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We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical
formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a
smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a
local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is
unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its
numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker’s
voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental
interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level
system (TLS) that oscillates among |0〉 ≡ |↑↓〉 and |1〉 ≡ |↓↑〉. We show that the QD model recovers not only
the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the
damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like
dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half
the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the
pure states |0〉 ≡ |↑↓〉 and |1〉 ≡ |↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and
hence coherence, decays faster when the system is in a superposition state (|↑↓〉 ± |↓↑〉)/√2, which is consistent
with the general trend recently observed in spin systems through NMR. Because of its simple implementation,
the method is well suited to assess decoherent transport problems as well as to include decoherence in both
one-body and many-body dynamics.
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I. INTRODUCTION

The last decade has seen an increasing demand to describe
quantum dynamics on a variety of complex systems in the
presence of an environment. Among them are atomic systems
in optical lattices [1,2], networks of interacting spins [3], and
charge and magnetization dynamics of nanoscopic devices in
a transport setup [4–6].

The most common way to deal with environmental de-
coherence in small closed systems, is the master equation
for the density matrix in a Lindblad form [7,8]. In order
to deal with bigger systems, the most standard approaches
implement the Redfield theory for a relaxation superoperator,
which does not ensure the strict unitarity of the Lindbad
form [9,10]. Alternatively, some works pointed to strategies
for computing the evolution of an open system based on the
stochastic dynamics of a state vector that suffers instantaneous
quantum jumps (QJ) [11–15]. Indeed, for large systems, it was
shown that the stochastic method is faster than the density
matrix implementations [16].

With regard to decoherent steady-state transport, the tradi-
tional evaluation in terms of the Kubo linear response [17,18]
was progressively replaced by the Landauer’s motto that
conductance is a quantum transmittance [19]. This is imple-
mented in the Landauer-Büttiker (LB) scattering formulation
where decoherent processes are induced by current-conserving
voltmeters. These impose a self-consistent reinjection of the
electrons that ensures the current cancellation. Büttiker had the
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idea that this reinjection describes a decoherent process [20], a
concept extended by D’Amato and Pastawski to deal with more
general situations [21,22] becoming a popular tool to address
decoherent transport [23–25]. A dynamical formulation, called
the generalized Landau-Büttiker equation (GLBE), based on
the Kadanoff-Baym-Keldysh (KBK) quantum field theory for
nonequilibrium processes was then developed [26]. The GLBE
seeks to find, in a linear response, the nonequilibrium Keldysh
density function, which is proportional to the density matrix. In
recent years, there has been a burst of progress in the use of the
KBK formulation of nonequilibrium dynamics in a framework
consistent with ab initio calculations [27,28]. Nonetheless,
numerical solutions of many-body systems become exces-
sively demanding. In particular, they involve time integrals
of self-consistent memory kernels [26–28]. Additionally, in
strongly interacting many-body systems, which are beyond a
mean-field description, such as spin systems, it would involve
costly averages over the participating configurations.

The above limitations can be overcome by resorting to
two strategies. The Trotter-Suzuki step-by-step evolution
makes practical some calculations of the Keldysh density
function [29,30]. The ensemble average is bypassed by a
recent strategy, dubbed quantum parallelism, which uses a
single wave function that is a superposition of all the states
participating in the statistical ensemble [31]. However, these
strategies are limited to coherent dynamics.

In this work, we propose a stochastic model that extends the
Büttiker-D’Amato-Pastawski approach to evaluate decoherent
time-dependent problems. Our quantum drift (QD) model
is based on a wave function stochastic dynamics. Within
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a discrete-time setup, we impose an incoherent reinjection
that ensures density conservation. Then, as in quantum
parallelism, we propose that the wave function should sum
up both a coherent and an incoherent part. Thus, being fairly
representative of a set of stochastic interaction histories, this
wave function does not present jumps but smooth drifts in
a single unitary evolution. Further averages over realizations
are performed only in the needed amount according to the
addressed observable.

