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Universality of sequential quantum measurements
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We show that any jointly measurable pair of quantum observables can be obtained in a sequential measurement
scheme, even if the second observable will be decided after the first measurement. This means that it is possible to
perform a measurement of any quantum observable in a way that does not disturb the subsequent measurements
more than is dictated by joint measurability. Only measurements with a specific structure have this universality
feature. As a supplementing result, we provide a characterization of all possible joint measurements obtained
from a sequential measurement lacking universality.
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I. INTRODUCTION

Sequential quantum measurements have received renewed
attention recently and their range of application has become
broader. This concept has been investigated, for example,
in the context of state discrimination [1], tomography [2],
cryptography [3,4], undecidability [5], decoding [6,7], and
contextuality [8]. However, the fundamental limitations of
the sequential method of performing quantum measurements
have not been addressed systematically. Understanding the
limitations should be important from the perspective of
quantum information science.

On the conceptual side, a sequential measurement can be
seen as a special type of joint measurement. The connections
of joint measurability with Bell nonlocality [9] and steering
[10,11] have been recently clarified. In this respect, one can ask
if sequential measurements form a strictly smaller class of joint
measurements, or if any jointly measurable set of observables
has a sequential realization.

The main result of this work is that any jointly measurable
pair of observables can be obtained via a sequential measure-
ment scheme, even if the second observable is decided after
the first measurement. In particular, suppose an observable A
is pairwisely jointly measurable with two observables B and
C, but the triplet (A,B,C) is not jointly measurable. One could
think that we have to choose beforehand which pair, (A,B) or
(A,C), we will measure. However, this intuition is not true.
One can, in fact, first measure A and only later decide whether
to implement a measurement of B or C.

Our result means that it is possible to perform a mea-
surement of any quantum observable in a way that does not
disturb the subsequent measurements more than is dictated
by joint measurability. In practice, this means that for two
jointly measurable observables A and B, we can find an
observable B′, depending on both A and B, such that a
sequential measurement of A and B′ implements a joint
measurement of A and B. This striking feature, which we call
universality, holds only for certain measurement schemes. As
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a supplementary result, we derive a characterization of all
possible joint measurements obtained from any nonuniversal
measurement scheme.

II. SEQUENTIAL AND JOINT MEASUREMENTS

The mathematical framework for sequential quantum mea-
surements was provided a long time ago [12]. For our purposes
it suffices to use a rudimentary formulation. We will describe
a quantum measurement as a pair (A,�) consisting of an
observable A and a channel �, where A assigns a probability
distribution of measurement outcomes to each input state and
� maps each input state � into an output state �(�); see
Fig. 1. One can obviously give more detailed descriptions of
a quantum measurement, but this kind of simple description
is enough for our present purposes. Two common levels of
descriptions are those given by instruments and measurement
models. An overview can be found in Ref. [13].

Mathematically, an observable, in its most general form,
is presented as a positive-operator valued measure (POVM).
We will assume that there are a finite number of outcomes,
so an observable is a function A : x �→ A(x) from a finite
set of measurement outcomes �A ⊂ Z to the set of positive of
operators on an input Hilbert space Hin, and this function must
satisfy the normalization constrain

∑
x∈�A

A(x) = 1, where 1
is the identity operator on Hin.1 The probability of obtaining
an outcome x for an input state � is tr[�A(x)].

A channel � is presented as a completely positive and
trace preserving linear map on Hilbert space operators. It
transforms an input state � on Hin into an output state �(�)
on Hout. We assume that the outcome of the measurement
is not used for selection, so the output state �(�) describes
the unconditional state change. We allow Hout to be different
from Hin; physically this amounts to either including an
environment in the description of the output system, or to
discarding some part of the input system.

1In the literature POVMs are also called generalized observables or
generalized measurements. A POVM can have also infinite number
of outcomes, in which case it assigns a positive operator to sets; see
e.g. [13]
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FIG. 1. (Color online) A quantum measurement leads to a classi-
cal output (measurement outcome) and quantum output (transformed
quantum state). The probabilities for measurement outcomes are
given by an observable A, while the averaged output state is given by
a channel �.

