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Galilei covariance and Einstein’s equivalence principle in quantum reference frames
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The covariance of the Schrödinger equation under Galilei boosts and the compatibility of nonrelativistic
quantum mechanics with Einstein’s equivalence principle have been constrained for so long to the existence of a
superselection rule which would prevent a quantum particle from being found in superposition states of different
masses. In an effort to avoid this expedient, and thus allow nonrelativistic quantum mechanics to account for
unstable particles, recent works have suggested that the usual Galilean transformations are inconsistent with
the nonrelativistic limit implied by the Lorentz transformation. Here we approach the issue in a fundamentally
different way. Using a formalism of unitary transformations and employing quantum reference frames rather than
immaterial coordinate systems, we show that the Schrödinger equation, although form variant, is fully compatible
with the aforementioned principles of relativity.
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I. INTRODUCTION

In 1954, Bargmann published a paper [1] showing that
the nonrelativistic quantum mechanics, as described by the
Schrödinger equation, is not trivially covariant under Galilei
boosts. According to him, covariance—here understood as
form invariance—can be attained only by attaching a mass-
dependent phase to the wave function. This procedure,
however, yields a dramatic collateral effect: in order to
guarantee covariance upon a cyclic sequence of Galilean
transformations, which brings the description back to the
original reference system, a superselection rule must act in
order to prevent the existence of mass superpositions. From
the same arguments, it follows that quantum mechanics cannot
coexist peacefully with Einstein’s equivalence principle unless
such a superselection rule exists. The essence of Bargmann’s
argument can be put as follows (see Refs. [2,3] for recent
treatments).

Consider the Schrödinger equation for a particle P moving
freely in one dimension from the perspective of an inertial
reference system S0:

i� ∂tψ(x,t) = − �
2

2m
∂2
xψ(x,t). (1)

The physics from the viewpoint of a distinct reference system
S, whose instantaneous position relative to S0 is X(t), is
obtained via the Galilean transformation

x ′ = x − X(t) and t ′ = t, (2)

where (x ′,t ′) are the space-time coordinates in S. It follows
that ∂x = ∂x ′ , ∂t = ∂t ′ − Ẋ∂x ′ , and

i� ∂tψ
′(x ′,t) =

(
− �

2

2m
∂2
x ′ + i�Ẋ∂x ′

)
ψ ′(x ′,t), (3)

where ψ ′(x ′,t) = ψ[x ′ − X(t),t]. We use “t” for all reference
frames, as time is absolute in Galilean relativity. Since the form
of the resulting Hamiltonian is not equal to the free-particle
Hamiltonian appearing in Eq. (1), the Schrödinger equation
is said to be noncovariant under a Galilean transformation.
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In order for covariance to be attained, it is presumed that the
correct wave function must be given by

ϕ′ = e−iφ(x ′,t)ψ ′,
(4)

φ(x ′,t) = mẊx ′

�
+ m

2�

∫ t

0
dt Ẋ2,

for, in this case, one arrives at

i� ∂tϕ
′ =

(
− �

2

2m
∂x ′ + mẌx̂ ′

)
ϕ′. (5)

Clearly, Galilean covariance (GC) is retrieved upon boosts,
i.e., when Ẋ is constant. The appearance of a gravitational
field in the perspective of an accelerated frame S is, on the
other hand, the expression of Einstein’s equivalence principle
(EEP).

Bargmann exploited the consequences of such a mass-
dependent phase using the following rationale. Assume that
a quantum particle has been prepared in a superposition of
masses,

ψ ∝ ψm1 + ψm2 . (6)

Consider a cyclic Galilean transformation Gc, i.e., a sequence
of transformations that leads the description to the perspective
of other reference frames and then brings it back to S0’s
perspective. Specifically, Gc is chosen to be composed of two
opposite translations and two opposite boosts:

Gc ≡ G−vt G−a Gvt Ga = eiavm/�. (7)

GX implements the transformation (2), i.e., GX(x,t) = [x −
X(t),t]. When applied to space-time coordinates, the cyclic
transformation is equivalent to the identity Gc(x,t) = (x,t).
Applied, however, on a wave function ψm, it gives Gcψm =
eiavm/�ϕ′

m. It follows that the cyclic transformation of the
superposition (6) yields

Gcψ ∝ eiavm1/�ϕ′
m1

+ eiavm2/�ϕ′
m2

, (8)

which has a measurable relative phase va�m/�, where �m =
m2 − m1. To eliminate such an undesirable effect, Bargmann
postulated the superselection rule �m = 0, meaning that no
mass-superposition state can exist.
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The framework devised by Bargmann constrains the com-
patibility of quantum mechanics with both GC and EEP to
the nonexistence of mass superpositions. While Bargmann’s
formal construction is widely accepted in the literature and
already figures as textbook content [4,5], his conclusion
has been recurrently debated [2,3,6–17]. In particular, some
authors interpreted the mass-dependent phase as a residue of
the twin-paradox effect in nonrelativistic quantum mechanics
[2,17], thus attributing deeper physical meaning to it. On the
other hand, there are some works defending that quantum
mechanics is compatible with EEP [18–20]. In consonance
with a program initiated long ago [7–10], it was recently
suggested that the mass-superselection rule can be avoided
if mass is taken as a dynamical variable [3]. Regardless
of their conclusions, all of the aforementioned works stick
to traditional ingredients, namely, the reference frames are
fundamentally classical and the analysis is focused on the
wave function.

