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We describe a set of measurement protocols for performing nonclassicality tests and the verification of
entangled superposition states of macroscopic continuous variable systems, such as nanomechanical resonators.
Following earlier works, we first consider a setup where a two-level system is used to indirectly probe the motion
of the mechanical system via Ramsey measurements and discuss the application of this method for detecting
nonclassical mechanical states. We then show that the generalization of this technique to multiple resonator
modes allows the conditioned preparation and the detection of entangled mechanical superposition states. The
proposed measurement protocols can be implemented in various qubit-resonator systems that are currently under
experimental investigation and find applications in future tests of quantum mechanics at a macroscopic scale.
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I. INTRODUCTION

Quantum superpositions of massive particles and nonclas-
sical correlations associated with entangled states are two
of the most fascinating aspects that distinguish quantum
mechanics from preceding classical theories. While by now
these concepts are well established and experimentally verified
with high precision with photons [1–3], atoms [4–7] or
molecules [8], there is still a strong interest in whether or
not the laws of quantum mechanics are equally valid on
a macroscopic scale [9]. Various collapse models [10–14]
predict a breakdown of the superposition principle at a certain
mass and length scale, but so far testing these predictions
has been beyond current experimental capabilities. Recently,
micro- and nanomechanical resonators with masses in the
picogram regime have been cooled close to the quantum
ground state [15–17], entangled with microwave photons
[18], and first steps towards a coherent coupling between
mechanical systems and spin- [19–22] or charge-based qubits
[15,23,24] have been implemented. These achievements show
that experiments with opto- and nanomechanical systems
[25,26] offer a promising route towards systematic tests of
quantum mechanics with truly massive objects.

Due to the weak intrinsic nonlinearities of micro- and
nanomechanical systems it is in general hard to prepare
or probe nonclassical states in such systems directly. Thus,
many of the initial proposals for generating macroscopic
superposition states considered the dispersive coupling of
a mechanical resonator to a microscopic two-level system
(qubit) [27–29]. Provided that this coupling is sufficiently
strong, it will evolve an initial qubit superposition state into
an equal superposition of displaced resonator states and the
survival of this superposition can be inferred from observing
an initial loss and later revival of the qubit coherence. In a
recent proposal [30] it has further been shown how the same
type of coupling can be used to probe quantum superpositions
of a mechanical resonator mode via Ramsey correlation
measurements. In the protocol of Ref. [30] the nonclassicality
of the mechanical system is deduced directly from the violation
of a Leggett-Garg-type inequality [31,32]. Thereby, such
correlation measurements complement the less conclusive
interference signatures mentioned above and provide a simple

alternative to more involved schemes for implementing a
complete tomography of the mechanical state [33–36].

In this paper we describe a generalization of the Ramsey
measurement technique for the detection of entanglement
between two mechanical modes, in particular for verifying
the entanglement between macroscopic superposition states
(“Schrödinger cat states”), which will be most relevant in
searches for hypothetical collapse mechanisms. In the first part
of this work we will first review the general idea of Ramsey
measurements of mechanical motion and its connection to
modular variables and the characteristic function. By employ-
ing the nonclassicality criterion by Vogel [37] this relation
can already be used to implement a simple measurement
protocol that is capable of detecting many nonclassical states
of the nanomechanical oscillator without full state tomography
[38]. In the second part we then apply a related strategy
for constructing a witness for entangled superposition states.
We first show that probing the characteristic function of two
oscillators with this scheme in any two points of the space is not
sufficient to detect entanglement, meaning that it is not possible
to directly swap the entanglement from resonator modes onto
an entangled two-qubit state in such a way. Therefore, in this
work we identify a minimally extended set of measurements
that can serve as a witness for entangled Schrödinger cat states
and we provide particular examples of the states and of the
measurement settings that are required to verify entanglement
in those states.

The remainder of the paper is structured as follows. In
Sec. II we first summarize the basic idea of a Ramsey-type
measurement of mechanical motion. In Sec. III we illustrate
the application of this method for detecting the nonclassicality
of a mechanical state in terms of two basic examples. Finally,
Sec. IV contains the main results of this work and we discuss
the protocols for generating and verifying the entanglement
between mechanical superposition states. A summary of our
findings and concluding remarks are given in Sec. V.