An important point is that not every pair of an observable
and channel gives a valid description of a quantum measure-
ment. Specifically, a channel � and an observable A can
describe the same measurement if and only if there exist
completely positive maps �x such that∑

x

�x = � and tr[�x(�)] = tr[�A(x)] (1)

for all outcomes x and input states � [14]; in this case we
say that � is A-channel. Perhaps the most commonly used
A-channel is the Lüders channel LA of A, which is defined as
LA(�) = ∑

x

√
A(x)�

√
A(x).

By a sequential measurement we mean a setting where two
or more measurements are performed on the same system,
one after the other. We will concentrate on the case of
two measurements. The first measurement must be described
as an observable-channel pair (A,�), while for the second
measurement it is enough to specify just the observable B
since we do not examine the output state after the second
measurement. If the initial state of the system is �, then the
obtained measurement outcome distributions are tr[�A(x)] and
tr[�(�)B(y)]. We are typically interested in the properties of
the input state � rather than the output state �(�); hence it
is convenient to use the Heisenberg picture and write the
second measurement outcome distribution as tr[��∗(B(y))],
where �∗ is the adjoint action of � on the set of observ-
ables.2 In essence, a sequential measurement of A and B
gives measurement outcomes of A and �∗(B) on the input
state �.

A concept related to sequential measurements is that of
a joint measurement. Two observables A and B are jointly
measurable if there exists an observable M having the
product set �A × �B as the set of measurement outcomes
and satisfying

A(x) =
∑

y

M(x,y) , B(y) =
∑

x

M(x,y) (2)

for all x ∈ �A and y ∈ �B. Any observable M satisfying (2)
is called a joint observable of A and B. This definition easily
extends to any finite number of observables; A,B,C, . . . , are
jointly measurable if there is a single observable M whose
marginals coincide with A,B,C, . . ..

2If � is a channel written in the Schrödinger picture, then �∗ is
defined by the formula tr[�(�)T ] = tr[��∗(T )], required to hold for
all states � and operators T .

A sequential measurement of two quantum observables can
be seen as a special type of joint measurement. Formally,
if we have maps �x satisfying (1), then we can define
M(x,y) = �∗

x(B(y)). This is a joint observable of A and the
perturbed version �∗(B) of B. At first sight, joint measurement
is a broader concept than sequential measurement; a joint
measurement is any type of measurement from which one can
extract the desired probability distributions of measurement
outcomes, whereas in a sequential measurement one has to
measure two observables, one after the other. Hence, an imme-
diate question arises: Does the sequential method of measuring
two quantum observables suffer from limitations specific to it,
or can one perform all possible joint measurements in this
way? We show that there are no additional limitations, and
there is even a surprising advantage in certain kinds sequential
measurements, which we will call universality.

III. SHARP OBSERVABLES

As a warm up, let us assume that A is a sharp observable,
i.e., A is a POVM and each operator A(x) is a projection.
If we perform a standard von Neumann measurement of
A, then the state transformation is described by the Lüders
channel of A. Supposing that the subsequently measured
observable is B, then the actually implemented perturbed
version is given by y �→ ∑

x A(x)B(y)A(x). We see that if A
and B commute [i.e., A(x)B(y) = B(y)A(x) for all x,y], then∑

x A(x)B(y)A(x) = B(y) and this sequential measurement is
a joint measurement of A and B. On the other hand, it is
well known that a sharp observable is jointly measurable with
another observable if and only if they commute; see, e.g., [15].
We conclude that a joint measurement of a sharp observable A
and some other observable B can always be implemented as a
sequential measurement of A and B.

The previously described case is a particular instance of the
class of measurement schemes where the first measurement
does not disturb the second one at all; the nondisturbance
condition requires that

tr[�(�)B(y)] = tr[�B(y)] (3)

for all input states � and outcomes y. This condition means
that the measurement outcome probabilities for B are the same
for all pairs of an input state � and the corresponding output
state �(�). Obviously, if the nondisturbance condition holds,
then a sequential measurement described by (A,�) and B
implements a joint measurement of A and B even if A is
not sharp. The condition (3) holds, for instance, if A and B
commute and we choose � to be the Lüders channel of A.
However, for observables that are not sharp, the condition (3)
may be fulfilled for some A-channel even if A and B do not
commute, and joint measurability may hold even if there is
no nondisturbing measurement at all [16]. A special feature
of sharp observables is the equivalence of commutativity,
nondisturbance, and joint measurability.