This paper is organized as follows. In Sec. II we review the
basis of the Büttiker’s model for transport in open systems. In
Sec. III we present the basis of our QD model. By addressing
a wave packet dynamics through a double barrier resonant
tunneling device (DBRTD), in Sec. IV we show that QD
recovers the decoherent steady-state transmittances of the
Büttiker formulation. In Sec. V we compare the QD dynamics
with the Keldysh solution in a decoherent closed system
with a simple but nontrivial situation: a two-level system
(TLS) that undergoes a quantum dynamical phase transition
(QDPT) [32]. In Sec. VI, we perform a many-spin calculation
for a case of experimental and theoretical interest, that of a
quantum channel, showing the agreement of QD and QJs and
comparing their numerical performance. Finally, in Sec. VII
we use the QD model to evaluate decoherence through the
Loschmidt echo (LE) in the TLS of the Sec. V under local
decoherence processes [33]. This allows us to show that while
Rabi oscillations decay uniformly, decoherence is not uniform:
it affects the system only while it goes through nonlocal
superposition. We present the final discussion in Sec. VII.

II. DECOHERENT QUANTUM TRANSPORT:
REINJECTION, PARALLELISM, ATTENUATION, AND

ENERGY BROADENING

The first phenomenological model for decoherence was
developed for Büttiker in the context of electronic transport
in phase-coherent mesoscopic systems [19]. He realized that
decoherence may be introduced by including a terminal
connected to a voltmeter. This key idea may be readily
visualized by considering a three-terminal circuit. There, two
terminals (source L and drain R) provide an infinitesimal
voltage difference that produce a current through the system
while the third one, φ, is connected to the voltmeter. The
electrons from the left (L) and right (R ) leads that enter into the
voltmeter undergo a decoherent process. An appropriate local
chemical potential at φ (i.e., the measured voltage) ensures
current cancellation, i.e., a reinjected electron compensates
each electron that flies into the voltmeter. Then, this electron
does not keep any memory or phase correlation with respect
to the electrons inside the sample.

Let consider that Tij represents the quantum coherent
transmittance from the j to i channel connecting them to the
reservoirs (i �= j, take the values L,R or φ). The application
of the Landauer-Büttiker equations for a system with one
voltmeter results in a transmittance through the system given
by

T̃RL = TRL︸︷︷︸
coherent

+ TRφTφL

TRφ + TφL︸ ︷︷ ︸
decoherent

. (1)

The first term is the probability that the particle travels from L

to R without undergoing a decoherent process at the voltmeter
φ. The second term accounts for those electrons that have
interacted with the environment at φ. Indeed, one can recognize
it as the conductance of two parallel pathways. One of them
with a conductance (2e/h)TRL, while the other one adds a
series of two conductances, (2e/h)TRφ and (2e/h)TφL.

These results adopt a more concrete form by introducing
an explicit model. Let us consider a quantum dot where E0

is the relevant eigenstate energy, ε the Fermi energy, E0 the
local energy properly shifted by the presence of the contacts,
and �L and �R , the energy uncertainties produced by the
escape toward the left and right leads, respectively. The dot’s
Green’s function is defined in terms of the effective Hamilto-
nian parameters as: G(ε) = [(ε − E0) + i(�0 + �φ)]−1, where
�0 = �L + �R is the natural width due to the presence of the
leads [26,34]. Thus, each of the transmittances used above
may be written explicitly in terms of G(ε) by using the
Fisher-Lee formula Tij (ε) = 2�i |G(ε)|22�j with i �= j . If T

(0)
RL

is the transmittance from L to R that accounts for electrons
in absence of the voltmeter (i.e., when �φ = 0), the coherent
part TRL in Eq. (1) can be further written as the product of T

(0)
RL

and an attenuation factor [1 − �(ε)]) [35]. Thus, the effective
transmittance is written in terms of a attenuated coherent part
plus an incoherent one.

D’Amato and Pastawski’s (DP) model generalize these
ideas and introduce an effective Hamiltonian that constitutes a
microscopic model for decoherence in the steady state [21]. In
this case, the isolated system is described by a Hamiltonian H0.
DP identify the escape of the electrons towards the voltmeter
with their interaction with the infinite degrees of freedom of an
environment. Here, decoherence is induced by local processes
(e.g., a voltage probe, a local phonon bath) in the Fermi
golden rule (FGR) approximation. These interactions produce
an energy uncertainty �φ for each local state with a rate of
system-environment interaction, 1/τSE = 2�φ/�, which has
an irreversible character [21,26,34].