II. RAMSEY MEASUREMENTS, MODULAR VARIABLES,
AND THE CHARACTERISTIC FUNCTION

For the following discussion we consider a setup as
schematically shown in Fig. 1(a), where a two-level system
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FIG. 1. (Color online) (a) Coupling between the two-level atom
and the nanomechanical oscillator and its mechanical analog.
(b) Ramsey measurement consisting of three steps: (I) an initial π/2
rotation, (II) evolution under the Hamiltonian in Eq. (1) for a time
τ1, and (III) final π/2 rotation and a successive measurement of the
atom population Z. (c) State evolution under the Ramsey sequence
I–III as given by Eq. (3).

(qubit) with ground state |g〉 and excited state |e〉 is coupled
to the motion of a macroscopic mechanical resonator. We
assume that the interaction between the two-level system
and the resonator is purely dispersive, i.e., the energy of the
excited state is shifted proportional to the displacement of
the resonator. Then, in a frame rotating with the bare qubit
splitting, ωeg , the system is described by the Hamiltonian
(� = 1),

H = ωa†a + λ(a + a†)|e〉〈e|, (1)

where a,a† are the annihilation and the creation operators of
the resonator mode, ω is the mechanical vibration frequency,
and λ is the interaction strength. The type of coupling given
in Eq. (1) appears in various different scenarios where micro-
and nanomechanical resonators are coupled to electronic spins
[19,20,39], quantum dots [40–42], superconducting qubits
[23,27,28], or photons [29]. For the following discussion
the specific physical realization of Hamiltonian (1) is not of
immediate importance, and the reader is referred to the above
listed references for more details on possible implementations.

A. Ramsey measurements

Hamiltonian (1) describes a frequency shift of the excited
qubit state which is proportional to the displacement of the
mechanical resonator. This frequency shift can be detected via
a Ramsey measurement performed on the qubit [43,44], which
thereby serves as a readout device for the mechanical mode.
This method has already been used to detect, for example,
the driven and thermal motion of mechanical systems in the

classical regime [20,21,45]. Here we are interested in a full
quantum mechanical description of this measurement.

Starting with the qubit initialized in state |g〉, the Ramsey
sequence consists of four steps, which are depicted in Figs. 1(b)
and 1(c). (i) First, a fast π/2 rotation Rπ

2
(φ0) prepares the

qubit in state Rπ
2
(φ0)|g〉 = (|g〉 + eiφ0 |e〉)/√2. ii) The qubit-

resonator system then evolves under the action of Hamiltonian
(1) for a time τ . The corresponding evolution operator U (τ ) =
e−iHτ can be written as

U (τ ) = [1 ⊗ |g〉〈g| + eiφgD(α) ⊗ |e〉〈e|]U0(τ ), (2)

where D(α) = eαa†−α∗a is the displacement operator, U0(τ ) =
e−iωτa†a is the free resonator evolution, and φg = λ2/ω2(ωτ −
sin ωτ ) is a geometric phase. Equation (2) represents a
state-dependent displacement of the resonator mode by an
amount α = λ/ω(e−iωτ − 1), and evolves the initial qubit
superposition into an equivalent superposition of displaced
resonator states as indicated in the middle panel of Fig. 1(c).
(iii) Finally, the qubit is rotated by another π/2 pulse, Rπ

2
(φ0 =

0), and (iv) the state of the qubit (in the Z basis) is detected.
In summary, starting at time t = 0 with the qubit in |g〉

and the resonator mode in an arbitrary state ρm the Ramsey
measurement implements the combined unitary operation,

UR(τ,φ0) = Rπ
2
(0)U (τ )Rπ

2
(φ0), (3)

followed by a projective measurement of the qubit state. The
whole sequence can thus be described as a generalized mea-
surement [30] on the resonator mode, where the probability
p+ (p−) for finding the qubit in the excited (ground) state is
given by

p± = Tr{E†
±(ϕ,τ )E±(ϕ,τ )ρm}, (4)

and conditioned on the measurement outcome the resonator
state is projected into one of the states,

ρ±
m = E±(ϕ,τ )ρmE

†
±(ϕ,τ )

p±
. (5)

In Eqs. (4) and (5) E±(ϕ,τ ) = 1
2 [1 ± eiϕD(α)]U0(τ ) are Kraus

operators satisfying E
†
+E+ + E

†
−E− = 1, and ϕ = φ0 + φg is

the total phase. Equation (5) shows that this technique cannot
only be used to probe mechanical motion, but also to prepare—
conditioned on the outcome—a mechanical superposition
state. In particular, when the resonator is initially prepared
close to the ground state, ρm = |0〉〈0|, it is projected after
the measurement into one of the two superposition states
[28,30,43,44,46],

|ψ±〉 = |0〉 ± eiϕ|α〉√
4p±

. (6)