IV. CHANNELS HAVING THE UNIVERSAL PROPERTY

In the general case, the first measurement disturbs the
second one, but a joint measurement may still be possible.
In practice, this means that to obtain a joint measurement of
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FIG. 2. (Color online) (a) A joint measurement of observables A
and B gives measurement outcomes for both A and B. (b) Sequential
measurement of A and a modified observable B′ is equivalent to the
joint measurement if the modification properly compensates for the
disturbance that the first measurement causes.

some observables A and B, we may need to measure first A and
then B′, which is a modified version of B. The modification is
aimed to compensate the disturbance that the first measurement
causes; see Fig. 2. We are thus looking for an A-channel �

and an observable B′ such that

tr[�(�)B′(y)] = tr[�B(y)] (4)

for all input states � and outcomes y, or equivalently in the
Heisenberg picture, �∗(B′(y)) = B(y) for all outcomes y.

This equation can be interpreted in two ways. First, we
may measure some observable B′ after A, typically as sharp,
informative or good as possible, and then (4) determines the
actually implemented observable B. Second, we may want to
obtain exactly B as the second observable, in which case we
can try to tailor � and B′ in such a way that B is acquired.

As a preliminary step towards our main result, we recall a
simple construction which shows that the required objects �

and B′ exist whenever A and B are jointly measurable [16].
Namely, suppose that A and B are jointly measurable; hence
there exists M such that A(x) = ∑

y M(x,y) and B(y) =∑
x M(x,y). We define a channel �B with an output Hilbert

space Hout = C|�B| as

�B(�) =
∑

y

tr[�B(y)]|y〉〈y|, (5)

where {|y〉}y∈�B is an orthonormal basis of Hout. Since

�B(�) =
∑

x

(∑
y

tr[�M(x,y)]|y〉〈y|
)

(6)

and

tr

[∑
y

tr[�M(x,y)]|y〉〈y|
]

= tr[�A(x)] (7)

we conclude that �B is an A-channel. Moreover,

tr[�B(�)|y〉〈y|] = tr[�B(y)] (8)

so that (4) holds for the choices B′(y) = |y〉〈y| and � = �B. In
conclusion, this sequential measurement scheme implements
a joint measurement of A and B.

The previously defined sequential measurement is not very
useful since the applied A-channel �B is designed specifically
for B. This weakness becomes clear when we consider a
collection of observables that are pairwisely jointly measurable
without being jointly measurable as a whole [15,17]: Suppose
A, B, and C are such. Hence, A is pairwisely jointly measurable
with both B and C, but the triplet (A,B,C) is not jointly
measurable. (A simple example of this kind of triplet is
formed when the usual x,y,z-spin-component observables of
a spin- 1

2 particle are mixed with uniform noise with a mixing
parameter t chosen from the interval 1/

√
3 < t � 1/

√
2 [15].

Interestingly, one can also find a different triplet that violates
a Bell inequality [11].) Suppose further that our task is to
measure either the pair (A,B) or (A,C), but we will be told the
desired pair only after we have performed the measurement of
A. Since the triplet (A,B,C) is not jointly measurable, it is not
clear how to succeed in this task. In particular, the sequential
measurement scheme related to �B does not work since in
that case the first measurement has to be chosen according to
the second one, and one can see that for any observable C′
on Hout, we get (�B)

∗
(C′(z)) = ∑

y〈y|C′(z)|y〉B(y), which is
just a smearing of B.

To be able to overcome this drawback, we need an A-
channel � that satisfies the criterion (4) for both B and C
with some modified versions B′ and C′ on the left-hand side,
respectively. In the best case we would have an A-channel �

that satisfies the sequential measurement criterion (4) for all
observables that are jointly measurable with A. This motivates
the following definition.

Definition 1. An A-channel � has the universal property
(relative to A) if for each observable B jointly measurable with
A, there exists an observable B′ such that

tr[�(�)B′(y)] = tr[�B(y)] (9)

for all input states � and outcomes y ∈ �B.
The universal property means that the measurement of an

observable A limits the future measurements no more than
is necessary, thus putting no additional limitations (i.e., other
than joint measurability) on the measurements that can be
implemented later. Our main result states that these kinds of
measurements exist.

Theorem 1. For every observable A, there exists an A-
channel �A having the universal property.