The local density of states (LDoS) is calculated from the
dot’s Green’s function

N0(ε) = − 1

π
ImG(0)(ε) = 1

π

�0

(ε − E0)2 + �2
0

. (2)

By including the system-environment interaction, the LDoS
acquire an extra energy uncertainty or broadening �φ . Then,
the LDoS in presence of decoherence, Ñ0(ε), is obtained from
N0(ε) by replacing the characteristic width �0 by �0 + �φ . On
the other hand, Ñ0 may be obtained by considering that indi-
vidual decoherent processes shifts the resonances in an amount
�E from E0. Then, by averaging over the possible �E,

Ñ0(ε) =
∫

N0(ε − �E)P (�E)d�E, (3)

with P (�E) = 1

π

�φ

(�E)2 + �φ
2
, (4)

where, P (�E) is a Lorentzian probability distribution for the
shifts �E. Similar broadening occurs in other observables
that depend on energy, such us correlation functions.
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III. QUANTUM-DRIFT MODEL

By using the Trotter-Suzuki expansion, the quantum dy-
namics is obtained by the sequential application of unitary
evolution operators that transform the initial state in small
time steps, dt . If the system-environment interaction has a rate
1/τSE , during each interval dt , the particle has a probability
p = dt/τSE to undergo a decoherent process and a probability
(1 − p) to survive it [22,26]. Let us consider a single state |0〉
that may undergo a decoherent process. Thus, after a time dt ,
the coherent amplitude is reduced by the factor

√
1 − p owing

to decoherent processes. In order to conserve the density,
and in accordance with the Landauer-Büttiker picture, the
wave function must include a term that accounts for the
decoherent reinjection. Thus it has a random phase θ drawn
from some distribution Pθ . We can represent both the coherent
and the incoherent contributions in the same wave function,
resembling quantum parallelism. This is,

ψ̃0 = ψ
coh.

0 + ψ
incoh.

0 (5)

= (
√

1 − p + λθe
iθ )ψ0, (6)

where ψ̃0 = 〈0|ψ̃〉. The cross terms cancellation in the
ensemble average is ensured by

∫
Pθ

√
1 − pλθe

iθdθ = 0. In
any case, the coefficient λθ should be chosen to account for
density conservation |√1 − p + λθe

iθ | ≡ 1. Thus,

ψ̃0 = eiβ0ψ0, (7)

for some random phase β0.
Notice that, in a Trotter-Suzuki evolution, the phase shift

eiβ0 is actually a correction �E0 = �β0/dt in the energy of
the state |0〉. Equation (3) shows that the single level coupled
to an environment acquires an energy uncertainty �φ , which in
a FGR approximation, is characterized by a Lorentzian shape.
This, in turn, is assimilated to a distribution of instantaneous
energy shifts �E0 drawn from the Lorentzian distribution. In
our model, the correction �E0 is taken to be a random number
that varies step by step to represent the uncertainty introduced
by the environment. Thus, the probability distribution Pβ0 is

P (β0) = 1

π

�φdt/�

β2
0 + (�φdt/�)2

. (8)

Therefore, the key decoherent processes are the highly im-
probable processes that involve a large �E0 (the tails of the
Lorentzian).

This proposal can be extended to all the levels En of a
Hamiltonian in an arbitrary basis. In particular, in a tight-
binding basis, each site energy En acquires a Lorentzian energy
uncertainty �φ,n and these are perturbed with a random energy
�En. More formally, we can define 
̂ as a diagonal operator
where 
n,n′ = �Enδn,n′ . For a N × N matrix Hamiltonian H0

we consider an effective instantaneous Hamiltonian ̂̃H eff. =
Ĥ0 + 
̂. Thus, we obtain the unitary evolution operator in a
Trotter-Suzuki expansion,

̂̃U (dt) = e−iĤeffdt/�, (9)


 e−i
̂dt/�e−iĤ0dt/� = Û
(dt)Û0(dt). (10)

We can define the decoherence operator as Û
 =
exp[−i
̂dt/�], that is unitary, it conserves the density

and, thus, the density does not presents jumps. However,
observables involving two-sites correlation (e.g., currents and
momentum) do have jumps. However, these last are smoothed
out by taking the ensemble average.

In summary, the prescription to include decoherence in a
quantum dynamics is to include in every time step a random
correction, βn, to the phase of each local state. This correction
has a distribution probability given by the Pβn

of Eq. (8). Thus,
the evolution of a wave function is performed by

|ψ̃(t)〉 =
Nt∏

j=1

e−i
̂dt/�e−iĤ0dt/�|ψ(0)〉, (11)

where Nt = t/dt .

IV. DECOHERENT TRANSPORT: D’AMATO-PASTAWSKI
TRANSMITTANCE

Let us first test our model in the system that inspired
it: decoherent transport through a double barrier resonant
tunneling device (DBRTD). In a tight-binding scheme, this
is represented by one resonant site of energy E0 = 0 coupled
to two semi-infinite leads of bandwidth 4V (where V is the
unit of energy), L and R that act as current source and drain.
The tunneling amplitudes through the barriers are VL and VR.

