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Decoherence speed limit in the spin-deformed boson model
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In this paper, we study the role of the nonlinear environment on the bound passage time of dynamical quantum
spin systems, which is of great interest in quantum control and has been applied to quantum metrology, quantum
computation, and quantum chemical dynamics. We consider the decoherence speed limit for the spin-deformed
bosonic model and the impacts of the nonlinear environment and its temperature on the decoherence speed limit.
Moreover, we show that, at an early enough time, the parameters associated with the nonlinear environment
exhibit important roles in controlling the decoherence process. In addition our results reveal that, in long times,
these parameters do not affect the decoherence process.
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I. INTRODUCTION

Quantum mechanics as a fundamental law of nature im-
poses limits to the evolution speed of quantum systems. Nowa-
days, these limits have found remarkable roles in different
scenarios including quantum communication, identification
of precision bounds in quantum metrology, formulation of
computational limits of physical systems, and development of
quantum optimal control algorithms [1–5]. In fact, quantum
mechanics acts as a legislative body that imposes speed limits,
on the one hand, as a fundamental problem and, on the other
hand, when considering the effects of environment on the
evolution of quantum systems.

In the first instance, as a fundamental problem, the quantum
speed limit is imposed as a bound on the speed of evolution
which is intimately related to the concept of passage time, τmin.
This is the time required for a given pure state |χ〉 to become
orthogonal to itself under unitary dynamics [6]. Also, earlier
studies have indicated that the passage time, τmin, can be the
lower bound by the inverse of the variance in the energy of the
system, i.e.,

τmin � π

2

�

�H
, (1)

where �H = (〈H 2〉 − 〈H 〉2
)1/2

, whenever the dynamics un-
der study is governed by a Hermitian Hamiltonian, H [7–13].
If the passage time problem is considered as a quantum
brachistochrone problem, it has been shown that, whenever
the Hamiltonian is non-HermitianPT -symmetric, the passage
time can be made arbitrarily small without violating the
time-energy uncertainty principle [14–17].

On the other hand, an analogous bound has been considered
for some open quantum systems [18–29], since all systems
are ultimately coupled to an environment [30–34]. In these
cases, such a bound on the evolution of an open system would
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help to address the robustness of the quantum system which
is applied, for example, to simulators and computers against
decoherence [35]. Therefore, this quantity (bound of speed
limit) requires the effects associated with the environment to
be quantified. In this case, the role of nonlinearity, such as con-
finement and curvature as well as temperature, on the bound
passage time is desirable. This motivates one to investigate the
decoherence mediated by a structured environment through
the passage time. In fact, the present contribution studies the
impacts of temperature and nonlinearity of environment on the
bound passage time for the spin system in contact with these
environments.

Along these lines we study, in this paper, the bound passage
time τζ in a spin system, as a quantum system interacting
with the deformed harmonic oscillators, as a nonlinear boson
environment. In fact, the spin-boson model is one of the most
important physical systems for both its theoretical aspects
and its applications. With respect to theoretical aspects,
the spin-boson model exhibits features characteristic of the
decoherence process. Thus, it is an ideal candidate for the
study of decoherence in two-level systems. The spin-boson
model describes a single two-level system interacting with
a large reservoir of boson field modes [36–39], i.e., a
spin-1/2 particle coupled to an environment, which can be
formulated by harmonic oscillators because of the central limit
theorem [40,41]. This model has been widely studied in the
context of decoherence and the dissipation process in quantum
systems [31,42]. Also, the role of two-level (qubit) systems
in quantum computing [31] and in experiments dealing with
macroscopic quantum coherence has led to additional interest
in the spin-boson model [43]. Two-level systems are also
believed to be found in many amorphous materials [43,44]
while the spin-boson model has been employed for some
kinds of chemical reaction and the motion of defects in
some crystalline solids and for analyzing the role of quantum
decoherence in biological systems [45]. In addition, the effect
of the nonlinear environment on the decoherence rate of a
spin-boson model has been recently studied [46].

