considered here. We see
that, as far as the dynamics of one of the qubits is concerned, the
structure of the problem at hand is very rich. It includes bosonic
modes, their cross coupling, the presence of a second qubit,
and Markovian dephasing. All such coherent and incoherent
couplings compete to give rise to the features discussed in the
next sections.

III. NON-MARKOVIANITY UNDER FULLY COHERENT
CONDITIONS

From now on, we focus on the non-Markovianity of
the evolution of qubit A. In particular, we would like to
study the competition between the Markovian environment
characterized by the γ term in (9) and the presence of other

FIG. 2. (Color online) We depict the basic idea behind the inves-
tigation of non-Markovianity in this work. Qubit A is subjected to
Markovian dephasing γ and is coupled to other subsystems directly
through g and indirectly thorough λ. Provided that g = 0, the time
evolution of qubit A will certainly be Markovian due solely to the
γ environment. Once g is turned on, non-Markovian features may
appear. The situation becomes even more interesting by introducing
the intermode coupling.

quantum subsystems which influence qubit A. The general
idea is depicted and explained in Fig. 2 and its caption.

According to [26], non-Markovianity in open system dy-
namics of a qubit can be detected or inferred by considering the
trace distance D[ρ1(t),ρ2(t)] = Tr |ρ1(t) − ρ2(t)|/2 between
two evolved states, where |A| =

√
A†A. The evolution process

will be non-Markovian if there exists a pair of initial states
ρ1,2(0) such that, after a time t , ρ1,2(t) will lead to σ (t) > 0,
where

σ (t) = d

dt
D[ρ1(t),ρ2(t)]. (10)

In our case, qubit A interacts with its environment (qubit
B plus dephasing bath) only by means of σz,A, as can be seen
from (5). For such cases, any pair of antipodal initial states
living in the equatorial line in the Bloch sphere are expected
to maximize σ (t) [27]. We checked this numerically. We then
consider ρA(0) = |±〉A〈±|, where |±〉A are eigenstates of σx,A

with eigenvalues ±1, respectively. For qubit B we take a
simple preparation which consists of letting it start from its
ground state ρB(0) = |g〉B〈g|. For the modes, we consider
them in coherent states |αeiθ 〉a and |βeiϕ〉b, with α, β, θ , and
ϕ real numbers. These states have already been generated in
circuit-QED by driving the resonator with a microwave pulse
of Gaussian shape [28]. In the next section, we use the solution
for the pure coherent states obtained here to investigate the case
of incoherent superpositions in a circle.

Let us then consider the qubits and modes to be initially
prepared in the state

ρ±(0)=|±〉A〈±|⊗|g〉B〈g|⊗|αeiθ 〉a〈αeiθ | ⊗ |βeiϕ〉b〈βeiϕ |.
(11)

In order to solve Eq. (9), we must first transform this state
using the set T ′′T ′T . The result is ρ ′′′

± (0) = |φ〉〈φ|, where

|φ〉 = e−2λ−iImw∗
1 |e〉A|g〉B |z1〉a|w2〉b ± e−2λ+iImz∗

1 |g〉A|g〉B |z2〉a|w1〉b√
2

, (12)
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with coherent states characterized by the complex numbers z1 = (αeiθ + βeiϕ + 2ξ )/
√

2, z2 = (αeiθ + βeiϕ + 2ξ )/
√

2 − 2λ+,
w1 = (βeiϕ − αeiθ )/

√
2, and w2 = (βeiϕ − αeiθ )/

√
2 − 2λ−. The corresponding evolved state, obtained using Eq. (9), is thus

ρ ′′′
± (t) = 1

2 |e〉A〈e| ⊗ |g〉B〈g| ⊗ |z1e
−iω+t 〉a〈z1e

−iω+t | ⊗ |w2e
−iω−t 〉b〈w2e

−iω−t |
+ 1

2 |g〉A〈g| ⊗ |g〉B〈g| ⊗ |z2e
−iω+t 〉a〈z2e

−iω+t | ⊗ |w1e
−iω−t 〉b〈w1e

−iω−t |
± 1

2e−γ t−i(ω′
0−χ)t−i

√
2λ−(α sin(θ)−β sin(ϕ))−i

√
2λ+(α sin(θ)+β sin(ϕ))|e〉A〈g| ⊗ |g〉B〈g| ⊗ |z1e

−iω+t 〉a〈z2e
−iω+t |

⊗ |w2e
−iω−t 〉b〈w1e

−iω−t |
± 1

2e−γ t+i(ω′
0−χ)t+i

√
2λ−(α sin(θ)−β sin(ϕ))+i

√
2λ+(α sin(θ)+β sin(ϕ))|g〉A〈e| ⊗ |g〉B〈g| ⊗ |z2e

−iω+t 〉a〈z1e
−iω+t |

⊗ |w1e
−iω−t 〉b〈w2e

−iω−t |. (13)