Before the proof of Theorem 1, we recall that each observ-
able A has a Naimark dilation, i.e., a triplet (K,Â,V ) where K
is a Hilbert space, V : Hin → K is an isometry, and Â is a sharp
observable onK satisfying V ∗Â(x)V = A(x) for each x ∈ �A.
Moreover, there exists a minimal Naimark dilation, meaning
that the set {∑x cxÂ(x)V ψ : cx ∈ C,ψ ∈ H} is dense in K.
The minimal Naimark dilation is essentially unique in the
sense that if (K1,Â1,V1) is a minimal Naimark dilation and
(K2,Â2,V2) is any other Naimark dilation of A, then there
exists an isometry J : K1 → K2 satisfying J Â1(x) = Â2(x)J
and JV1 = V2. In particular, J is a unitary operator if both
Naimark dilations are minimal.

Proof. Fix a Naimark dilation (K,Â,V ) of A, i.e., K is
a Hilbert space, V : Hin → K is an isometry, and Â is a
sharp observable on K satisfying V ∗Â(x)V = A(x) for each
x ∈ �A. Assume that this dilation is minimal. We define a
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channel �A with input and output Hilbert spaces Hin and K,
respectively, by

�A(�) =
∑

x

Â(x)V �V ∗Â(x). (10)

This is an A-channel since

tr[Â(x)V �V ∗Â(x)] = tr[�V ∗Â(x)V ] = tr[�A(x)].

We claim that �A has the universal property.
First, we recall the preliminary result demonstrated earlier:

Each B that is jointly measurable with A can be written
as B(y) = (�B)

∗
(|y〉〈y|), where {|y〉}y∈�B is an orthonormal

basis and �B is the channel defined in Eq. (5). We show that
there exists a channel �B such that

�B = �B ◦ �A , (11)

where ◦ denotes the composition of two functions. Then, using
the Heisenberg form (�B)

∗
of �B, we define an observable B′

as

B′(y) = (�B)
∗
(|y〉〈y|) . (12)

This observable satisfies (9) since

tr[�A(�)B′(y)]
(12)= tr[�B(�A(�))|y〉〈y|] (13)
(11)= tr[�B(�)|y〉〈y|] (8)= tr[�B(y)]. (14)

Hence, to complete the proof we need to show that for each
B that is jointly measurable with A, there exists a channel
�B such that (11) holds. Let M be a joint observable of A
and B, and let (K′,M̂,V ′) be a Naimark dilation of M. We
define a sharp observable Â′ as Â′(x) = ∑

y M̂(x,y). Since

A(x) = ∑
y M(x,y), we observe that (K′,Â′,V ′) is a Naimark

dilation of A. In fact V ′∗Â′(x)V ′ = V ′∗ ∑
y M̂(x,y)V ′ =∑

y M(x,y) = A(x) holds. The initially fixed Naimark dilation

(K,Â,V ) was chosen to be minimal, so there exists an isometry
J : K → K′ satisfying Â′(x)J = J Â(x) and V ′ = JV due
to the uniqueness of the minimal dilation. Taking also into
account that M̂(x,y)M̂(x ′,y) = δxx ′M̂(x,y), we obtain

M̂(x,y)J Â(x ′) = δxx ′M̂(x,y)J . (15)

Using (15) we can write �B in the form

�B(�) =
∑
x,y

tr[Â(x)V �V ∗Â(x)J ∗M̂(x,y)J ]|y〉〈y|.

We define a channel �B as

�B(�) =
∑
x,y

tr[�J ∗M̂(x,y)J ]|y〉〈y| .

Using (15) again one can confirm that the required equation
�B = �B ◦ �A holds. �

The channel �A was introduced as the least disturbing
A-channel in Ref. [18]. In the context of sequential measure-
ments, the channel �A is the appropriate generalization of the
Lüders channel of sharp observables; �A has the universal
property and it reduces to the Lüders channel whenever A is a
sharp observable. The price we have to pay is the larger output
space Hout compared to the input space Hin.