As already mentioned above, we study the effects of
nonlinearity and temperature of the environment on the bound
passage time of a spin system. We show that the bound
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passage time τζ depends on the environmental characteris-
tics. The nonlinearity of an environment is illustrated by
using f -deformed harmonic oscillators [47–57], instead of
nondeformed ones. Also, two kinds of confinement, namely,
the harmonic oscillator in an infinite well and that in the
well with a finite depth, are considered as examples of
f -deformed harmonic oscillators [58–61]. It is, therefore,
clear that one can control the bound passage time τζ of the
coherence property of the quantum system by manipulating
environmental characteristics.

The paper is organized as follows. In Sec. II, we briefly
review the dynamics of spin systems which interact with
a nonlinear environment and we introduce, as examples,
two kinds of confinement which characterize the nonlinear
environment, that is, a harmonic oscillator in the infinite
well and one in the well with a finite depth constituting the
environment. The pure relativity of the spin-deformed boson
system is presented in this same section. We draw a comparison
between the fidelities of spin systems which interact with these
environments in Sec. III by obtaining the bound of passage
time. Also in Sec. III, we draw a comparison between these
two environments’ effects on the bound passage time. Finally,
Sec. IV is devoted to some conclusions and remarks.

II. PURE RELATIVITY OF SPIN-DEFORMED
BOSON SYSTEM

We start with the spin-deformed boson model expressed by
the following Hamiltonian [43]:

Ĥ = ĤS + Ĥε + Ĥint, (2)

where, ĤS = 1
2 �ω0σ̂z is the self-Hamiltonian of the two-level

system and σ̂z is the usual z component of the Pauli matrix.
Eigenstates of σz are denoted by |+〉 and |−〉. Hε describes
the familiar self-Hamiltonian of the environment which is
assumed to be modeled by the nonlinear harmonic oscillators
as follows:

Ĥε =
∑

i

�ωi(ÂiÂ
†
i + Â

†
i Âi), (3)

where Â and Â† are generalized deformed operators which are
introduced through the following definitions

Â = â
√

f (n̂) =
√

f (n̂ + 1)â,
(4)

Â† =
√

f (n̂)â† = â†√f (n̂ + 1),

where f (n̂) is called the deformation function which governs
the nonlinear properties of the system. The interaction Hamil-
tonian of the two-level system and the nonlinear environment
can be written as

Ĥint = σ̂z ⊗
∑

i

(giÂ
†
i + g∗

i Âi), (5)

where gi’s are coupling coefficients. It is easy to see that in
the limiting case f (n̂) → 1, or equivalently Â → â, we obtain
the Hamiltonian of the spin-boson model [43]. To solve this
model, we write this Hamiltonian in the interaction picture,
Ĥint(t):

Ĥint(t) = eiĤ0t Ĥinte
−iĤ0t

= σ̂z ⊗
∑

i

(
giÂ

†
i e

iωiĜ(ni )t + g∗
i e

−iωi Ĝ(ni )t Âi

)
, (6)

where H0 = HS + Hε and G(n̂) is given by G(n̂) =
1
2 [(n̂ + 2)f (n̂ + 2) − n̂f (n̂)]. Therefore, the time evolution
operator of this system, in the limit of weak interactions, can
be written as

U (t) = T← exp

[
−i

∫ t

0
dt ′Ĥint(t

′)
]

= exp

[
1

2
σz ⊗

∑
i

(giÂ
†
i + g∗

i Âi)

]
, (7)

where the operators Âi can be defined as the new deformed
operators:

Âi = 2
(1 − e−iωi Ĝ(n̂i )t )

ωiĜ(n̂i)

√
f (n̂i + 1)âi . (8)

In this equation, the deformation functions F(n̂i ,t) can be
define by the following equation:

F̂(n̂i ,t) = 2

(
1 − e−iωi Ĝ(n̂i−1)t

)
ωiĜ(n̂i − 1)

√
f (n̂i). (9)