It is the aim of this contribution to critically revisit
the subject within two complementary frameworks. First, in
Secs. II and III, by suitably employing passive unitary transfor-
mations, we show how quantum mechanics is able to respect
GC and EEP without appealing to any sort of superselection
rule. Then, in Secs. IV and V, we push the subject to the
conceptually deeper framework of quantum reference frames
[21–24]. We shall ask how the quantum mechanical description
manifests when the frame of reference is itself a physical
system describable by the Schrödinger equation. Then, by
employing nontrivial unitary transformations and correctly
interpreting the corresponding dynamics, we show once again
that there is no tension between quantum mechanics and the
aforementioned relativity principles.

II. UNITARY GENERATORS OF COORDINATE
TRANSFORMATIONS

It is well known that unitary operators are useful tools for
describing changes between reference frames. However, the
correct application of these objects is subtle and deserves a
close look, which is the main purpose of this section.

A. Passive picture

Consider a generic N -particle system evolving in time
relatively to an inertial reference system S0 according to the
Schrödinger equation

i� ∂t |ψ(t)〉 = H (r̂)|ψ(t)〉, (9)

where r̂ = (r̂1, . . . ,r̂N ) and r̂k = (x̂k,p̂k), with the latter being
the phase-space coordinate of the kth particle relative to S0.
A passive change of the coordinates can be implemented by a
unitary transformation Ĝ = G(r̂,t) as follows:

r̂′ ≡ Ĝ r̂ Ĝ† = f(r̂), (10)

where r̂′ is the vector composed of the phase-space coordinates
relative to the moving reference system S. Since Ĝ is unitary,
there holds that r̂ = f(Ĝ† r̂ Ĝ), from which it follows that
Ĝ† r̂ Ĝ = f−1(r̂), where f−1 denotes the inverse of f.

In the passive picture, the physical state |ψ(t)〉 remains
unchanged, so that expectation values are computed as

〈ψ(t)|r̂′|ψ(t)〉 = 〈ψ(t)|f(r̂)|ψ(t)〉. The vector state |ψ〉 =∫
dNx ψ(x)|x〉x̂, originally written in the eigenbasis {|x〉x̂}

of x̂ = (x̂1, . . . ,x̂N ), can be expressed in the moving system
through the mapping

|x〉x̂ = |f(x)〉x̂′ . (11)

Each position eigenstate in the Hilbert space spanned by the
eigenvectors of r̂ maps to a counterpart in the Hilbert space
spanned by the eigenvectors of r̂′. As an example, consider the
usual transformation from laboratory coordinates (x̂1,x̂2) to
center-of-mass and relative coordinates (x̂cm,x̂r ). In this case,
the mapping gives |x1〉x̂1

|x2〉x̂2
= |m1x1+m2x2

m1+m2
〉
x̂cm

|x2 − x1〉x̂r
.

The derivation of the transformed Hamiltonian is better
illustrated in the Heisenberg picture. From 〈ψ(t)|r̂′|ψ(t)〉 =
〈ψ(0)|Û †r̂′Û |ψ(0)〉, we define the Heisenberg operator in the
moving frame as r̂′

H = Û †r̂′Û , where Û = e−iH (r̂)t/�. Noting
that r̂′ may explicitly depend on time, one applies a time
derivative to r̂′

H to obtain

d r̂′
H

dt
= [r̂′

H,Ĥ
′

H(t)]

i�
, (12)

where Ĥ ′
H(t) = Û †Ĥ ′Û and

Ĥ ′ = H ′(r̂′,t) = H (r̂) + i�G(r̂,t) ∂tG†(r̂,t), (13)

with r̂ = f−1(r̂′). This is the transformed Hamiltonian to
be used in the Schrödinger equation. For time-independent
unitary generators, we obtain

Ĥ ′ = H [f−1(r̂′)] = ĜH [f−1(r̂)]Ĝ† = ĜĜ†H (r̂)ĜĜ†. (14)

We see that this Hamiltonian is precisely the original one
rewritten in terms of the moving system coordinates, which is
a result that is in total accordance with the prescription given
in Ref. [21].