Thus, the tight-binding Hamiltonian is

Ĥ0 = E0ĉ
†
0ĉ0 − VL(ĉ†−1ĉ0 + ĉ

†
0ĉ−1) − VR(ĉ†1ĉ0 + ĉ

†
0ĉ1)

−
∞∑

n=1

V (ĉ†n+1ĉn + ĉ†nĉn+1) −
−∞∑

n=−1

V (ĉ†n+1ĉn + ĉ†nĉn+1).

(12)

To evaluate the transmittance from a dynamical calculation,
we build a Gaussian wave packet well inside the left lead.
A wide wave packet ensures a well-defined energy. The
transmission coefficient is obtained by integrating the density
at the right side after the wave packet has been transmitted or
reflected. This transmittance is equivalent to the steady-state
analytic result of the Fisher and Lee formula [34].

Decoherence is introduced only at the resonant level as
described in the previous section during the whole evolution.
In Fig. 1 we compare the QD results with those resulting from
the Büttiker’s solution of Eq. (1). We plot these quantities for
different decoherence strengths �φ . These are in a very good
agreement, made even more valuable by considering that the
number of realizations in the average was of the order of 10.
This is because the observable of transmitted density involves
a spatial integration. The same self-average is observed for the
decoherent conductance in long one-dimensional (1D) wires.
In that case even a single realization is enough to reproduce
the known results in this problem [21].

The QD method fits the theoretical values to the desired
precision. The only difference that one might notice in certain
specific cases, such as narrow peaks, would arise from the
fact that wave packets are built from states within an energy
range as a consequence of the uncertainty principle. On the
other hand, scattering theory, by using asymptotic plane waves,
has no energy uncertainty. This example is representative of
a wide variety of steady-state problems that can be solved
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FIG. 1. (Color online) Decoherent transmittances obtained for
two values of the decoherence strength. For �φ/V = 0.01, the
Büttiker transmittance is plotted with the short-dot line and the
transmittance of the QD model is plotted with the red triangles for a
number NS = 5 of realizations in the average. For �φ/V = 0.3, the
Büttiker transmittance is showed by the solid line and the QD result,
with the blue circles for a number of NS = 50 realizations. The other
parameters are: V = 1, E0 = 0, VL = VR = 0.15, Er = 0.

with the QD method, at only the cost of numerical resources.
Indeed, we tested QD on extended systems, a situation where
an implementation of the QJ would impose excessive local
fluctuations. We found that in QD, much as in quantum
parallelism [29], the collective observables have a tendency
to self-average. This makes our model a very promising
tool to evaluate decoherent dynamics in extended systems
and in many-body problems. However, the true advantage
of QD starts to be appreciated in addressing time-dependent
problems, as we do in the next section.

V. QUANTUM DYNAMICAL PHASE TRANSITION IN A
TWO-LEVEL SYSTEM

Let us consider a two-level system (TLS) that describes
charge or spin dynamics [5,30], say states |0〉 ≡ |↑↓〉 =
ĉ
†
0|vacuum〉 and |1〉 ≡ |↓↑〉 = ĉ

†
1|vacuum〉, with degenerate

energy E0 and an interaction V mixing them. Such simple
system was seen to have a nontrivial dynamics when one of
its levels interacts with an environment of spins: a quantum
dynamical phase transition (QDPT) [32]. In a QDPT certain
observables present a nonanalytic dependence on the system-
environment interaction strength. The QDPT was missed in
a solution for the density matrix in the usual secular approx-
imation of the Redfield theory [36] but showed up in a QJ
variant [32]. When the TLS suffers the asymmetric interaction
of an environment, the QDPT already appears in the spectrum
of the effective non-Hermitian Hamiltonian [37]. However, if
the interaction is symmetrical, the QDPT only occurs in the
density matrix if positivity is ensured [38]. Thus, obtaining
the QDPT in a model with symmetric interaction with the
environment constitutes a definitive test for the QD method.

The Hamiltonian of the TLS is

Ĥ0 = E0(ĉ†0ĉ0 + ĉ
†
1ĉ1) − V (ĉ†1ĉ0 + ĉ

†
0ĉ1). (13)

The survival probability of an excitation with an initial
state |ψ(0)〉 = |0〉, i.e., the diagonal element of the density
matrix, is

P00(t) = |〈0|e−iĤ0t/�|0〉|2, (14)

= 1/2 + 1/2 cos ω0t. (15)

Here, we can observe that P00(t) has Rabi oscillations [39]
with frequency ω0 = 2V/� and period T = π�/V .

