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We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational
background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational
correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed
to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell
renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon,
i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the
equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings
to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational
corrections to the speed of light which have recently appeared in the literature.
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I. INTRODUCTION

The speed of light, in curved space-time, is not as “constant”
as one would otherwise imagine. The curvature of space-time,
according to classical general relativity (see Appendix A), acts
as a refractive medium (without dispersion), giving rise to an
effective change in the speed of light (as seen from a global,
not local, coordinate system), which reads as

�c

c0
= 2

�G(�r)

c2
0

= (1 + γ )
�G(�r)

c2
0

< 0. (1)

Here, �G(�r) is the gravitational potential, normalized to zero
for two very distant objects, and the γ parameter is introduced
(for Einsteinian gravity, we have γ = 1, see Refs. [1,2]).
Throughout this article, we set c0 = 299 792 458 m/s equal to
the speed of light as consistent with the Einstein equivalence
principle, which states that space-time is locally flat. The
speed-of-light parameter c0 is canonically set equal to unity
in an appropriate unit system. The time delay formula (1)
is valid to first order in the gravitational coupling constant
(Newton’s constant) G. The concomitant slow-down of light
is known as the Shapiro time delay [3–5]. One of the most
precise tests has been accomplished with the Cassini spacecraft
in superior conjunction on its way to Saturn [6]; it involves
Doppler tracking using both X-band (7175 MHz) as well as
Ka-band (34 316 MHz) radar.

At high energy, the dispersion relation for a massive particle

is not different from that for photons, E =
√

�p2 c2
0 + m2 c4

0 ≈
| �p| c0 = � |�k| c0, where E is the energy, �p is the momentum,
and �k is the wave vector of the (light or matter) wave. The
modification (1) affects the speed of propagation for photons
as well as highly energetic neutrinos. For the central field of
the Sun, we have �G(�r) = −GM�/r where M� is the Sun’s
mass. In general, �G is negative, implying that light is slowed
down due to the bending of its trajectory caused by space-time
curvature.

Recently, in Ref. [7], it has been claimed that an additional
quantum electrodynamic (QED) correction to the result (1)

exists, which is of the functional form

δcγ

c0
= χ α

�G(�r)

c2
0

< 0, (2)

where α is the fine-structure constant, and χ is a constant
coefficient. For details of the arguments which led Franson
to his result given in Eq. (2), we refer the reader to
Sec. 3 of Ref. [7]. Essentially, Franson [7] evaluates the
vacuum-polarization correction for photons (on shell) in the
gravitational field, using a partially noncovariant formalism
[the photon energy E is used as a noncovariant variable in the
propagators; see Eq. (13) ff. of Ref. [7] for details of Franson’s
considerations]. It is known from quantum electrodynamic
bound-state calculations that even a slight noncovariance in
the regularization scheme can induce spurious terms [8];
some scrutiny should thus be applied. Using his calculational
scheme, Franson comes to the conclusion that the speed of
photons [hence the subscript γ in Eq. (2)] is altered due to the
gravitational correction to the electron-positron propagators
that enter the vacuum-polarization loop calculation. For the
coefficient χ , the following result has been indicated in
Ref. [7]:

χ = 9

64
(according to Ref. [3]). (3)

The decisive point of the analysis presented in Ref. [7] is that
the effect described by Eq. (2) is claimed to affect only photons,
not neutrinos, thus slowing the photons in comparison to the
neutrinos (and other massive fermions). According to Ref. [7],
the propagation of otherwise massless photons is influenced
by the electron-positron (light fermion) vacuum-polarization
effect at one-loop order, that of fermions is not.

A different ansatz for a modification of local Lorentz
transformations stems from the work of Vachaspati [9], who
claims that in addition to “electromagnetic time,” one can
define an “absolute time” (on the level of special relativity),
which transforms according to a modified Lorentz transfor-
mation (referred to here as the Vachaspati transformation),
and which, according to Ref. [9], is claimed to be compatible
with muon lifetime and Michelson-Morley experiments (see
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Appendix B). The Vachaspati transformation also leads to a
“speed-of-light” parameter which is dependent on the inertial
frame.