In order to evaluate the non Markovianity of the evolution of
qubit A, we must find its evolved state ρA

±(t). We then need to
transform ρ ′′′

± (t) back to ρ±(t) and trace out qubit B and the
modes. By doing this, one obtains

ρA
±(t) = 1

21A ± (h(t)|e〉A〈g| ± H.c.), (14)

where h(t) = eψ(t)〈α2|α1〉〈β2|β1〉/2, with

α1 = (z1e
−iω+t − w2e

−iω−t − 2λ−)/
√

2 − ξ,

α2 = (z2e
−iω+t − w1e

−iω−t + 2λ+)/
√

2 − ξ,
(15)

β1 = (z1e
−iω+t + w2e

−iω−t + 2λ−)/
√

2 − ξ,

β2 = (z2e
−iω+t + w1e

−iω−t + 2λ+)/
√

2 − ξ,

and ψ(t) = −γ t + i[(χ − ω′
0)t + �(t)], where

�(t) = 4[λ2
+ sin(ω+t) − λ2

− sin(ω−t) −
√

2ξλ+ sin(ω+t)]

+
√

2α sin(θ ){λ+[cos(ω+t)− 1]+ λ−[cos(ω−t) − 1]}
−

√
2α cos(θ )[λ+ sin(ω+t) + λ− sin(ω−t)]

+
√

2β sin(ϕ){λ+[cos(ω+t)− 1]− λ−[cos(ω−t) −1]}
−

√
2β cos(ϕ)[λ+ sin(ω+t) − λ− sin(ω−t)].

We see that the coupling to the resonators and qubit B directly
affects the coherence of qubit A through the decoherence factor
h(t). As a result, we expect the degree of non-Markovianity to
be a function of h(t). In fact, after evaluating the trace distance,
one obtains D[ρA

+(t),ρA
−(t)] = 2|h(t)|, which results in

σ (t) = ek(t)−γ tf (t), (16)

with

k(t) = −4g2 (λ2 + ω2)(1 − cos[λt] cos[ωt]) − 2λω sin[λt] sin[ωt]

(λ2 − ω2)2
, (17)

f (t) = γ (ω2 − λ2) − 4g2(λ sin[λt] cos[ωt] + ω cos[λt] sin[ωt])

λ2 − ω2
. (18)

The first interesting feature of σ (t) given by Eq. (16) is
its independence on α and β. This is a direct consequence
of the fact that those amplitudes can be completely removed
from the evolved state through a unitary time-independent
displacement. As a consequence, non-Markovianity of the
qubit system cannot depend on the information about the initial
position in phase space of the coherent states for the modes.
In the next section, we change the initial state of the modes by
incoherently superimposing coherent states in a circle in phase
space, and this will induce a dependence on the amplitude of
the superposed states. The reason is that now information about
the amplitude of the coherent states can no longer be removed
from the dynamics by means of a unitary transformation in the
modes.

All our simulations are run using typical circuit-QED values
[12,13,17,29] with ω0/2π � 5–10 GHZ for CPB charge qubits
and resonator frequencies ω/2π = 10 GHz [12]. For the qubit-
resonator coupling constant, values of g/2π � 10–100 MHz

are realistic, while dephasing rates for charge qubits as low
as γ /2π = 0.3 MHz have been measured [29]. As mentioned
before, damping has been neglected in this first approach since
the associated rates are much lower than dephasing. The typical
damping rate for the resonator is a few kilohertz, and for charge
qubits it can be made one order of magnitude smaller than γ

[29]. As for the intermode coupling strength, λ/2π � 17 MHz
can be achieved with current experimental technologies [17].
Consequently, the conditions of strongly coupled modes, i.e.,
g ≈ λ, can, in principle, be met.

In Fig. 3, we consider the role of dephasing γ for the
case λ = 0, which corresponds to decoupled modes. It is very
clear that by increasing the participation of the Markovian
channel, a point is reached where the non-Markovianity is
unable to manifest. One could also fix the dephasing rate and
vary the spin-boson coupling g. The result will be exactly the
opposite; i.e., above a threshold value for g, the dynamics
becomes non-Markovian. From this, we can clearly see that
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FIG. 3. (Color online) Dynamics of σ (t) for various values of the
dephasing rates and λ = 0. We have taken γ /2π = 0.3 MHz (solid
line), 1.0 MHz (dashed line), and 1.5 MHz (dot-dashed line). As
for the other parameters, we used g/2π = 50.0 MHz and ω/2π =
10.0 GHz.

there is a competition between the Markovian character of
the dephasing environment, given by rate γ , and the highly
non-Markovian local bosonic environment, represented by the
coupling constant g. A similar phenomenon has been observed
experimentally for the Ising model [30].