Let us consider now an environment that interacts indepen-
dently with each state with a rate described by the Fermi golden
rule 1/τSE = 2�φ/�, where �φ is the energy uncertainty of the
level. Physical implications of this model are discussed in the
next section in the context of a spin system. The numerical
evolution of the TLS is now performed by choosing �φ as the
width of the Lorentzian distribution.

Here we will compare our QD method, where the decoher-
ent survival probability is

P̃00(t) =
∣∣∣∣∣〈0|

Nt∏
n=1

e−i
̂ndt/�e−iĤ0dt/�|0〉
∣∣∣∣∣
2

, (16)

with the analytic solution of the GLBE. This last was
analytically solved for this problem in Refs. [22,32,38], giving
for the survival probability

P̃00(t) = 1

2
+ 1

2
e−�φt/�

[
cos(ωt) + �φ

2ω
sin(ωt)

]
. (17)

Thus, the oscillations of both the diagonal and nondiagonal
elements of the density matrix oscillate with a frequency ω,
which is lower than the Rabi frequency ω0 according to

ω =
√

ω2
o − (�φ/�)2. (18)

This evidences that the oscillation frequency of a TLS exhibits
a nonanalytic behavior. The frequency ω takes real values
provided that �φ/� < ωo (underdamped regime). Beyond this
value, i.e., for �φ/� > ωo (overdamped regime), Re(ω) ≡ 0
and thus the oscillations are fully suppressed, and P̃00(t) is the
sum of two exponential decays:

P̃00(t) = 1

2
− γ2

2(γ1 − γ2)
e−γ1t + γ1

2(γ1 − γ2)
e−γ2t , (19)

where the decay rate γ1(2) is

γ1(2) = 1

�

(
�φ ±

√
�2

φ − (�ω0)2
)
. (20)

Note that, at short times, P̃00(t) is always of the form 1 −
ω2

ot
2/4 = 1 − V 2t2/�

2, which is characteristic of a quantum
evolution without perturbations. This is because at short times
the environment interplay has a small cumulative effect on
the survival probability, which is still determined by the
unperturbed quantum dynamics. In a strongly decoherent
regime, �φ/� � ωo, the decay rates tend to γ1 
 2�φ/�,
γ2 
 �ω2

o/2�φ , defining a short-time decay rate γ1 and a
rate γ2, that dominates the long times as P̃00(t) ∝ e−γ2t . Both
exponential terms are needed to obtain the whole evolution.
An equivalent solution for the QDPT may be obtained by
considering models for environmental noise [40].

In Fig. 2(a) the decay rates are shown. The QDPT is
manifested as the bifurcation in these rates. The fitted rates
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(a) (b)

(c) (d)

FIG. 2. (Color online) (a) Theoretical rates of decay predicted by
the Eqs. (17) and (20) . Red points indicate the rates of the GLBE
solution for (b)–(d). The QDPT occurs as a bifurcation in the rates for
the critical value �φ/V = 2. The dotted line represents the asymptotic
value 2�φ/�. In (b)–(d), we show the survival probabilities P̃00(t)
(thick blue line), the GLBE solutions (thin black line), and individual
realizations (thin gray line) in the underdamped regime, in (b) with
�φ/V = 0.1 and (c) with �φ/V = 1, and in the overdamped regime,
(d) with �φ/V = 2.1. Individual realizations tend to preserve the
oscillations. These do not have jumps in the densities but in the
slopes. The ensemble average is taken over NS = 100 realizations.
For P̃00(t) 
 1/2 are clear the typical fluctuations of the order of
1/

√
NS . The average P̃00(t) tends to the GLBE solution by increasing

NS .

are shown as points superposed to the theoretical curve. In
Fig. 2(b), we show the Rabi oscillations of the average survival
probability P̃00(t), which are exponentially attenuated with
τ−1 
 �φ/� = 1/2(τSE)−1. This is the most common example
of decoherence in TLS’s. The P̃00(t) and the fitted decay rates
match perfectly the GLBE solution. A single realization of
QD method is also shown. Notice that there are no jumps
in the survival probability, and an oscillatorylike behavior
dominates the whole evolution. In Fig. 2(c) we show the P̃00(t)
in the underdamped regime for a value of �φ = 1V , where,
the oscillatory behavior is small. In Fig. 2(d) we show P̃00(t)
in the overdamped regime for �φ = 2.1V . We can identify the
initial quadratic behavior and, at large times, the exponential
decay with the rate γ2 ∝ 1/�φ . The larger �φ , the slower P̃00(t)
decays. This is a signature of the quantum Zeno effect in which
the system is continuously perturbed freezing its evolution
close to the initial condition. By increasing �φ , each single
realization seems to be a stochastic process while preserving
the quadratic initial starting. Single realizations do not present
jumps in the density but in the correlations, seen as sudden
changes on the slopes.