Here, we aim to investigate three sets of questions: (i) Is the
result given in Eq. (2) compatible with all other astrophysical
observations recorded so far in the literature? What bounds
can be set for the χ parameter given in Eq. (3)? Irrespective of
the value of χ , what changes would result from a hypothetical
quantum modification of the speed of light, induced according
to the functional form Eq. (2), for the description of other
physical phenomena? In particular, how would we describe
neutrinos in strong gravitational fields, where according to
Ref. [7], they propagate faster than the speed of light, even
at high energy? How would the result given in Eq. (2) affect
the Schiff conjecture [1,2,10]? (ii) The next question then
is whether the modification given in Eq. (2) exists at all. In
Sec. III, we investigate whether or not the calculations reported
in Ref. [7], which lead to the quantum effect (2), stand the test
of a fully covariant formulation of the gravitational corrections
to vacuum polarization, where the virtual fermions in the loop
are subject to gravitational interactions. Our calculation is
restricted to an analysis of the electron-positron loop insertion
into the photon propagator, which is the subject of Ref. [7],
and does not take all possible quantum corrections to the
photon propagator into account. The analysis in Sec. II thus
covers a much more general scope and answers general
questions regarding a modification of the speed of light in
gravitational fields, induced according to Eq. (2), while the
analysis in Sec. III only covers the vacuum-polarization loop
with fermion propagators subject to gravitational interactions.
(iii) In the context of atomic physics, what phenomenological
consequences will result from the gravitational correction
to the off-shell (virtual) photon propagator? This is briefly
discussed in Sec. IV. The first set of questions also has
relevance for the work of Vachaspati [9]. Conclusions are
reserved for Sec. V.

II. QUANTUM EFFECTS AND SPEED OF LIGHT

A. Quantum correction and Shapiro time delay

Because the quantum correction (2) is conjectured to be
induced by a virtual loop consisting of electrons and positrons
lifted from the quantum vacuum, its existence is not excluded
by classical theory, i.e., beyond the validity of the original
(purely classical) general theory of relativity formulated by
Einstein and Hilbert [11–13]. The delay induced by the
conjectured modification Eq. (2) for light rays propagating
from the Large Magellanic Cloud is claimed to be in
agreement [7] with the observed early arrival time of the (still
somewhat mysterious) early neutrino burst under the Mont
Blanc recorded in temporal coincidence with the SN1987A
supernova [14]. Essentially, the paper [7] claims that the
apparent superluminality of the “early” neutrino burst could
be due to a quantum electrodynamic effect which slows down
light in comparison to the neutrinos, in strong gravitational
potentials, with a delay induced according to Eq. (2).

However, this result should be compared to other precision
measurements of time delays induced by space-time curvature,
such as the Shapiro time delay [3–5]. The time delay due to the
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FIG. 1. Geometry for Eq. (4).

refractive index of curved space leads to the following formula
for a light ray or radar wave as it bounces back from an object
close to superior conjunction [see Eq. (49) of Ref. [1] and
Fig. 1],

δt = 2(1 + γ )
GM�

c3
0

ln

(
(r⊕ + �r⊕ · �n) (re − �re · �n)

d2

)
. (4)

Here, �re is the vector from the Sun to the source (e.g., the
Cassini spacecraft), �r⊕ is the vector from the Sun to the Earth,
while �n is the unit vector from the source to the Earth, and d

is the distant of closest approach of the light ray as it travels
from the Earth to the source and back. The parameter γ is
used in order to describe potential deviations from the classical
prediction.

The formula (4) is obtained on the basis of the classical
result (1). For details of the derivation, we refer to Chap. 4.4
on page 196 ff. of Ref. [15] and exercise 4.8 of page 161 of
Ref. [16]. The quantum “correction” given in (2) has the same
functional form as the classical result (1) but adds a correction
to the prefactor. If we assume the explicit numerical result
given in Eq. (3) to be valid, then this leads to a γ coefficient
different from unity,

γ − 1 = χ α = 9 α

64
= 1.03 × 10−3. (5)

However, the result of the Cassini observations [6] reads as
follows:

γ − 1 = (2.1 ± 2.3) × 10−5. (6)

The claim (3) thus is in a 44.8σ disagreement with the
experimental result (6), which is otherwise consistent with
zero. Unless the authors of Ref. [6] have overlooked a
significant source of systematic error, the effect described
by Eq. (3) thus is in severe disagreement with experiment.
Finally, we should remark that the γ parameter also enters the
expression for the light deflection formula around a central
gravitational center. A 2004 analysis of almost 2 million
very-long baseline (VLBI) observations of 541 radio sources,
made by 87 VLBI sites, yields the bound [17]

δγ = (−1.7 ± 4.5) × 10−4, (7)

which also is in disagreement with the claim (2). According to
Refs. [18,19], all current VLBI data together yield a value of
δγ = (0.8 ± 1.2) × 104, compatible with zero.