From Eq. (16), it is easy to understand the nature of this
threshold, which is physically due to the competition between
the “channels” affecting the system at rates γ and g. In order
to see this, let us explicitly write σ (t) for λ = 0. According to
Eq. (16), this reads

σ (t) = −2[γ + 4g2 sin(ωt)/ω]e−2γ t−8g2[1−cos(ωt)]/ω2
. (19)

In order for the qubit to follow a Markovian evolution, σ (t)
must be negative or null at all times. From Eq. (19), we see
that this will be the case provided that

γ > 4g2/ω. (20)

This defines a parabolic boundary separating the Markovian
and non-Markovian regimes in the parameter space formed by
γ and g. For the parameters considered in Fig. 3, we can use
Eq. (20) to obtain γ /2π > 1.0 MHz, which is precisely what
is observed. In Fig. 4, one can clearly see the existence of a
limit value of γ above which σ ceases to be positive for all
times. This limit is given by (20).

FIG. 4. (Color online) Dynamics of σ (t) as a function of time
and dephasing. We used g/2π = 50.0 MHz and ω/2π = 10.0 GHz.
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FIG. 5. (Color online) Dynamics of σ (t) for various mode-mode
coupling constants λ. We considered λ/2π = 10 MHz (solid line)
and λ/2π = 50 MHz (dashed line). For the other parameters we used
γ /2π = 0.3 MHz, g/2π = 50.0 MHz, and ω/2π = 10.0 GHz.

We consider now the effect of cross coupling between the
modes (λ �= 0). First, the effect of increasing γ is still the
progressive inhibition of backflow of information. In Fig. 5
we fix γ and increase the coupling strength λ between the
modes. We can see that by increasing λ, non-Markovianity is
also progressively diminished. This decreasing of the degree
of non-Markovianity can be physically understood from the
fact that the mode coupled to qubit A now becomes correlated
with other quantum systems. This reduces its capability to
get correlated, quantum mechanically, with qubit A, which in
turn eliminates the possibility of providing the backflow of
information.

IV. NON-MARKOVIANITY UNDER PHASE DIFFUSED
BOSONIC MODES

Previously, we considered the modes to be prepared in pure
coherent states and found that the trace distance and its time
derivative became independent of the amplitudes (α,β) and
phases (θ,ϕ) of the coherent states considered in the initial
state, (11). Given such phase independence, one could then
think of using a mixture of isoenergetic coherent states with
no phase coherence. Such a mixture is constructed as

ρa =
∫ 2π

0

dθ

2π
|αeiθ 〉a〈αeiθ | = e−|α|2 ∑

n

|α|2n

n!
|n〉a〈n|. (21)

This state is central in discussions about the quantum de-
scription of laser light and its ability to perform quantum
information tasks [31]. Both states, |αeiθ 〉a〈αeiθ | and ρa , have
the same diagonal elements in the energy eigenbasis. However,
the trace distance is not a linear function in the input states.
Consequently, the use of mixtures of coherent states having the
same energy might actually lead to different results. In fact,
as we are going to see, the use of such a mixed state brings
about a dependence on the amplitudes α and β, which marks
a substantial difference with respect to the pure-state case. We
now consider

ρ±(0) = |±〉A〈±| ⊗ |g〉B〈g| ⊗ ρa ⊗ ρb, (22)
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with ρb given by (21) upon changing α to β and θ to ϕ. We can use the results of the previous section to evolve the states, and
the time derivative of the trace distance is found to be

σmix(t) = ek(t)−γ t {−
√

2g2α J0[βF1(t)] J1[αF2(t)] G1(t) −
√

2g2β J0[αF2(t)] J1[βF1(t)] G2(t)

+ J0[βF1(t)] J1[αF2(t)] G3(t)}, (23)

where Jn(x) are Bessel functions of order n, k(t) is given in Eq. (17), and

F1(t) = 2
√

2g

√
3λ2 + ω2 + (λ2 − ω2) cos[2λt] − 4λ (λ cos[λt] cos[ωt] + ω sin[λt] sin[ωt])

(λ2 − ω2)
,

F2(t) = 2
√

2g

√
λ2 + 3ω2 + (ω2 − λ2) cos[2λt] − 4ω (ω cos[λt] cos[ωt] + λ sin[λt] sin[ωt])

(λ2 − ω2)
,

G1(t) = 8
√

2 cos[λt](λ sin[λt] − ω sin[ωt])

(λ2 − ω2)F2(t)
, (24)

G2(t) = 8
√

2 sin[λt](− cos[λt] + cos[ωt])

(λ2 − ω2)F1(t)
,

G3(t) = −γ − 2g2(ω − λ) sin[(ω − λ)t]

(ω − λ)2
− 2g2 sin[(ω + λ)t]

ω + λ
.