Note that while for the static coupling given in Eq. (1)
|α| � 2λ/ω, the displacement amplitude can be resonantly
enhanced by periodically flipping the qubit state during the
interaction time τ [28,30,44]. Thus, in the following we
will consider α as an adjustable parameter. In practice the
magnitude of the displacement will eventually be limited by the
qubit coherence time T2 and the mechanical rethermalization
rate �m � kBT /(�Q), where T is the support temperature and
Q the mechanical quality factor [28,30].
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B. Modular variables and the characteristic function

For the following discussion it is convenient to re-express
Eq. (4) in terms of the average population difference 〈Z〉 =
p+ − p−, which can then be written as

〈Z〉(ϕ,α) = Tr {Q(ϕ,α)ρm} . (7)

Here

Q(ϕ,α) = 1
2 [eiϕD(α) + e−iϕD†(α)] (8)

is a modular operator [47] that can also be expressed in terms
of the position and the moment operators x̂ = (a + a†)/

√
2

and p̂ = i(a† − a)/
√

2 as

Q(ϕ,α) = cos(ϕ +
√

2Im(α)x̂ −
√

2Re(α)p̂). (9)

Thus, for appropriately chosen ϕ and α, the measurement of
〈Z〉 directly probes expectation values 〈cos(|α|x̂)〉, 〈sin(|α|x̂)〉,
〈cos(|α|p̂)〉, etc. From Eq. (8) it also follows immediately that
the Ramsey scheme can be used to measure the characteristic
function χ (α) = Tr {D(α)ρm} via the relation,

χ (α) = 〈Z(ϕ = 0,α)〉 + i〈Z(ϕ = −π/2,α)〉. (10)

The symmetrically ordered characteristic function χ (α) is the
Fourier transform of the Wigner function,

W (ξ ) =
∫

d2α

π2
χ (α)eξα∗−ξ∗α, (11)

and therefore the knowledge of χ (α) for a sufficiently dense
set of points α in phase space would allow a complete
reconstruction of the mechanical state [34–36].

This formal connection to the characteristic function will
also hold for multimode systems. In this work we are primarily
interested in the case, where the Ramsey sequences are
simultaneously carried out with two qubits, each coupled to
one resonator mode. Denoting by ϕ1 and ϕ2 the adjustable
phases and by α and β the displacement amplitudes in the two
measurements, respectively, the combined outcome is

〈Z1Z2〉 = Tr
{
Q(ϕ1,α) ⊗ Q(ϕ2,β)ρm1m2

}
, (12)

where ρm1m2 is the total density operator of the two mechanical
modes. These averages can again be used to extract the two-
mode characteristic function χ (α,β) = Tr{D(α)D(β)ρm1m2}
by using the relations,

Re(χ (α,β)) = 〈Q(0,α) ⊗ Q(0,β)〉
− 〈Q(−π/2,α) ⊗ Q(−π/2,β)〉, (13)

Im(χ (α,β)) = 〈Q(0,α) ⊗ Q(−π/2,β)〉
+ 〈Q(−π/2,α) ⊗ Q(0,β)〉. (14)

In principle this scheme allows the reconstruction of the full
two-mode Wigner function (full tomography), for which a
number of entanglement criteria exist. However, in practice,
the full tomography requires a lot (in fact, infinitely many) of
measurements and enough statistic for the state reconstruction.
In the following we will discuss simpler witnesses for
nonclassicality and entanglement, which are based on the
relations described in this section, but require the measurement
of only a few expectation values.

III. NONCLASSICALITY TESTS FOR
NANOMECHANICAL OSCILLATORS

Before addressing the question of entanglement verification
in Sec. IV, we first describe in this section the application of
the Ramsey method for testing the nonclassicality of a single
resonator mode. In quantum optics one usually speaks of a
nonclassical state [48,49] if the corresponding P function,
defined via

ρ =
∫

d2ξ P (ξ )|ξ 〉〈ξ |, (15)

does not represent a proper (non-negative and normalized)
probability distribution in phase space. In analogy to the
Wigner function, the P function is given by the Fourier trans-
form of the normally ordered characteristic function χN (α) =
〈: D(α) :〉 = e

1
2 |α|2〈D(α)〉, where the symbol : : stands for

normal ordering of operator products. It follows that for a
classical state,

|〈:D(α) :〉| =
∣∣∣∣
∫

d2ξ P (ξ )e−(ξα∗−ξ∗α)

∣∣∣∣ (16)

�
∫

d2ξ P (ξ )|e−2iIm(ξα∗)| � 1. (17)

In other words, this relation means that for a classical state the
corresponding characteristic function is bounded by

|χ (α)| = |〈D(α)〉| � e−|α|2/2, (18)

i.e., it decays faster than the characteristic function of the
ground state. The violation of this inequality is a sufficient,
but not necessary [50] condition for nonclassical states.