Alternatively, we can convert the result (6) into a bound for
the χ coefficient,

χ = (2.9 ± 3.2) × 10−3 , (8)

consistent with zero. However, quantum effects of the func-
tional form (2), but with a numerically small coefficient
compatible with the bound (8), cannot be excluded at present.
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B. Fermion wave equation

Let us analyze the problem of a fermion wave equation
for a local Lorentz frame in which photons propagate slower
than high-energy fermions. We remember that the Lorentz
violation induced by Eq. (2) actually is quite subtle; the effect
is not excluded by classical physics and vanishes globally in
the absence of gravitational interactions, i.e., it does not perturb
the speed of light in globally flat (Minkowski) space-time. In
order to write a wave equation describing fermions, we have
to carefully distinguish between the flat-space speed of light
c (in the absence of gravitational interactions), the classical
“correction” �c (which is compatible with the Einstein
equivalence principle and does not preclude the existence of
the local Minkowskian frame of reference), and the quantum
correction δcγ given in Eq. (2), which changes the speed of
light in a “local” reference frame to

cloc = c0 + δcγ = c0 − |δcγ |. (9)

We recall that, physically, the speed of light is the speed which
describes the propagation of the transverse components of
the electromagnetic field, which enter the Maxwell equations.
(The necessity of a careful separation of transverse and
longitudinal components has recently been highlighted in a
consideration of the photon wave functions, given in Ref. [20].)

As already stated in Sec. I, according to Ref. [7], the
modification (2) is supposed to slow down photons in strong
gravitational fields, not neutrinos or electrons. Let us therefore
investigate the question of a correct equation to describe funda-
mental fermions in strong gravitational fields (deep potentials),
on the basis of a (possibly generalized) Dirac equation. One
possibility is to postulate that the local Lorentz transformation
has to be modified to include the local quantum modification
of the speed of light, while the formalism of classical general
relativity is unaltered by the quantum modification. Let us
also assume that the “local Lorentz transformation,” under the
presence of the quantum correction (2), is formulated to be the
transformation which preserves the light element

dxμ dxμ = c2
locdt2 − d�r 2 = 0, (10)

where dxμ = (cloc dt,d�r) is a space-time interval, and cloc is
the speed of light in the local coordinate system. The correction
�c given in Eq. (1) is compatible with the Einstein equivalence
principle of a locally flat space-time and therefore does not
change the Dirac equation (with parameter c) in the usual Dirac
equation for fermion wave packets, but the quantum correction
δcγ , given in Eq. (2), leads to the replacement c0 → cloc.

According to Eq. (2), high-energy fermions are faster
than light rays at high energy, by an offset |δcγ |, making
them effectively superluminal, thus leading to an explanation
for the early neutrino burst from the supernova 1978A (see
Refs. [7,14]). The preferred way to describe highly energetic
fermions (neutrinos) which travel faster than light is via the
tachyonic Dirac equation [21], which in the local reference
frame reads as(

i� γ μ ∂

∂xμ
− γ 5mcloc

)
ψ(t,�r) = 0, (11)

where ψ(t,�r) is the fermion wave function. The projector
sums for the tachyonic spinor solutions have recently been

investigated in Refs. [22,23]. The main problem here does not
lie in the tachyonic equation, but in the description of highly
energetic neutrinos because of their uniform velocity offset
|δcγ | at high energy from photons. This offset prevents them
from reaching the photon mass shell in the local coordinate
system. To see this, let us note that the particles described by
Eq. (11) fulfill the dispersion relation

E =
√

�p 2 c2
loc − (mc2

loc)2, (12a)

E = mc2
loc√

v2/c2
loc − 1

, (12b)

| �p| = mv√
v2/c2

loc − 1
, (12c)

where v ≈ c0 > cloc is the propagation speed of highly
energetic neutrinos, required for the explanation of the early
arrival time of the neutrinos according to Ref. [7]. The energy
can thus be expressed as

E = mc2
loc√

v2/c2
loc − 1

≈ m c
5/2
loc√

2|δcγ | , (13a)

v = cloc + |δcγ | ≈ c0. (13b)