The actual dynamics of the observables emerge after
ensemble averaging. As long as the survival probability is
not too close to 1/2, a fair representation of P̃00(t) is obtained
with about N = 100 realizations as shown in Fig. 2. Strongly
damped cases evidence the typical fluctuations of random
numbers where the observables have a precision of 1/

√
N .

In these cases, individual systems maintain a substantial
oscillation whose slopes can be strongly discontinuous. Thus
to obtain coincidence with the exact theoretical values within
the graphical resolution (say 1%) one needs about N =
10 000 realizations. We tested binary and Gaussian phase-drift
distributions and the fluctuations and their influence on the
precision of the ensemble averages persist. However, this is
hardly a limitation if one is still far from the asymptotic values
or when one addresses global observables.

VI. QUANTUM JUMPS VERSUS QUANTUM DRIFT IN A
MANY-SPIN DYNAMICS

Here, we will further assess the differences between the QJ
and QD in a situation of actual experimental relevance where
the density matrix approach is clearly restrictive: that of many-
spin dynamics. We will address the decoherent dynamics of
this problem, which is nontrivial in terms of the density matrix.
We are interested in the dynamics of a local spin excitation in
a system of M interacting spins 1/2. Let us say that the state
at t = 0 is given by the density matrix:

ρ̂0 = 1

2M

(
Î + 2Ŝz

1

)
, (21)

which describes that spin 1 is up-polarized. At very high
temperature the other spins are not polarized at all, i.e.,
tr[Ŝz

1ρ̂0] = 1
2 and tr[Ŝz

i ρ̂0] = 0 ∀i �= 1. In order to be more
specific, let us consider the particular case of a linear chain with
M = 5 that was addressed theoretically and experimentally
in NMR and where a decoherent calculation is lacking [41–
43]. There, the effective Hamiltonian is reduced to nearest-
neighbors planar (or XY ) interactions. The Hamiltonian, using
the spin lowering Ŝ−

i and raising Ŝ
†
i operators is

Ĥchain =
M−1∑
i=1

Ji,i+1(Ŝ+
i Ŝ−

i+1 + Ŝ+
i+1Ŝ

−
i )

+
M∑
i=1

��i

(
Ŝ+

i Ŝ−
i − 1

2

)
. (22)

The first term is the XY Hamiltonian, accounting for the
couplings to nearest neighbours. We will take Ji,i+1 = J as
the unit of energy. The second one is the Zeeman Hamiltonian,
where the precession frequencies are �i = ω0, and ω0 is the
Larmor frequency in the external magnetic field. As predicted
by the coherent calculation, the local excitation ρ̂0 was seen
to propagate as a spin wave through the molecular chain and
returns to the initial site in the form of a mesoscopic echo
(ME). It is precisely the wave-packet behavior that makes these
systems promising as quantum channels [3,44–46]. However,
the experiments show that these spin waves decohere and
attenuate as time pass by. Thus, here we consider that each spin
is perturbed by a local environment that acts as a fluctuating
Zeeman field. Thus �i = ω0 + δωi , where δωi fluctuates with
time.

We will solve this problem by resorting the Jordan-Wigner
transformation [47], which in this case looks Ŝ+

i ←→ ĉ
†
i ,

Ŝ−
i ←→ ĉi and Ŝz

i ←→ ĉ
†
i ĉi − 1/2. Thus, this many-spin sys-

tem can be reduced to a one-body problem. This transformation
remains valid when considering the random fluctuations in the
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FIG. 3. (Color online) Density as function of time at each spin
for (a) the coherent evolution, (b) an average evolution with a finite
coherence time Tcoh = 3�/J , (c) a single realization of the QD
model, and (d) a single realization of the QJ model. When the spin
wave reaches the edge of the chain, it is reflected constituting the
mesoscopic echo. Note that the curves for QD are smooth in density
whereas those for QJ present a sudden change when the jump is
produced.