As shown in Refs. [37,51], this bound can be generalized
and further improved via the classical Bochner-Khinchin theo-
rem. Applied to this scenario, it states that for any classical state
ρ and for any set of test points {αi}, the matrix Mij = 〈: D(αi −
αj ) :〉 is positive semidefinite. Thus a violation immediately
certifies nonclassicality of the underlying system. Depending
on the number of test points one gets different detection
strengths. If one only takes {α0 = 0,α1}, then positivity of
the resulting 2 × 2 matrix is equivalent to the bound given in
Eq. (18) above, which is also the criterion of Refs. [37,38]. But
if we use more points, like {α0 = 0,α1,α2} with α1 �= α2 �= 0,
then the positivity requirement of [37,51,52]⎡

⎢⎣
1 〈:D(−α1) :〉 〈:D(−α2) :〉

〈:D(α1) :〉 1 〈:D(α1 − α2) :〉
〈:D(α2) :〉 〈:D(α2 − α1) :〉 1

⎤
⎥⎦ � 0

(19)

gives a strictly stronger condition. This can be seen, for
instance, by evaluating the criteria for the Fock states, where
〈:D(α) :〉|n〉 = Ln(|α|2) is given by the Laguerre polynomial
of order n. The states ρn = (1 − p)|n〉〈n| + p|0〉〈0|, are non-
classical for all values of n � 1 and p < 1, and for n = 1 the
condition given by Eq. (18) certifies nonclassicality if |α1| >√

2/(1 − p). For n = 2, Eq. (18) certifies nonclassicality for
|α1| > 2 for all values p < 1. For the same states we plot in
Fig. 2 the nonclassical region determined by the positivity
criterion in Eq. (19). Note that for n = 1 this criterion is
in principle violated for all αi and p < 1, but for |αi | → 0
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FIG. 2. (Color online) Nonclassicality detection for the state
ρn = (1 − p)|n〉〈n| + p|0〉〈0|. The shaded parts indicate the regions
where the criterion given by Eq. (19) is violated. The upper two panels
show the result for n = 1 and the lower two panels for n = 2. The
values for p are p = 0.1 in (a) and (c) and p = 0.75 in (b) and (d)
and αi ∈ R. The red dashed circle indicates the value of |α| that is
required to detect nonclassicality using the criterion given in Eq. (18).

the violation becomes very small and cannot be detected in
realistic experiments. Therefore, the plots in Fig. 2 show the
regions where det(M) � −0.01. We see that in many (but
not all) cases, Eq. (19) allows us to identify regions where
nonclassicality can be certified with significantly smaller
values for |αi |. For practical implementations of such a
test this can be very important: By using more settings the
required displacement amplitudes αi and therefore the required
qubit-resonator coupling strength λ can be significantly lower
than for nonclassicality tests based on inequality (18) alone.

Below we are mainly interested in superposition states—
so-called Schrödinger cat states—of the form,

|ψ+〉 = 1√
4p+

(|0〉 + eiθ |ξ0〉), (20)

where p+ = (1 + cos(θ )e−|ξ0|2/2)/2. The normally ordered
characteristic function of this state is

χN (α) = 1 + ei2Im(αξ∗
0 ) + (eiθ e−α∗ξ0 + e−iθ eαξ∗

0 )e− |ξ0 |2
2

4p+
,

(21)

and it significantly exceeds the classical bound of Eq. (18) for
values |α| � |ξ0|/2 (see also Ref. [38]). If the resonator mode
is weakly coupled to an environment, the superposition will

1
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FIG. 3. (Color online) Nonclassicality of a Schrödinger cat state
as defined in Eq. (20). (a) Time dependence of χN (α,t) = 〈:D(α) :〉(t)
in the presence of decoherence and for α = ξ0 = 2, θ = 0. (b) and (c)
Regions of nonclassicality that can be detected using the criteria (18)
and (19), respectively. In both plots the different shadings represent
the nonclassical regions evaluated at times (i) γ t = 0, (ii) γ t = 0.02,
(iii) γ t = 0.04, and assuming Nth = 10.

decohere. In a frame rotating with the mechanical frequency
ω, the characteristic function will then evolve over time as

χN (α,t) = e−Nth(1−e−γ t )|α|2χN (αe−γ t/2), (22)

where Nth = 1/(e�ω/kBT − 1) is the thermal occupation num-
ber for an environment temperature T and γ is the mechanical
damping rate.