We are now in a dilemma: On the one hand, the energy
of a highly energetic neutrino is not bounded from above,
but even for a neutrino traveling exactly at the speed of light
v = c0, the right-hand side of Eq. (13a) only contains the
fixed parameters cloc and |δcγ |. Hence, the only way to make
Eq. (13a) compatible with Eq. (11) is to assume a universal
mass “running” of the tachyonic mass parameter in Eq. (11),
linear with the energy scale, of the functional form

m → m(E) ∝ E =
√

2|δcγ |
c

5/2
loc

E. (14)

It thus becomes clear that the mere existence of a “local”
gravitational quantum correction of the functional form (2)
would induce severe problems in the description of high-
energy fermions in local reference frames in strong gravita-
tional fields (“deep potentials”). In other scenarios of Lorentz
breaking mechanisms in local reference frames [24–26], the
Lorentz-breaking terms are not required to run with the energy
scale. The same is true for small Lorentz-violating admixture
terms to Dirac equations in free space [27–29].

As a final remark, let us note that according to Ref. [7],
high-energy neutrinos would be traveling faster than light,
but not faster than electrons. Hence, the analog of Cerenkov
radiation emitted by neutrinos, namely, the reaction ν → ν +
e+ + e−, cannot occur; according to Ref. [30], this process
constitutes the main decay channel of tachyonic neutrinos.
Genuine Cerenkov radiation ν → ν + γ is suppressed for the
electrically neutral neutrinos and must proceed via a W loop.
The slow-down of light in comparison to high-energy fermions
according to Eq. (2), though, would lead to Cerenkov radiation
from highly energetic charged leptons [e.g., synchrotron losses
at the Large Electron-Positron Collider (LEP)]. Within the
models studied in Refs. [31–33], rather stringent bounds have
been obtained for certain Lorentz-violating parameters. All of
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these results, though, are model dependent. E.g., the dispersion
relation E = p vν , assumed in Ref. [30], is different from the
dispersion relation that is generally assumed for tachyonic
neutrinos [see Eq. (12a) here in the paper and independently
Ref. [21]]. The Lorentz violation induced by the slow-down
of light due to a radiative correction proposed in Ref. [7] is
quite subtle; however, the functional form (2) allows for a
direct model-independent comparison with bounds on the γ

parameter introduced in Eq. (1), as discussed in Sec. II A.

C. Equivalence principle and Schiff conjecture

The Schiff conjecture (see Sec. 2.2.1 of Ref. [10]) is con-
nected with two different forms of the equivalence principle,
namely, the weak equivalence principle and the Einstein equiv-
alence principle. Originally, Newton stated that the property
of a body called “mass” (“inertial mass”) is proportional to the
“weight” (which enters the gravitational force law), a principle
otherwise known as the “weak equivalence principle” (WEP).
The Einstein equivalence principle (EEP) states that (i) WEP is
valid, (ii) the outcome of any local nongravitational experiment
is independent of the velocity of the freely falling reference
frame in which it is performed (local Lorentz invariance, LLI),
(iii) the outcome of any local nongravitational experiment is
independent of where and when in the universe it is performed
(local position invariance, LPI).

It is obvious to realize that the existence of a local modi-
fication of the speed of light in deep gravitational potentials
according to (2) would lead to a (very slight, but noticeable)
violation of point (iii) of the EEP. Namely, because the shift δcγ

affects only photons, not neutrinos or electrons (according to
Ref. [7]), one could measure the local propagation velocity
of high-energy fermion versus photon wave packets. The
former propagate at velocity c0 in a local reference frame,
whereas the latter are affected by the correction δcγ ∝ �G.
The potential �G depends on the position in the Universe
where the experiment is performed (for reference values of
�G in different regions, see Table 1 of Ref. [7]).

According to Sec. 2.2.1 of Ref. [10], the Schiff conjecture
states that for self-consistent theories of gravity, WEP neces-
sarily embodies EEP; the validity of WEP alone guarantees the
validity of local Lorentz and position invariance, and thereby
of EEP. The question of whether the correction δcγ violates
the WEP is a matter of interpretation because δcγ affects only
massless objects, namely, photons; it is, as already emphasized,
a quantum effect which goes beyond the scope of classical
mechanics in which the weak equivalence principle was first
formulated (in its original form by Newton).