Moreover, we assume that there is no correlation between
the system and the environment at t = 0. In addition, we
suppose that at the initial time, t = 0, the system state is a
superposition of its two states:

|
(0)〉 =
(

cos
θ

2
|+〉 + e−iφ sin

θ

2
|−〉

)
|
ε〉, (10)

where |
ε〉 is the state of the environment at t = 0. θ and φ

are two angles which take values in the intervals 0 � θ � π

and 0 � φ � 2π . By using Relation (7), the time evolution of
the total system is obtained by

|
(t)〉 = U (t)|
(0)〉
= cos

θ

2
|+〉|ε+(t)〉 + e−iφ sin

θ

2
|−〉|ε−(t)〉, (11)

where

|ε±(t)〉 =
∏

i

Df

(∓gi

2

)
|
ε〉 (12)

and

Df (g) = exp (gÂ
† − gÂ) (13)

is a deformed displacement operator. It is evident that in the
limiting case of fi → 1, the above deformed displacement
operator Df reduces to the standard displacement operator,
i.e.,

Df →1

(
gi

2

)
= exp

(
(λi)

2
â
†
i − (λ∗

i )

2
âi

)
, (14)

where λi = 2 gi

ωi
(1 − eiωi t ). The interaction establishes a quan-

tum correlation between the basic states |+〉 and |−〉 of the
system and the corresponding associated states |ε+(t)〉 and
|ε−(t)〉 of the environment. Moreover, the density matrix of
the system may be written as

ρS =
(

P11(t) P12(t)

P ∗
12(t) P22(t)

)
, (15)
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where P11(t) = cos2 θ
2 〈ε+(t)|ε+(t)〉, P22(t) =

sin2 θ
2 〈ε−(t)|ε−(t)〉, and P12(t) = eiφ cos θ

2 sin θ
2 r∗(t). The

quantity r(t) is known as the decoherence factor and is defined
by r(t) = 〈ε+(t)|ε−(t)〉.

In this paper, we suppose that the environment consists
of deformed oscillators. These deformed oscillators require
the associated effects of some physical parameters to be
determined. In the present contribution, we investigate two
deformation functions, the first being Eq. (5) below, whose
relevant deformed algebra describes a harmonic oscillator in
the center of a one-dimensional tiny (nanometre) rectangular
infinite well [58]:

f (n̂) = γ n̂ + η. (16)

In this case, γ = 2π/a is a scaling factor depending on
the width of the well, a = L/

√
�/ωm is a dimensionless

parameter in which L is the width of the well, and η =√
γ 2 + 1 [58]. Second, the deformation function f (n̂) is

selected as

f (n̂) = −γ ′n̂ + η′. (17)

This deformation function describes a truncated harmonic
oscillator (finite range potential) [59]. In this case, γ ′ = 1/N ,
where N is the total number of the bound states of the truncated
harmonic oscillator potential possessed by the finite range
potential, and η′ =

√
γ ′2 + 1. It is worth noting that the total

number of bound states in the present system is determined
by the well depth D, i.e., N = 4D/�ω. In this case, also,
dimensionless well depth D is defined by D = L/

√
�/mω

[59].
As you know, there are different distinguishability measures

for arbitrary pairs of density matrices like relative purity, trace
norm distance, Uhlmann fidelity, etc. [62]. In fact, some of
these measures have been applied to describe the quantum
speed limit, which can be illustrated by the relative purity [18],
the quantum Fisher information [19], and finally the Bures
angle [20]. The first one, i.e., relative purity F(t), which is
defined by the following relation [18],

F(t) = tr[ρ(0)ρ(t)]

[ρ2(0)]
, (18)

is one of the best measures to determine to what extent the
time evolution of the two-state quantum system preserves
the coherence. Therefore, using Relation (15), we can obtain
the dynamical behavior of the relative purity as follows

F(t) = cos4 θ

2
+ sin4 θ

2
+ 2 cos2 θ

2
sin2 θ

2
Re[r(t)], (19)

in which Re [r(t)] is the real part of the decoherence rate. To
investigate environmental effects, a particular initial state 
ε

of the environment should be chosen. Here, we consider two
types of initial states for the environment, the ground state and
the thermal state.