In Fig. 3 we plot the nonclassical regions for a pure and par-
tially decohered cat state for the example ξ0 = 3. Figure 3(a)
shows the typical time dependence of the nonclassicality
criterion Eq. (18), evaluated for α = ξ0. Interestingly, the
nonclassicality of the Schrödinger cat state coupled to a zero
temperature bath never vanishes and approaches the classical
bound asymptotically on a time scale γ −1. In contrast, for
finite Nth > 0 the nonclassical signatures are lost quickly on
a time scale (γNth|α|2)−1. Similar results have been found in
Ref. [53]. Figures 3(b) and 3(c) compare the nonclassicality
criteria from Eq. (18) and Eq. (19) for ξ0 = 2 and different
stages of decoherence. In Fig. 3(c) we see similar patterns
as for the n = 2 number state, but given that the maximal
amplitude in Eq. (19) is |α1 − α2| the benefits compared to the
simple criterion are not as big for the cat state.

IV. ENTANGLEMENT WITNESSES

Let us now consider the application of the Ramsey techni-
que for the detection of entanglement between two mechanical
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modes. More precisely, in this work we are interested in
entangled superposition states of the form,

|ψ+〉 = 1√
2 + 2e−4|ξ0|2

(|ξ0,ξ0〉 + |−ξ0,−ξ0〉), (23)

which, apart from an overall shift in phase space, are the
two-partite-entangled generalization of the Schrödigner cat
state in Eq. (20). This state combines the quantum mechanical
principles of superposition and entanglement and it would
thus be interesting to see in future studies how these two
properties behave as |ξ0| or the mass of the mechanical system
is increased.

A. Preparation of two-mode-entangled states between
two nanomechanical resonators

Although in this work we are primarily interested in the
entanglement detection scheme, we first briefly outline, how
a state of the form given in Eq. (23) can be prepared in a

probabilistic way by making use of the techniques described in
Sec. II. Related schemes based on different types of resonator-
qubit interactions have been discussed in the context of cavity
QED [54].

For the following protocol we consider the extension of
Hamiltonian (1) to two mechanical resonators, each coupled
to its own qubit. We start off by preparing the mechanical res-
onator modes in the same state |ψ〉, which could be the ground
state or a coherent state, and the two qubits in the Bell state
|�+〉 = (|gg〉 + ei�|ee〉)/√2. If the two mechanical modes
represent, for example, two vibrational modes of a single
cantilever, the qubits could be coupled directly to prepare such
a state. If the mechanical systems are far apart, the entangled
qubit states can be mediated via photons using standard pro-
cedures discussed for implementing quantum communication
protocols. In a next step we apply the Ramsey sequence, which
implements the unitary operation UR given in Eq. (3) to each
subsystem, such that the state of the full system becomes

UR(τ,ϕ)⊗2|ψ,ψ〉|�+〉 = 1√
2

[E−(τ,ϕ) ⊗ E−(τ,ϕ) + ei(�−2φ0)E+(τ,ϕ) ⊗ E+(τ,ϕ)]|ψ,ψ〉|gg〉

+ 1√
2

[E−(τ,ϕ) ⊗ E+(τ,ϕ) + ei(�−2φ0)E+(τ,ϕ) ⊗ E−(τ,ϕ)]|ψ,ψ〉|ge〉

+ 1√
2

[E+(τ,ϕ) ⊗ E−(τ,ϕ) + ei(�−2φ0)E−(τ,ϕ) ⊗ E+(τ,ϕ)]|ψ,ψ〉|eg〉

+ 1√
2

[E+(τ,ϕ) ⊗ E+(τ,ϕ) + ei(�−2φ0)E−(τ,ϕ) ⊗ E−(τ,ϕ)]|ψ,ψ〉|ee〉. (24)