V. CHANNELS WITHOUT THE UNIVERSAL PROPERTY

Suppose two jointly measurable observables A and B are
given. We may have limited resources, so perhaps we cannot
realize any A-channel having the universal property. Hence,
suppose we first perform a measurement described by a pair
(A,�), where � is an A-channel not having the universal
property. We want to know if we can still implement a
measurement of B, i.e., whether there exists an observable
B′ such that

tr[�(�)B′(y)] = tr[�B(y)] (16)

for all input states � and outcomes y ∈ �B.
To give a general answer to this question, we recall that by

the Stinespring dilation theorem (see, e.g., [19]) any channel
� can be written in the form

�(�) = trK[V �V ∗] , (17)

where K is a Hilbert space attached to an environment
system, V : Hin → Hout ⊗ K is an isometry and trK[·] is the
partial trace over K. Tracing over Hout rather than K we
obtain the corresponding conjugate channel (also called the
complementary channel)

�̄(�) = trHout [V �V ∗] . (18)

The answer to the previous question can now be stated in a
concise form.

Theorem 2. For a channel � and observable B, there exists
an observable B′ satisfying (16) if and only if the conjugate
channel �̄ of � is a B-channel.

Proof. The Stinespring dilation of a channel �, written in
the Heisenberg picture, reads

�∗(T ) = V ∗(T ⊗ 1)V ,

and the corresponding conjugate channel is then

�̄∗(S) = V ∗(1 ⊗ S)V.

As explained in Ref. [20], it follows from the Radon-Nikodym
theorem for quantum operations [21,22] that �̄∗ is a B-
channel if and only if there exists an observable B′ such that
V ∗(B′(y) ⊗ 1)V = B(y). Inserting this into the first equation
gives �∗(B′(y)) = B(y). �

The formulation of Theorem 2 is slightly loose since the
existence of B′ may seem to depend on the choice of the
conjugate channel. However, all conjugate channels of a given
channel � are equivalent in the sense that each of them can
be obtained from any other by concatenating with some other
channel. This implies that if one conjugate channel of � is a
B-channel, then all conjugate channels of � are B-channels.
Therefore, it does not matter which conjugate channel we use
in Theorem 2. For completeness we provide an argument that
all conjugate channels are equivalent.

Let �∗ be a channel, written in the Heisenberg picture. It
has a minimal Stinespring dilation

�∗(T ) = V ∗(T ⊗ 1)V ,

where V : Hin → Hout ⊗ K is an isometry. Suppose we have
another Stinespring dilation

�∗(T ) = V ∗
1 (T ⊗ 1)V1 ,
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where V1 : Hin → Hout ⊗ K1 is an isometry. As the first
Stinespring dilation is minimal, there is an isometry W :
K → K1 such that V1 = (1 ⊗ W )V . We consider the conjugate
channels that are determined by these two dilations, i.e.,

�̄∗(S) = V ∗(1 ⊗ S)V , �̄∗
1(S) = V ∗

1 (1 ⊗ S)V1.

Inserting V1 = (1 ⊗ W )V we obtain �̄∗
1(S) = �̄∗(W ∗SW ),

and the map S �→ W ∗SW is a quantum channel. In a similar
way, we obtain �̄∗(S) = �̄∗

1(WSW ∗), but the map S �→
WSW ∗ need not be unital and hence not a quantum channel.
We define a channel E∗ as

E∗(S) = WSW ∗ + (1 − WW ∗)tr[ρ0S], (19)

where ρ0 is a fixed state. Then �̄∗(S) = �̄∗
1(E(S)). As a

conclusion, �̄ and �̄1 are equivalent. Therefore, every channel
has a unique conjugate channel up to equivalence.

VI. NECESSITY OF LARGER OUTPUT SPACE

In our investigation we have allowed the output space Hout

to be different than the input space Hin. This means that
some part of the input system may be discarded or part of
the environment may be included in the description of the
output system. This freedom is essential in the definition
of �A, and therefore also in Theorem 1. However, one
may wonder if an observable A can have some compatible
channel with the universal property for Hout = Hin. In fact,
as noted earlier, this is true for the Lüders channel of a sharp
observable. In the following two examples we demonstrate
that, first, the Lüders channel is not universal even for some
common observables, and second, it is often necessary to
have Hout larger than Hin to reach the universal property.
Physically, the larger output space makes the subsequent
measurement able to take advantage also of the “information
leaked to the environment,” thereby leading to the universality
property.

Example 1. Let us fix Hin = C2 and consider two families
of binary qubit observables As and Bt,θ , where

As(±1) = 1
2 (1 ± sσz),

Bt,θ (±1) = 1
2 [1 ± t(sin θσx + cos θσz)],

and the parameters belong to the intervals s,t ∈ (0,1] and θ ∈
[0,π/2], respectively. As proved in Ref. [23], As and Bt,θ are
jointly measurable if and only if

s2 + t2 − cos2 θs2t2 � 1.