One could perform a thought experiment and enter a
region of deep gravitational potential with three freely falling,
propagating wave packets, one describing a photon, the others
describing a very highly energetic neutrino and a very highly
energetic electron, respectively. The latter two propagate at
a velocity (infinitesimally close to) c0. If a correction of the
form δcγ exists, then photons will have been decelerated to
a velocity c0 − |δcγ | within the deep gravitational potential,
whereas both fermions will have retained a velocity (infinites-
imally close to) c0. If we regard the photons as particles
(the photon being a concept introduced into physics after
the WEP was first introduced by Newton), then we could

argue that a “force” must have acted onto the photon, causing
deceleration, even though the particles were in free fall. This
might indicate a violation of the WEP but only if the photon
were regarded as a normal “particle” in the sense of Newton’s
idea (which is not fully applicable because of the vanishing
rest mass of the photon). Alternatively, we could interpret any
change in velocities relative to the local speed of light as an
“acceleration” and thus interpret the faster propagation of the
electrons and neutrinos in comparison to the photon within
the region of deep gravitational potential as the result of a
force which must have acted on the fermions. Both neutrinos
and electrons retain a velocity very close to c0 and have thus
been accelerated by the same velocity |δcγ |; because of their
different rest mass, the force acting on them must have been
different, thus violating the WEP.

Today, one canonically understands the WEP as not being
tied to “massive” objects, stating that free-fall at a given point
in space-time is the same for all physical systems, and that
photons, electrons, and neutrinos in a gravitational potential
all act as if they are in the same accelerated coordinate frame.
In that sense, if a theory predicts that gravitational potentials
make the local photon velocity different from the local limiting
velocity of high-energy massive particles, then that theory
violates the WEP.

Thus, depending on the interpretation, one might conclude
that Schiff’s conjecture holds true, in the sense that the
correction (2) violates both the WEP as well as the EEP. The
caveat must be stated because strictly speaking, photons do not
have a rest mass, and thus, the WEP in the original formulation
is not fully applicable. One should also bear in mind that slight
violations of fundamental laws and symmetries of nature are
being discussed and all we can do is establish bounds for
violating parameters [24–29]. For the scenario studied by
Vachaspati (see Appendix B and Ref. [9]), the violations of
the EEP and the WEP would be of order unity; the “light
speed measured in absolute time” can be different from the
“light speed measured in electromagnetic time,” depending on
the relative velocity of the moving frames vA.

III. DIRAC EQUATION AND GRAVITATIONAL COUPLING

The far-reaching consequences of any correction of the
form (2) to the speed of light in deep gravitational potentials
together with the bound formulated in Eq. (8) for the χ

coefficient stimulate a recalculation of the leading gravitational
correction to vacuum polarization, supplementing the analysis
of Ref. [7]. Recently, the gravitationally coupled Dirac equa-
tion has been investigated [34–37], with particular emphasis on
the Dirac-Schwarzschild problem, which is the equivalent of
the Dirac-Coulomb problem for electrostatic interactions and
describes a particle bound to a central gravitational field. From
now on, for the remainder of this article, we revert to natural
units with � = c0 = ε0 = 1, because we no longer consider
a conceivable “correction” of the form (2). In leading order,
the Hamiltonian which governs the gravitational interaction is
given by [see Eq. (12) of Ref. [34]]

H = �α · �p + β m w(r), (15)

w ≈ 1 − rs

2r
= 1 − GM

r
= 1 + �G, (16)
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where rs = 2GM is the Schwarzschild radius. Here, r is
the Eddington coordinate in the Eddington form [38] of the
Schwarzschild metric, which however is equal to the radial
coordinate in the original Schwarzschild metric in the limit
r → ∞ (i.e., in the limit of a weak gravitational field). We
use the vector of Dirac �α matrices, and the β matrix, in the
standard representation [39].

After a Foldy-Wouthuysen transformation, the Hamiltonian
(15) takes the form (in the leading order in the relativistic
expansion)

H ≈ β

(
m + �p 2

2m
− rs

2r

)
= β

(
m + �p 2

2m
+ �G

)
. (17)

Here, the β matrix describes the particle-antiparticle symmetry
[35], while the latter form shows that the gravitational potential
can be inserted into the Schrödinger equation “by hand”
in the leading order (the somewhat nontrivial relativistic
corrections involve the gravitational Zitterbewegung term, and
the gravitational spin-orbit coupling [35]).