After this interaction we measure the state of both qubits,
which projects the resonator modes into one of the superposi-
tion state corresponding to the four lines in Eq. (24). For exam-
ple, for � = 2φ0 and if we find both qubits in state |g〉, which
occurs with probability p−− = [1 + Re(e2iϕ〈ψ |D(α)|ψ〉)]/4,
the resonator modes are projected into the entangled
state,

|ψ〉 = 1

2
√

p−−
[1 ⊗ 1 + D(α) ⊗ D(α)] |ψ,ψ〉. (25)

The outcome where one qubit is in state |g〉 and the other one
in state |e〉 would produce the same state, but with a relative
minus sign. Alternatively, if we repeat the protocol with an
initial qubit state,

|�−〉 = 1√
2

(|ge〉 − e2iφ0 |eg〉),

the resulting resonator state for the two different measurement
outcomes is

|ψ ′〉 = 1

2
√

p−−
(1 ⊗ D(α) ∓ D(α) ⊗ 1)|ψ,ψ〉. (26)

Therefore, for α = ξ0 and by preparing both resonator modes
initially in the ground state |ψ〉 = |0〉, these protocols allows
us to prepare a Bell basis of entangled cat states ∼(|0,0〉 ±
|ξ0,ξ0〉), ∼(|0,ξ0〉 ± |ξ0,0〉). Similar, for α = 2ξ0 and |ψ〉 =
|−ξ0〉, we obtain the symmetric form of these states as given

in Eq. (23). By using other initial resonator states, also more
general types of entangled states can be prepared in this way.

B. No-go result for entanglement swapping

In the previous preparation protocol the entanglement
between the qubit states is swapped onto the resonator modes,
conditioned on the outcome of the final qubit measurement.
This would suggest using the same interaction to reverse the
process and swap the entanglement back from the mechanical
modes onto the otherwise decoupled qubits for verification.
However, it turns out that the asymmetry in this protocol,
namely that we can only measure the state of the qubits,
prevents such a scheme.

To show that the evolution generated by Hamiltonian (1)
does not allow one to swap entanglement between the resonator
modes and the qubits in a deterministic way, we consider the
evolution operator U (τ ) given in Eq. (2), but without the initial
and the final π/2 pulses, since the local unitary rotations do
not affect the entanglement in the system. Without loss of
generality we can also omit the phase φg and the free resonator
evolution U0(τ ) in the following discussion. Then, the resulting
total system evolution during the interaction time τ can be
written as

Utot(τ ) =
∑

i,j=g,e

|i,j 〉〈i,j | ⊗ Vij , (27)
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GITTSOVICH, MORODER, ASADIAN, GÜHNE, AND RABL PHYSICAL REVIEW A 91, 022114 (2015)

where Vgg = 1 ⊗ 1, Veg = D(α) ⊗ 1, Vge = 1 ⊗ D(β), and
Vee = D(α) ⊗ D(β) are operators acting on the two mechani-
cal modes.

Now let ρq1q2 ⊗ ρm1m2 be the total initial state of two
nanomechanical oscillators and the two qubits. After the
evolution in Eq. (27) the reduced state of two qubits can be
expressed as

ρout
q1q2

= �
[
ρq1q2

] = Trm1m2
{
Utot(τ )

(
ρq1q2 ⊗ ρm1m2

)
U

†
tot(τ )

}

=
∑

ijkl=g,e

|i,j 〉〈k,l|〈ij |ρq1q2 |kl〉Tr
{
V

†
lkVijρm1m2

}

= ρq1q2 � MT , (28)

where M is the 4 × 4 positive-definite matrix of moments,
the properties of which we discuss in greater detail in the
next section, and � is the Hadamard product (element-wise
multiplication). Note that this mathematical structure for
channels has previously been observed for interacting spin
gases (see, e.g., [55]).

Let us recall that the Hadamard product of two matrices is
positive semidefinite if both matrices are positive semidefinite.
Moreover, for two matrices A and B, (A � B)� = A� � B� ,
where (·)� denotes the partial transpose with respect to the
first subsystem, i.e., [A�]ij,kl = Akj,il . This implies for the
state after the action of the channel (28),

(
ρout

q1q2

)� = ρ�
q1q2

� (MT )�. (29)

It is not difficult to see that in this example the partial
transposition of the matrix of moments (MT )� corresponds to
the sign flip of the displacement in the displacement operator
which acts on the first oscillator. This leaves its eigenvalues
unchanged. Since the 4 × 4 matrix M as mentioned above is
itself positive semidefinite, the entanglement of the qubit state
ρq1q2 is unaffected by the channel in Eq. (28).