Let us now focus our attention on the case α = β. If these
amplitudes are null, it is not difficult to see that (23) reduces
to (16) as expected for arbitrary λ. As we did before, let us
start the analysis by considering the case of decoupled modes
(λ = 0). The effect of increasing the amplitudes of the coherent
states is presented in Fig. 6. It is noticeable that the effect of
increasing the amplitudes (energy) of the modes is to increase
the non-Markovianity. As the entropy (mixedness) of the initial
state increases with α and β, one would, as a first guess, expect
that the non-Markovianity arising from the coupling to the
modes would decrease as the amplitudes increase. However,
our results show that for this particular mixture of coherent
states in a circle, the opposite happens. The total elimination
of the of-diagonal elements due to the integral over equally
weighted phases not only made the results dependent on the
amplitudes, but also brought about this particular effect.

For the case of coupled modes (λ �= 0), the behavior
for fixed α and β is similar to the one found in the
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FIG. 6. (Color online) Dynamics of σmix(t) obtained considering
the initial state in Eq. (22) for various amplitudes α and β.
We took α = β = 0 (solid line), α = β = 1 (dashed line), and
α = β = 2 (dot-dashed line). For the other parameters we used
γ /2π = 0.3 MHz, g/2π = 50.0 MHz, and ω/2π = 10.0 GHz.

previous section. With increasing λ, non-Markovianity tends
to decrease. Finally, for this initial mixture of coherent states,
there is again a competition between g and γ . The results
are shown in Fig. 7. With increasing γ , a point is reached
where the dynamics is fully Markovian. However, given the
complicated dependence of σmix(t) on g and γ , it is not possible
now to obtain an analytical formula for the Markovianity
boundary.

As a final remark, we would like to talk about the
experimental challenges involved in the characterization of
non-Markovianity. The full experimental evaluation of non-
Markovianity measures requires the tomography of states or
processes. This follows from the fact that non-Markovianity
is not, in general, pinpointed by an observable (like level
populations). These facts prevent, in most cases, a reliable
signature of non-Markovianity being inferred from directly
accessible quantities in an experiment. For a specific model,
it has been shown that non-Markovianity is accompanied by
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FIG. 7. (Color online) Dynamics of σmix(t) obtained considering
the initial state in Eq. (22) for various dephasing rates and decoupled
modes λ = 0. We considered γ /2π = 0.3 MHz (solid line), γ /2π =
5.0 MHz (dashed line), γ /2π = 10.0 MHz (dot-dashed line). For the
other parameters we used g/2π = 50.0 MHz and ω/2π = 10.0 GHz.
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violation of macrorealism [30]. This kind of work linking
non-Markovianity to fundamental issues of quantum mechan-
ics [32] is a very exciting field with great importance for the
understanding of the classical-quantum boundary.

V. CONCLUSION

We have assessed the problem of non-Markovianity char-
acterization in a specific circuit-QED setup consisting of two
qubits, each of them locally coupled to a bosonic mode. The
modes can be controllably coupled to each other through
common interaction with a third qubit. We have solved the
corresponding model exactly and studied non-Markovianity
for the qubits from the point of view of information backflow
from environment to qubit. For modes prepared in pure
coherent states or mixtures of equally weighted coherent states
with fixed energy, we found analytical expressions for the
quantifier of information backflow, which is the trace distance.
The general effect of Markovian dephasing acting on the
qubits is the existence of a threshold of Markovinity, i.e., a
lower bound for the dephasing rate, above which the evolution
is purely Markovian. For decoupled modes, we found the
analytical dependence of this lower bound on parameters of
the system.

Although the degree of non-Markovianity for initial pure
coherent states is independent of the amplitude and phase of
these states, for a mixture of coherent states in a circle, the
result becomes actually dependent on the amplitudes. Sur-
prisingly, the higher the amplitudes, the more non-Markovian
the qubit dynamics becomes. Our work contributes to the
study and control of open quantum systems by presenting,
in a versatile setup, the complete diagonalization of the open
system dynamics and a comprehensive characterization of
non-Markovianity.
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