The leading gravitational term in Eq. (15), in the fully
relativistic formalism, corresponds to a position-dependent
modification of the Dirac mass of the electron, which is present
only if one departs from the local Lorentz frame (locally flat
space-time) and aims to describe the Dirac particle globally,
in the curved space-time. Defining the effective mass mG of
the electron as

mG = m w(r) ≈ m (1 + �G) , (18)

one can carry out the calculation of the vacuum polarization
insertion as described in the literature. One possibility is
to use the covariant formalism described in Chap. 7 of
Ref. [39], which relies on a Feynman parameter integral.
A recent, particularly clear formulation given in Sec. 5 of
Ref. [40] clarifies that the additional mass terms introduced
in Pauli-Villars regularization do not affect the calculation of
the vacuum-polarization tensor, which depends only on the
physical, local, effective mass of the electron. An alternative
possibility is given in Chap. 113 of Ref. [41], where a
subtracted dispersion relation is used in order to circumvent
parts of the problems associated with regularization and
renormalization, and leads to a dispersion integral which starts
at the pair production threshold (2mG)2. The result of all
these approaches invariantly reads as follows, in terms of a
modification of the photon propagator Dμν = gμν/k2:

gμν

k2
→ gμν

k2 [1 + ωR(k2)]
, k2 = ω2 − �k2. (19)

A straightforward application of the formalism of covariant
quantum electrodynamics then leads to the renormalized
(superscript R) vacuum-polarization insertion, written in terms
of the effective mass mG of the electron,

ωR(k2) = αk2

3π

∫ ∞

4m2
G

dk′2

k′2
1 + 2m2

G

/
k′2

k′2 − k2

√
1 − 4m2

G

k′2 . (20)

We note that ωR(k2) vanishes for k2 = ω2 − �k2 = 0, thus
leaving the speed of light of on-shell photons invariant. For
k2 
= 0 (off-shell, virtual photons), we note the asymptotic

behavior

ωR(k2) = α

15π

k2

m2
G

+ O(k4), k2 → 0 , (21a)

ωR(k2) = − α

3π
ln

(
− k2

m2
G

)
+ 5α

3π
+ O

(
ln(−k2)

k2

)
,

k2 → ∞. (21b)

These are in principle familiar formulas (see Chap. 7 of
Ref. [39]), and we identify the leading gravitational effect
on vacuum polarization to be given by the gravitationally
corrected mass. The conclusions of Ref. [7], and the result
(2), can thus be traced to an inconsistent evaluation of the
vacuum polarization integral, which relies on a relativistically
noncovariant formulation [see the discussion surrounding
Eq. (6) of Ref. [7]], and bears an analogy with similar problems
encountered in bound-state quantum electrodynamics [8].

IV. BOUND-STATE ENERGIES

A final word on bound-state energies is in order. With the
mass of the electron assuming the value m → mG, the vacuum
polarization potential (Uehling, one loop), derived from the
virtual exchange of space-like Coulomb photons (k2 = −�k2),
is easily derived as (in units with � = c0 = ε0 = 1)

Vvp(�r) = −4α

15

Z α

m2
G

δ(3)(�r), (22)

where Z is the nuclear charge number. However, the grav-
itationally corrected mass also enters the Dirac-Coulomb
Hamiltonian H = �α · �p + β mG − Zα/r , where the Dirac
matrices are used in the standard representation, and r

denotes the electron-proton distance [39]. By consequence,
after a Foldy-Wouthuysen transformation, the gravitationally
corrected mass parameter mG also enters the Schrödinger wave
function, and the probability density of S states with orbital
angular momentum � = 0 at the origin becomes proportional
to (ZαmG)3. The gravitationally corrected energy shift reads as

〈Vvp(�r)〉 = − 4α

15π

(Z α)4 mG

n3
δ� 0. (23)

The energy shift is proportional to the effective mass of the
electron, which also enters the Schrödinger spectrum En =
−(Zα)2mG/(2n2), where n is the principal quantum number.
[We recall that the Dirac-δ potential δ(3)(�r) is formulated with
respect to the central electrostatic potential generated by the
nucleus of charge number Z, not the gravitational center, while
n and � denote the principal and orbital angular momentum
quantum numbers of the state.] The scaling with the effective
mass of the electron thus affects the vacuum polarization
energy shift as much as the leading Schrödinger term and thus
does not shift atomic transitions with respect to each other.