We conclude that the qubits’ initial state ρq1q2 doesn’t
change its entanglement properties no matter what initial
quantum state of two nanomechanical oscillators ρm1m2 is
supplied to the protocol. Since according to the results of
Sec. II B the reduced density matrix of two qubits ρout

q1q2
in

Eq. (28) contains the information of the two-resonator char-
acteristic function χ (α,β); this observation has an interesting
implication: The knowledge of the value of the characteristic
function in one single point (α,β) is not sufficient in order
to verify entanglement between the two mechanical modes.
Therefore, our goal is now to identify an entanglement witness
using an extended but still small set of measurement points
{(αi,βi)}.

C. Matrices of moments: tool for entanglement verification

The matrix of moments that appeared in Eq. (29) has been
extensively used as a tool for revealing nonclassical properties
of states in quantum mechanics; see, e.g., [37,51,56–58]. The
general form of a matrix of moments for an operator X is given
by

Mij (X) = Tr{V†
i VjX} = 〈V†

i Vj 〉X, i,j = 1, . . . ,∞, (30)

where the V ′
is are some dense set of operators (acting on a

single or on a multipartite system), i.e., any other operator can

be represented in terms of the V ′
is. For example, displacement

operators and the products of the type (a†)kal for k,l =
0,1, . . . ,∞ form such a set. The implementation of the matrix
of moments to entanglement verification in Refs. [56,57]
requires, however, photon-number resolving detectors and
although the nonclassicality tests are formulated directly in
terms of the characteristic function they are afflicted with the
same disadvantage [59,60].

Nevertheless two established facts [56,57] will be important
for us in the following discussion: if X is positive semidefinite
then M(X) is positive semidefinite, and (ii) if a state ρ is
separable (ρ = ∑

k pkρ
A
k ⊗ ρB

k , pk � 0,
∑

k pk = 1) then the
corresponding matrix of moments is also separable M(ρ) =∑

k pkM(ρA
k ) ⊗ M(ρB

k ), with bipartite operators Vi = Vi1 ⊗
Vi2 and M(ρA/B) = Tr{V†

i1/2
Vi1/2ρ

A/B}, respectively. Formally
one can write

ρ =
∑

k

pkρ
A
k ⊗ ρB

k ⇔ M(ρ) =
∑

k

pkM
(
ρA

k

) ⊗ M
(
ρB

k

)
.

(31)
Moreover, one can show that if a finite dimensional submatrix
Msub(ρAB) of the matrix of moments is nonseparable, then ρAB

is necessarily entangled (see, e.g., Refs. [56,57]).
We can use this fact for entanglement verification in our

context, where expectation values of displacement operators
can be computed from the directly accessible experimental
data.

D. Entanglement witnesses for macroscopic superposition states

As suggested by our no-go result in Sec. IV B we should
probe the characteristic function of the nanomechanical oscil-
lators in several points. In order to do that we have to expand
the set of operators from a commutative set {1,D(α)} to a
noncommutative set on each side. By taking a displacement
operator in one more additional point we achieve this goal and
arrive at the set {1,D(α1),D(α2)}, α1 �= α2, for each party. The
corresponding expectation values can be written as a 9 × 9
matrix of moments,

M =

�⎛
⎜⎝

1 D†(α1) D†(α2)

D(α1) 1 D†(α2)D(α1)

D(α2) D†(α1)D(α2) 1

⎞
⎟⎠

⊗
⎛
⎜⎝

1 D†(β1) D†(β2)

D(β1) 1 D†(β2)D(β1)

D(β2) D†(β1)D(β2) 1

⎞
⎟⎠
�

�m1m2

.

(32)

As we outlined in Sec. II B each entry of this matrix can
be obtained by performing local Ramsey sequences and
measuring the population of the qubit afterwards. Note that
in an experiment we would need to measure three different
settings per side: those corresponding to D(α1), D(α2) and
D†(α1)D(α2), which corresponds to measuring 24 expectation
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FIG. 4. (Color online) Minimal eigenvalue λmin of the partial
transpose of the matrix of moments M� , for an entangled cat state
|ψ+〉 given in Eq. (23) and for values of αi and βi as defined in
Eq. (33).

values in total.1 Now let us consider the entangled state |ψ+〉
of two nanomechanical resonators from Eq. (23) in Sec. IV A.
By carefully adjusting the interaction times τ1 and τ2 we can
choose α1,2 and β1,2 in order to realize the following settings:

α1 = 2ξ0, α2 = iε/2ξ0,
(33)

β1 = −2ξ0, β2 = −iε/2ξ0,

with some real parameter ε. For these parameters we can
now evaluate the matrix of moments (32) and calculate the
minimal eigenvalue λmin of the partially transposed matrix
M� . A negative value of λmin certifies that the resonator state
is entangled. As shown in Figs. 4(a) and 4(b) this occurs for

1The entry that corresponds to the product of two displacement
operators can be obtained if we recall the canonical commutation
relations: D(α2)D(α1) = eiIm(α2α∗

1 )D(α2 + α1).
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FIG. 5. (Color online) Expectation value of the entanglement
witness W defined in Eq. (37) for the state |ψ+〉 (23). The plot is
shown for different values of the cat size ξ0 and for fixed ε = π/2
and w ≈ 0.4247.

the present example for values of ξ0 � 0.3 and ε � 0.1, i.e.,
for quite modest values of the displacement amplitudes.

This entanglement criterion can also be used to construct
a common entanglement witness. For instance, if �η with
elements ηij is an eigenvector that corresponds to a nega-
tive expectation value of the partially transposed matrix of
moments, i.e., �η†M� �η < 0, then one has

Tr{�η�η†M�} = Tr{(�η�η†)�M} ≡ Tr{Wρ} < 0. (34)

In the last step of Eq. (34) we interpret the expression as a
linear expectation value of an entanglement witness operator
W on the state ρ. For a matrix of moments of the form Mij,kl =
Tr{V †

ijVklρ} the witness operator is then explicitly given as

W =
∑
ij,kl

ηkjη
∗
ilV

†
ijVkl . (35)

One can follow this approach for the example of the cat
state in Eq. (23). From empirical observations we find that
for the ideal state (23) and for ξ0 � 2, the eigenvector that
corresponds to the minimal eigenvalue of the matrix M� has
a particularly simple form,

�η = [w,0,−iw,0,−
√

1 − 4w2,0,iw,0,w]T , (36)

with w ≈ 0.43.2 The corresponding entanglement witness
reads, using the abbreviations for three different measurement
settings s1 = 2ξ0,s2 = iε/2ξ0, and s3 = s2 − s1,

W = 1 ⊗ 1 + w2{[D(s2) − D(−s2)] ⊗ [D(s2) − D(−s2)]

+ 2i ([D(s2) − D(−s2)] ⊗ 1 − 1 ⊗ [D(s2) − D(−s2)])}
− w

√
1 − 4w2{D(s1) ⊗ D(s1) + D(−s1) ⊗ D(−s1)

+ D(s3) ⊗ D(s3) + D(−s3) ⊗ D(−s3),

ie−iε[D(s1) ⊗ D(−s3) + D(s3) ⊗ D(−s1)]

− ieiε[D(−s1) ⊗ D(s3) + D(−s3) ⊗ D(s1)]}. (37)

2Note that for smaller values of ξ0 the vector �η has another form and
one can construct a witness that is a little bit better than the presented
one. However, it cannot be described with only one parameter.
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We emphasize that this witness does not require the measure-
ment of all possible correlations. The first line can be measured
alone by using s2, while the remaining parts of the witness
only include correlations between the s1 and s3 settings. Since
most of the expectation values are complex conjugate to each
other, the witness W only requires the measurement of eight
independent correlations. As shown in Fig. 5 it still detects the
entanglement of the |ψ+〉 state for |ξ0| � 1.

V. CONCLUSIONS

In summary we have described a set of protocols for
performing nonclassicality tests and entanglement verification
based on Ramsey-type measurement schemes for harmonic
oscillators coupled to a two-level system. Specifically, by
extending previous ideas for a nonclassicality test for single
resonator modes, we have shown that the same underlying
techniques can be used to verify the entanglement between
two Schrödinger cat states. Although for the coupling under
consideration this task cannot be achieved directly, we have
identified a general strategy for constructing an entanglement

witness for this problem, which then requires only a small set
of correlation measurements and not the full knowledge of the
two-mode Wigner function. This work is mainly motivated
by upcoming experiments where nanomechanical resonators
are strongly coupled to microscopic two-level systems, and
where such techniques could be used to test the principles
of superpositions and entanglement with massive objects.
However, the analysis of this work is quite general and can
be applied to other systems, for example, trapped ions, as
well.
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