We assume that each harmonic oscillator in the environment
is initially in the ground state |0〉 (the environment in the
vacuum state), |
ε〉 = ∏

i |0〉i , where the index i runs over
all the environmental oscillators. Thus, Relation (12), in the

vacuum state, is reduced to a nonlinear coherent state,

|ε±(t)〉 =
∏

i

exp

(∣∣∣gi

2

∣∣∣2
Fi(1)

) M∑
m=0

(∓gi

2

)m [F(ni)]!√
ni!

|ni〉,

(20)

where [F(ni,t)]! = F(ni,t)[F(ni − 1,t)]!, with [F(0,t)]! = 1.
The M parameter corresponds to the Hilbert space dimension.
It is worth noting that in the case of the deformation function
given in Relation (16), the Hilbert space is of an infinite
dimension, whereas in the one expressed by Eq. (17) the
Hilbert space has a finite dimension.

Thus, the decoherence factor r(t) is obtained as

r(t) =
∏

i

[
exp

(−|gi |2
2

|F(1)|2
)

expF (−|gi |2)

]
, (21)

where

expF (|gi |) =
M∑

ni=0

(| gi

2 |2ni {[|F(ni,t)|]!}2
)

ni!
. (22)

It is clear, after some calculation, that when fi approaches
1 the relative purity F is reduced to

Ffi→1 = cos4 θ

2
+ sin4 θ

2

+ 2 cos2 θ

2
sin2 θ

2
exp

[
−1

2

∑
i

|λi |2
]
. (23)

However, in the general case, the relative purity depends
on the deformation function which describes the environment
structure. For a quantitative investigation of this parameter,
we need to determine the related deformation function. For
this purpose, we consider the two deformation functions
introduced in previous section. It is worth noting that these two
deformation functions are related to the confined properties of
the environment.

In Fig. 1 is plotted the fidelity of the spin system which
interacts with the deformed environment as a function of
time and the infinite well width a in panel (a) and with the
well depth D in panel (b). It is clear from Fig. 1(a) that
any increase in the value of parameter a causes the quantum
state to exhibit a greater robustness against the decoherence
process. Also, the quantum state is more resistant against the
decoherence process with decreasing well depth D. Moreover,
in Figs. 1(b) and 1(d), we have shown the dynamics of the
fidelity of the spin system for different values of a and D,
respectively. These plots show that decoherence occurs as
time elapses. This process is a consequence of the role of
environment in the dynamics. Decoherence is an inevitable
process because of the environmental effects. An important
point in this process is the control of decoherence. It seems that
the present model provides a theory to investigate the effects
of certain parameters. Comparison of Figs. 1(b) and 1(d)
reveals that the finite well exhibits more robustness against
the decoherence process than the infinite one.
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FIG. 1. (Color online) Variations of the relative purity of a spin system as a function of t and the dimensionless parameter a, which describes
the deformed harmonic oscillator in the infinite well as a nonlinear environment, are shown in panel (a) and those for the dimensionless parameter
of a well with a finite depth D are shown in panel (c). The figures show the evolution of an environment consisting of N = 20 harmonic
oscillators. Also, the coupling gi and frequencies ωi were chosen randomly from the interval [0,1]. In addition, variations of relative purity as
a function of t are plotted in panels (b) and (d), respectively, for different values of a and D.

We now turn to a more general case in which the
environment is in a thermal state at the initial time, i.e.,

ρ̂εi
= 1

Zi

exp
( − βĤεi

)
= 1

Zi

exp [−βωi(ÂiÂi

† + Âi

†
Âi)], (24)

where the partition function for the ith mode is defined by
Zi = (

∑M
n=0 e−βωiE(ni ))−1, and E(ni) = 1

2 [(n + 1)f (n + 1) +
nf (n)] are the eigenvalues of the ith mode which is described
by a deformed oscillator. Thus, the initial state of the composite
system is given by

ρ̂(0) = ρ̂s(0) ⊗
∏

i

1

Zi

exp
(− βĤεi

)
. (25)

The time evolution of the reduced density matrix of the system,
ρ̂s(t), is obtained in the usual manner via

ρ̂s(t) = Trε[Û (t)ρ̂(0)Û−1(t)], (26)

where Û (t) is the time evolution operator given by Eq. (7).
In this equation, Trε designates the partial trace over the
environmental degrees of freedom. It is clear that the diagonal
elements of the density matrix ρii

s (t) = 〈i|ρ̂s(t)|i〉, where
i = +,−, are constant in time. Also, the off-diagonal matrix
elements of ρ̂s(t) are obtained by