The gravitational correction to bound-state energy levels
due to fluctuations of the electron position in the gravitational
field of the Earth can easily be estimated as follows. Namely,
the atomic electron coordinate fluctuates over a distance of a
Bohr radius about the position in the gravitational field. If we
denote by �R = �rN + �r the electron coordinate from the Earth’s
center (with the Earth mass being denoted as M⊕), where rN
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is the proton coordinate, then the fluctuations of the electron
about the gravitational center of the atom cause an energy shift
of the order of

−Gme M⊕
|�rN + �r| + Gme M⊕

|�rN | ∼ Gme M⊕ a0

�R2
= 2.9 × 10−21 eV.

(24)
This effect influences typical atomic transitions (with transi-
tion frequencies on the order of one eV) at the level of one part
in 1021.

V. CONCLUSIONS

The main results of the current investigation can be
summarized as follows: Both the Vachaspati transformation
(see Appendix A and Ref. [9]) as well as the Franson time
delay [see Eq. (2) and Ref. [7]] are in disagreement with
the Einstein equivalence principle (EEP, see the discussion
in Sec. II C). The Franson time delay, which affects only
photons, not fermions, is a subtle effect, and the violation
of the EEP due to the Franson time delay would be at the
quantum level (hence a small correction) as opposed to the
Vachaspati transformation. Hence, it is warranted to establish
an astrophysical bound on the magnitude of the χ parameter
introduced in Eq. (2). This is done is Sec. II A. Furthermore, the
description of fermions in deep gravitational potentials, under
the assumption of a time delay δcγ for photons according to
Eq. (2), is studied in Sec. II B. It is shown that the description
of fermions in such a deep gravitational potential will require
a mass term that “runs” with the energy and thus is more
problematic than a superficial look at the “small” correction
term (2) would otherwise suggest.

In Sec. III, we analyze the leading gravitational correction
to vacuum polarization using a fully covariant formalism and
find that, with on-mass-shell renormalization, the effect can
be described by a mass term modification which depends on
the value of the gravitational potential in the vicinity of the
virtual electron-positron pair. It vanishes on shell and thus
does not lead to a nonvanishing χ coefficient in the sense of
Eq. (2). Finally, in Sec. IV, we analyze conceivable shifts for
atomic bound-state levels, caused by off-shell virtual photons
in the vacuum-polarization loops. We find that the effect, at
least within the approximations employed in Sec. IV, does not
shift spectral lines with respect to each other because it can be
absorbed in a prefactor of the vacuum-polarization term which
is also present in the leading Schrödinger binding energy.
Finally, we estimate the leading gravitational correction to
atomic energy levels, which depends on the quantum numbers,
in terms of fluctuations of the electron and nucleus coordinates
in the gravitational field of the Earth, and come to the
conclusion that the term induced by the coordinate fluctuations
within the binding Coulomb potential is of relative order 10−21.
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APPENDIX A: GLOBAL REFERENCE FRAME AND
SPEED OF LIGHT

Let us motivate the Shapiro time delay on the basis of
the Schwarzschild metric [42], in isotropic form (Sec. 43 of
Chap. 3 of Ref. [38]),

ds2 =
(

1 − rs/(4r)

1 + rs/(4r)

)2

dt2

−
(

1 + rs

4r

)4
(dr2 + r2dθ2 + r2 sin2 θ dϕ2). (A1)

We use units with � = c0 = ε0 for the entire Appendix A.
Light travels on a null geodesic, with ds2 = 0, and so

(
1 − rs/(4r)

1 + rs/(4r)

)2

dt2 −
(

1 + rs

4r

)4

d�r 2 = 0. (A2)

One obtains(
d�r
dt

)2

= [1 − rs/(4r)]2

[1 + rs/(4r)]6
=

[
1 − 2

rs

r
+ O

(
1

r2

)]
. (A3)

We now consider the limit of large distance r . Using the
relation rs = 2GM , the local speed of light, expressed in terms
of the global coordinates, is∣∣∣∣d�r

dt

∣∣∣∣ = 1 − 2GM

r
= 1 + 2 �G(�r), (A4)

where we identify �G(�r) = −GM/r with the gravitational
potential. One can easily generalize the derivation [see
Chap. 4.4 on page 196 ff. of Ref. [15], Eq. (4.43) of Ref. [16],
and Sec. 4.5.2 as well as the discussion on page 160, and
exercise 4.8 on page 161 of Ref. [16] as well as Ref. [43]].
The effect is known as the Shapiro time delay [3–5]. The
application to the travel time of particles stemming from the
SN1987A supernova is discussed in Refs. [44,45].