Zeeman field. Then, it is clear that these produce local energy
fluctuations �δωi that show up as decoherence in the spin
dynamics. Note that the fluctuations are naturally described
within the QD prescription and, conversely, the random phases
of QD have a direct physical meaning in this problem.

In Figs. 3(a) and 3(b) we compare the coherent and
decoherent evolutions of the spin wave. The local excitation
travels from site 1 to the edge of the chain and there it is
reflected and returns to the initial spin as a ME. We use
a decoherence time of about 3�/J , consistent with the
experimental observation [41]. In Figs. 3(c) and 3(d) we show
the local density for a single realization for both the QD
and QJ methods. The QD has a smoother profile whereas

Time (units of  h/J)

FIG. 4. (Color online) The standard error σ times
√

Ns as func-
tion of the evolution time, for Ns = 10,100, and 500 . Note that σN1/2

s

does not depend on Ns but in the QD or QJ method. Note that, for the
same Ns , σ QJ/σ QD ≈ 2.

the QJ resembles the coherent evolution until the jump is
produced.

In similar problems, the master equation for the density
matrix could be used to obtain the decoherent dynamics [48].
However, with regard to numerical calculations, it is very de-
manding. Thus, the QJ method, which is based on a stochastic
wave function, has proved to be more convenient in addressing
large systems [16]. Indeed, it is faster and less demanding to
perform an average over many realizations of the QJ than
computing the whole density matrix. Since our QD method
is also based in a stochastic wave function, for large enough
systems the QD must become more convenient than a density
matrix approach. Thus, we shall compare the QD with the QJ.

We will look at the convergence to the average decoherent
dynamics for both QJ and QD methods. Due to the discon-
tinuous nature of QJ, we expect that the difference with the
mean dynamics is greater for QJ than for QD [see Figs. 3(c)
and 3(d)]. This can be quantified in terms of the time average
of the standard error,

σ (QD,QJ) =
√√√√ 1

NsT

∫ T

0
dt

Ns∑
i=1

(
ρ

(QD,QJ)
i,i (t) − ρ̄i,i(t)

)2
. (23)

Here, T is the evolution time and ρ̄ii(t) = |i〉〈i| is the mean
density at time t at site i obtained from an average over Ns =
105 realizations, where both QJ and QD converge to the the
same average dynamics with negligible error. In Fig. 4 we show
σN

1/2
s for different values of Ns as function of the evolution

time T . Thus, this result evidences the general tendency of the
QD method to present a smaller deviation from the mean than
the QJ. Indeed, for each Ns , σ QJ is greater than σ QD by a factor
of almost 2. Thus, to converge with a given σ , QD needs to
perform roughly the half of realizations than QJ.

VII. LOSCHMIDT ECHO

Following the logic of the two previous sections, one would
be tempted to assign the meaning of decoherence to the decay
of the oscillations. However, it has been clarified that a way
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FIG. 5. (Color online) Survival probability (thick blue line) and
the Loschmidt echo (thin black line) as function of the time of action
of the environment for: (a) η/V = 0.1 and (b) η/V = 2.1, averaged
over NS = 10000 realizations. (c): the same as in (b) but in log scale.
The rate of decay of the LE, 1/τSE = 1.12V/�, is smaller than the
minimum decay rate of the P̃00, 1/τ2 = 1.46V/�.

to filter away the intrinsic dynamics from the observable
is by using the Loschmidt echo (LE) [33]. This is the
amount of excitation recovered after a time-reversal procedure
implemented in presence of an environment. The advantage is
that the LE codifies in a local observable the losses of nonlocal
correlations. As in NMR experiments, this consists in changing
the sign of the acting Hamiltonian Ĥ0 −→ −Ĥ0. By using the
Trotter-Suzuki expansion, the LE can be defined as

M00(2t) =
∣∣∣∣∣∣〈0|

2Nt∏
m=Nt+1

e+iĤ0dt/�e−i
̂mdt/�

×
Nt∏

n=1

e−i
̂ndt/�e−iĤ0dt/�|0〉
∣∣∣∣∣
2

, (24)

where Nt = t/dt , and 
̂n is the perturbation’s Hamiltonian.
Note that, whereas the sign of the Hamiltonian changes, the
perturbation remains with the same sign.