ρ̂s,−+(t) = ρ̂∗
s,+−(t) = 〈−|Trε[Û (t)ρ̂(0)Û−1(t)]|+〉. (27)

Using some approximations and neglecting the second-order
terms in |gi | in exponentials, we obtain the following off-
diagonal term

ρ̂s,+−(t) ≈ ρ̂s,+−(0)

∏
j

1

Zj

⎛
⎝ M∑

nj =0

nj ![|F(nj )|!]2e−βωj E(nj )

⎞
⎠

×
⎛
⎝ nj∑

p=0

|gj/2|2p(−1)p

(p !)2(nj − p)! |[F(nj − p)]!|2

⎞
⎠ . (28)

Therefore, the decoherence factor r(t) is given by [43]

r(t) =
∏
j

1

Zj

⎛
⎝ M∑

nj =0

nj ![|F(nj )|!]2e−βωj E(nj )

⎞
⎠

×
⎛
⎝ nj∑

p=0

|gj/2|2p(−1)p

(p !)2(nj − p)! |[F(n − p)]!|2

⎞
⎠ . (29)

In the limit of the nondeformed case, f → 1, one can show
that the decoherence rate will reduce to

r(t)f →1 =
∏

i

exp

[−|λi |2
2

coth

(
βωi

2

)]
. (30)

In Fig. 2, we consider the relation between the dynamics of the
fidelity of the two-state system with the width of the infinite
well a and the depth of the finite well D, when the environment

FIG. 2. (Color online) (a) The variation of the relative purity of a spin system as a function of t , for definite values of a and a constant
temperature. (b) Variation of the relative purity of a spin system as a function of T , with a constant value of a. Panels (c) and (d) indicate the
variation of relative purity as function of D with a constant temperature and as a function of T with a constant D, respectively.
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is assumed to be in the thermal equilibrium. Figures 2(a)
and 2(c) indicate that, in the case of the deformed environment,
the system is more resistant against decoherence. Moreover,
the decoherence rate will increase with increasing values of
a and D. In addition, Figs. 2(b) and 2(d) show the fidelity
evolution, for different temperatures, with known values of
width a and depth D, respectively. It may be understood from
these plots that, the more the temperature increases, the faster
the decoherence rate will become. However, given the role of
temperature in decoherence and dissipation, one expects this
result. In addition, a comparison of Figs. 2(b) and 2(d) reveals
that any increase in temperature in the confined environment
with an infinite depth leads to only a smaller robustness against
decoherence. In other words, modeling the environment with
truncated harmonic oscillators causes the system to be more
resistant against decoherence.

III. DECOHERENCE SPEED LIMIT

In this section, as we mentioned before, by using the
approach of del Campo et al., we study the decoherence speed
limit [18]. Using Relation (18), we have

dF
dt

= tr[ρ(0)ρ̇(t)]. (31)

According to the Cauchy-Schwarz inequality for operators,
|tr(Â†B̂)|2 � tr(Â†Â)tr(B̂†B̂), the rate of change of F can be
bounded. In the case of a spin-deformed bosonic system, we
may obtain the following relation:

Ḟ(t) �
√

tr
[
ρ2

S(t)
]
. (32)

If we reparametrize F = cos ζ with ζ ∈ [0,π/2] and consider
X̄ = τ−1

ζ

∫ ζ

0 dtX, we achieve

τζ � | cos ζ − 1|√
tr
[
ρ2

S(t)
] � 4ζ 2

π2
√

tr
[
ρ2

S(t)
] . (33)

Therefore, the quantum speed limit of the spin system in the
nonlinear environment is obtained as

τζ � 4ζ 2

π2

[
cos4 θ

2
〈ε+(t)|ε+(t)〉 + sin4 θ

2
〈ε−(t)|ε−(t)〉

+ 2 cos2 θ

2
sin2 θ

2
|r(t)|2

]−1/2

. (34)

FIG. 3. (Color online) Variation of the minimum bound passage
(τζ )min as a function of well depth D in panel (a) and as a function of
well width a in panel (b).

Similar to the previous section, we consider the decoherence
speed limit for two cases, an environment in the ground state
and one in the thermal state.