APPENDIX B: VACHASPATI TRANSFORMATION

Vachaspati [9] distinguishes between “absolute time” tA
and “electromagnetic time” tE . The Lorentz-Vachaspati trans-
formation resembles the Lorentz transformation, but with a
variable “speed-of-light parameter” u0, which, in the primed
system, transforms into u′

0:

u′
0 t ′A = γA(u0 tA + βA x), (B1a)

x ′ = γA(x + βAu0 tA). (B1b)

The backtransformation formally carries a resemblance to the
Lorentz transformation,

u0 tA = γA(u′
0 t ′A − βA x ′), (B2a)

x = γA(x ′ − βAu′
0 t ′A). (B2b)

The relativistic factors carry a different functional form,

γA =
√

1 +
(

vA

c0

)2

, βA = vA

c0

√
1 +

(
vA

c0

)2

. (B3)
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One verifies that

x ′2 − u′
0

2
t2
A = x2 − u0

2 t2
A. (B4)

For the absence of time dilation, one considers events 1 and 2,
with coordinates

x ′
1 = 0, t ′A,1 = 0, x1 = 0, tA,1 = 0, (B5a)

x ′
1 = vAtA, t ′A,2 = tA, x2 = 0, tA,2 = τ. (B5b)

One obtains

tA,2 = τ =
(

γA

u′
0

u0
− v2

A

c0 u0

)
tA. (B6)

There is no time dilation if one chooses the parameter u′
0 to

read as

u′
0 = c0 u0 + v2

A

c0 γA

. (B7)

If u0 = c0, then u′
0 = (1 + v2

A/c2
0)1/2 u0 = γA u0.

For comparison (we briefly recall textbook material), let us
consider the Lorentz transformation,

c0 t ′E = γE(c0 tE + βE x), (B8a)

x ′ = γE(x + βE c0 tE), (B8b)

where the subscript E stands for the “electromagnetic”
events according to Vachaspati [9]. The backtransforma-
tion reads as c0 tE = γE(c0 t ′E − βE x ′) and x = γE(x ′ −
βE c0 t ′E). The relativistic factors have the familiar functional
form,

γE =
[

1 −
(

vE

c0

)2]−1/2

, βE = v

c0
. (B9)

One verifies that dx ′2 − c2
0 dt ′E

2 = x2 − c2
0 dt2

E . For
the derivation of time dilation, we consider events

1 and 2,

x ′
1 = 0, t ′E,1 = 0, x1 = 0, tE,1 = 0, (B10a)

x ′
1 = vt, t ′E,2 = t, x2 = 0, tE,2 = τ. (B10b)

One immediately obtains the familiar time dilation formula,
tE,2 = τ = t/γE .

Vachaspati’s formalism identifies the absolute time tA as
a formally different parameter from the electromagnetic time
t = tE . Furthermore, the speed-of-light parameter u0 has to
be adjusted for the relative speed of the primed and unprimed
coordinate systems. The relationship of the u0 and u′

0 to the
observed, physical speed of light in both coordinate systems
and the (claimed) reconciliation of the Vachaspati transfor-
mation with the Michelson-Morley experiment are discussed
in Ref. [9]. The Vachaspati transformation reproduces the
Galilei transformation in the limit vA → 0 and constitutes
an alternative to the Lorentz transformation, with a variable
speed-of-light parameter. In the primed system, the parameter
u′

0 can be larger than c0.
The muon lifetime measurement [46], which demonstrates

that fast-moving muons live longer, is “reconciled” in Ref. [9]
with the concept of absolute time by pointing out that the
lifetime of muons is determined by the electromagnetic time, or
“electroweak time” tE , which need to be equal to the absolute
time tA. It is doubtful if the concept of an absolute time
has any physical interpretation beyond its occurrence in the
Lorentz-like transformation law (B1). However, the Vachaspati
transformation is indicated here in order to demonstrate that
a Lorentz-like transformations with a variable speed-of-light
parameter u0, whose value depends on the inertial frame, have
been discussed in the literature. The Vachaspati transformation
is different from the modification of the speed of light proposed
by Franson [7] in that the variation of the speed is introduced
at the classical as opposed to the quantum level.
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