In Fig. 5(a), we show the survival probability P̃00(t) and the
Loschmidt echo M00(t) in the underdamped regime as function
of the time of interaction with the environment t . Surprisingly,
in the underdamped regime, M00 is not a simple exponential
but has plateaus whenever the reversal starts while the system
is at |0〉 or |1〉. On the contrary, M00 suffers a maximal decay
if the reversal starts when the system is at a superposition
state [|0〉 ± |1〉]/√2. When the density is placed on one site,
decoherent interactions act as a change in the global phase,
which does not destroy the phase correlations between |0〉
and |1〉. Notice that the homogeneous exponential decay of
the survival probability does not discriminate on the initial
state, while the LE does. In any case, if one should define a
overall rate γφLE ≡ 1/τφLE from the LE, it would coincide with
that observed in the oscillation decay, i.e., γφLE 
 �φ/� =

1/2(τSE)−1. Thus, the LE gives a rationale to the 1/2 factor:
decoherent processes are effective on one half of the dynamical
cycle.

The overdamped regime is shown in Fig. 5(b) and in a
log scale in Fig. 5(c). This last clarifies the different decay
rates and the difficulties to obtain probabilities around 1/2
from a limited number of realizations. The LE has a wider
plateau than the survival probability at short times. For the
same period of action of the decoherent processes, the LE
signal is higher than the survival probability. This fact is
consistent with that, in order for decoherent processes to be
effective, the dynamics must first build up the superposition
state. The decay rate of the LE does not fit with Eq. (20).
By using a single exponential, the decay rate is 1/τφLE =
1.12V/�, which is slightly smaller than the minimum rate of
P̃00, γ2 = �φ −

√
�2

φ − (�ω0)2 = 1.46V . This indicates that
the LE gives more weight to the less correlated short-time
processes where the strong interaction with the environment
does not allow us to create the correlations and thus, it should
have a slower decay.

VIII. FINAL DISCUSSION

We developed and implemented a stochastic model to
include decoherent processes in quantum dynamics. Inspired
in the Büttiker-D’Amato-Pastawski description of decoherent
transport, it boils down to a wave function that undergoes
smooth stochastic drifts in a local basis.

Unlike the quantum jumps (QJ) approach, no collapses of
the wave function occur and phase shifts are introduced in
a unitary dynamics. Thus, in QD jumps can only appear in
the correlations functions, not in the local densities. Being
an appealing conceptual framework with a clear physical
meaning, our QD model results particularly adapted to deal
with extended system. Besides, it admits further extensions,
ranging from the evaluation of currents in transport setups to
the representation of specific many-body interactions.

Using numerical calculations, we proved that our dynamical
model is in a full agreement with the decoherent-steady-state
conductances through the resonant state |0〉 of a decoherent
quantum dot, even resorting to a quite restricted ensemble
average. For steady-state transport in extended systems, a
QD evaluation of the wave function is, by construction, more
efficient than density matrix approaches [48].

In spin systems, the physical foundation of the QD model
becomes evident. Decoherence associated to the fluctuation
of the local energy is a natural ingredient associated with the
fast fluctuation of the local Zeeman fields. Thus, we tested the
dynamical properties of QD model by applying it to a two-spin
system and a five-spin system in presence of decoherence.
The first is a two-level system (TLS) that oscillates among
|0〉 ≡ |↑↓〉 and |1〉 ≡ |↓↑〉. There, a nontrivial quantum
dynamical phase transition shows up, which was observed
in NMR and obtained from the solution of the generalized
Landauer-Büttiker equations [29,30]. We recovered not only
the exponential damping of the oscillations at low rates of
interaction with the environment but also the bifurcation of
the decoherence rates at a critical interaction strength. The
evaluation of the decoherent dynamics of a five-spin system is
also done in connection with NMR experiments [41]. By using
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rates consistent with the experiment, we show the robustness
of the mesoscopic echo under decoherence. We also show that,
for a given tolerance error for an observable, the QD method
demands about half the realizations than QJ.

By evaluating decoherence in the TLS through Loschmidt
echo (LE), we found that the pure states |0〉 ≡ |↑↓〉 and
|1〉 ≡ |↓↑〉 are quite robust against local perturbations of the
environment. In contrast, the LE, and hence coherence, decays
faster when the system is in a superposition state (|↑↓〉 ±
|↓↑〉)/√2. These results are in agreement with the general
trend recently observed in spin systems through NMR [49].

In summary, we proposed a QD model that provides a
stochastic unitary dynamics of the wave function. Observable

evaluation of observables through QD and QJ are naturally
parallelizable and thus they result in being more scalable
than density matrix methods [16]. This quality, which adds
to the intrinsic physical significance, should make the QD
method a suitable tool to address dynamical observables in
both extended one-body and many-body systems.
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