First, we want to see how the pairs satisfying this inequality
can be implemented sequentially.

There exists an As-channel satisfying the nondisturbance
condition for Bt,θ if and only if As and Bt,θ commute [16,
Prop. 6], which is the case when θ ∈ {0,π/2}. Therefore, most
of the realizable joint measurements must be performed by
first measuring As , followed by some modified version B′ of
Bt,θ . The modified observable B′ and a suitable As-channel are
not difficult to find in this simple case; we can choose � to be
the Lüders channel of As and B′ = B1,θ . With these choices
we have L∗

As
(B′) = Bt,θ , hence the Lüders channel can be used

to measure all binary observables jointly measurable with As .

Let us then consider another pair of observables to
demonstrate that the Lüders channel of As does not have the
universal property. Fix 0 < s < 1 and let C be the following
four outcome observable:

C(1,±1) = 1 ± s

4
(1 ± σz), C(−1,1) = 1 − s

4
(1 + σx)

C(−1,−1) = 1 − s

4
(1 − σx) + s

2
(1 − σz).

We have C(1,1) + C(1,−1) = As(1) and C(−1,1) +
C(−1,−1) = As(−1), hence C and As are jointly measurable.
One can utilize Theorem 2 to see that there is no C′ such
that

L∗
A(C′(j,k)) = C(j,k) for all j,k = ±1.

We can also confirm this fact directly; let us make a counter
assumption that there exists an observable C′ satisfying
the previous equation. Since the operator C(−1,1) is rank
1 and the operators As(±1) are invertible, it follows that
C′(−1,1) is rank 1 as well. As � is trace preserving,
we conclude that �(P ) = 1

2 (1 + σx) must hold for some
one-dimensional projection P . A direct calculation shows
that �(P ) is a projection if and only if P = 1

2 (1 ± σz), in
which case we have �(P ) = P . Therefore, �(P ) = 1

2 (1 + σx)
cannot be satisfied by any projection P . As a conclusion,
the Lüders channel of As does not have the universal
property.

Example 2. Let us fixHin = Cd and consider an N -outcome
observable A whose elements are all rank 1, that is, each
A(n) is represented as A(n) = an|ψn〉〈ψn| for some unit vector
ψn ∈ Hin and coefficient 0 < an � 1. We further assume
that no two vectors ψn and ψm are parallel, so that the
operators A(n) and A(m) are linearly independent. Let �

be an A-channel having the universal property. We denote
its Stinespring representation in the Heisenberg picture by
�∗(T ) = V ∗(T ⊗ 1)V . According to the Radon-Nikodym
theorem [21,22], there exists an observable B(n) on an
auxiliary Hilbert space satisfying

V ∗(1 ⊗ B(n))V = A(n).

As A itself is jointly measurable with A, Theorem 2 implies
that there exists an observable C satisfying

V ∗(C(m) ⊗ 1)V = A(m).

Since

V ∗(C(m) ⊗ B(n))V � V ∗(C(m) ⊗ 1)V = A(m)

V ∗(C(m) ⊗ B(n))V � V ∗(1 ⊗ B(n))V = B(n) ,

the rank 1 property of A implies that there exists a family of
numbers {cn} satisfying 0 � cn � 1 and

V ∗(C(m) ⊗ B(n))V = δmncnA(n) .

Taking its summation over m and n, we conclude
that

∑
n cnA(n) = 1 and thus cn = 1. Then they satisfy

〈ψn|V ∗(C(m) ⊗ B(n))V |ψn〉 = δmn. This is possible only
when dimHout � N .
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VII. CONCLUSION

Sequential measurements can be seen as special type
of joint measurements. In this sense, they suffer from the
same limitations as joint measurements; two incompatible
measurements cannot be implemented sequentially as the first
measurement disturbs the second one. We have shown that
there are no other limitations in the sense that any joint
measurement can be replaced by a sequential measurement
scheme. In addition to that, considering sequential schemes
opens up some additional perspectives. In particular, there is
a temporal aspect in sequential measurements and one can

therefore make a choice after the first measurement has been
performed. An interesting open question is whether the present
result can be extended to sequential measurements of more
than two observables.
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