First, we assume that each harmonic oscillator in the
environment is initially in the ground state |0〉 (the environment
in the vacuum state). Therefore, by substituting Eq. (21) into
Relation (34), the quantum speed limit of a spin system
interacting with the nonlinear environment is obtained. It is
clear that in the nondeformed limitation, the quantum speed
limit is achieved by

τζ � 4ζ 2/π2√
cos4 θ

2 + sin4 θ
2 + 2 cos2 θ

2 sin2 θ
2

∏
i e

|λi (t)|2
. (35)

In Fig. 3, the minimum quantum passage time, (τζ )min,
is plotted as a function of the depth of the finite well D and
the width range of the confined environment a, respectively.
Figure 3(a) shows that increasing the well depth D causes
the bound passage time (τζ )min to be slightly increased.
Also, Fig. 3(b) indicates that the minimum bound passage
time (τζ )min declines sharply with increasing well width a.
Moreover, it is shown that the physical parameters a and D

have different effects for different times. For longer times, the
increments in a and D do not have any important effects. For
short times, however, the physical parameters a and D exhibit
more remarkable roles.

Also, we assume that each harmonic oscillator in the
environment is initially in the thermal equilibrium. Therefore,
by substituting Eq. (29) into Relation (34), the quantum
speed limit of a spin system interacting with the nonlinear
environment is obtained. It is evident that in the nondeformed
limitation, the quantum speed limit is obtained by

τζ � 4ζ 2/π2√
cos4 θ

2 + sin4 θ
2 + 2 cos2 θ

2 sin2 θ
2

∏
i exp

(−1
2 λi coth βωi

) . (36)

Figure 4 depicts the counter plot of the minimum quantum
passage time, (τζ )min, as a function of temperature and
confinement size. Figures 4(a)–4(c) correspond to the finite
range potential, whereas Figs. 4(d)–4(f) correspond to the
infinite well. First of all, it seems that the control of the
minimum bound passage time is easier at the initial time

than when the time is increased. Second, increasing of well
depth D causes the bound passage time (τζ )min to rise too, as
is clear in Figs. 4(a)–4(c). Also, Fig. 4(a), which indicates
the earlier time, shows that D has the central role in the
variations of the bound passage time (τζ )min. As time elapses,
as plotted in Figs. 4(b) and 4(c), temperature plays the most
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FIG. 4. (Color online) Counter plot of variation of the minimum bound passage (τζ )min as a function of temperature and well depth D in
panels (a)–(c) and as functions of temperature and well width a in panels (d)–(f).

important role in the variations of (τζ )min. The same is true
for the minimum bound passage time with variations of the
temperature T and well width a, as seen in Figs. 4(d)–4(f).
Finally, comparison of plots 4(a)–4(c) and 4(d)–4(f) shows
that, in the nonlinear environment with a deformation of an
infinite well, temperature plays a more important role in the
variation of the minimum bound passage time (τζ )min than the
finite well does.

Inversely, in an environment consisting of a deformation of
a finite well, well depth has a stronger impact in controlling
the minimum bound passage time (τζ )min.

IV. CONCLUSION AND REMARKS

In this paper, we studied the effects of temperature and
nonlinearity of environment on the decoherence process of
a superposition of the two-state system. For this case, we
considered the relative purity as a measure of the decoherence
rate and studied the quantum speed limit of open quantum
systems. It was shown that nonlinearity causes the decoherence
process to become more resistant. In addition, by choosing
two different deformation functions, it was shown that, in the
nonlinear environment, some environmental features exhibit
more remarkable roles in the decoherence process.

As another contribution, it was demonstrated that there is
a minimum bound passage time for the decoherence process
which depends on the nonlinear features and the environment
temperature. Assuming the environment to consist of deformed
oscillators, we investigated two different deformed oscillators,
i.e., the confined harmonic oscillator in an infinite well and
a truncated harmonic oscillator. It was shown that at earlier
times one can control the decoherence by physical features
of the environment. On the other hand, it was shown that
the temperature of the environment plays a remarkable role
when enough time has elapsed. Finally, the study provided a
method for investigating the role of environmental parameters
on decoherence.
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