B. Active picture

In an active change, defined by |ψ ′〉 = Ĝ†|ψ〉, the unitary
generator acts on the vector state while the operators remain
unchanged. This corresponds to conserving the original co-
ordinate system but physically changing the quantum state.
The result, though, is equivalent to that of passive changes,
as is obvious from 〈ψ ′|r̂|ψ ′〉 = 〈ψ |r̂′|ψ〉. The transformed
Schrödinger equation reads i� ∂t |ψ ′〉 = Ĥ ′(t)|ψ ′〉, where

Ĥ ′ = H ′(r̂,t) = Ĝ†H (r̂)Ĝ + i�
(
∂t Ĝ†)Ĝ. (15)

Consider again the case in which Ĝ is time independent. It
follows that Ĥ ′ = H [f−1(r̂)], which can be directly compared
with Eq. (14). We see that the operator r̂ of an active change
assumes the same interpretation of r̂′ of a passive change.
Accordingly, it can be directly checked that the Hamilto-
nian operators (13) and (15) are connected by H ′(r̂′,t) =
ĜH ′(r̂,t)Ĝ†.

The techniques discussed in this section directly apply to
both quantum and classical references frames, a point that will
be illustrated in the next sections.

III. REASSESSING BARGMANN’S ANALYSIS

We now revisit Bargmann’s scheme using unitary gen-
erators. Throughout the paper, we work with the passive
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picture, which gives a more direct interpretation for the moving
system coordinates. This strategy aims at highlighting our
understanding that a boost is a mere theoretical change in the
description of the system, from S0’s perspective to S’s, rather
than a real propulsion of the reference frame S0 (see Refs.
[23,24] for similar approaches). We start with the physics seen
from the perspective of an inertial reference system S0:

i� ∂t |ψ〉 = Ĥ |ψ〉, Ĥ = H (p̂) = p̂2

2m
. (16)

Consider the unitary operator Ĝ(t) = e−iX(t)p̂/�. It moves the
description to the perspective of a classical reference system
S, which occupies the instantaneous position X(t) relative to
S0. The resulting coordinates read

x̂ ′ = Ĝ x̂ Ĝ† = x̂ − X(t),
(17)

p̂′ = Ĝ p̂ Ĝ† = p̂.

Following the prescriptions of the previous section, we obtain
the transformed Schrödinger equation,

i� ∂t |ψ〉 = Ĥ ′|ψ〉, Ĥ ′ = p̂′2

2m
− Ẋp̂′. (18)

Since Ĥ ′ �= H (p̂′), the Schrödinger equation is not Galilei
covariant. Following Bargmann’s approach, at this point we
should attach a mass-dependent phase to the vector state [see
Eq. (4)]. However, it is clear that no c number would be able
to remove the operator Ẋp̂′ from the Hamiltonian. Instead,
we need another unitary transformation, which we can build
inspired by the phase given in Eq. (4). But this is equivalent to
another change of coordinates. Accordingly, we can return to
the starting point and use a composite transformation,

ĜX = e−iXp̂/�eimẊx̂/�eiθ(X), (19)

where θ (X) = m
2�

∫ t

0 dt Ẋ2. Now one has that

x̂ ′ = x̂ − X and p̂′ = p̂ − mẊ. (20)

Using the formula (13), we get the passive Hamiltonian

i� ∂t |ψ〉 = Ĥ ′|ψ〉, Ĥ ′ = p̂′2

2m
+ mẌx̂ ′. (21)

As in the formulation (5), it is clear that the resulting equation
obeys GC and EEP.

At this point, however, someone might object that we have
used a mass-dependent generator, a questionable expedient to
produce a coordinate transformation. But let us return to Eqs.
(17) and (18). Although they have been produced by a mass-
independent transformation, which clearly yields the position
of the particle relative to S, it preserves the momentum relative
to S0. It follows, therefore, that the Hamiltonian in Eq. (18)
is not properly given in terms of the coordinates accessible to
S. On the other hand, we see by Eqs. (20) that ĜX leads to
both the relative position and the correct relative momentum.
As a consequence, the Schrödinger equation (21) emerges
as a better candidate to describe the physics seen from S’s
perspective. The bottom line is that the Schrödinger equation
depends on the Hamiltonian of the system, whose formulation
focuses on the canonical pair (x̂,p̂). Since momentum—a
primordially mass-dependent quantity—plays an essential role

in the Hamiltonian formalism, it is not possible to obtain a fully
relative description by dealing only with positions. Then, in
accepting the need to also transform the canonical momentum,
we necessarily have to admit the appearance of mass in the
transformations.

Now the crucial question arises as to whether ĜX will lead
to a mass-dependent phase in cyclic transformations. The
answer is yes, it will in a sense, but the remnant phase is
physically irrelevant. This can be proved as follows. Using
standard techniques of operator algebra, one may show that

ĜX2 ĜX1 = ei�m(X1,X2)ĜX1+X2 , (22)

where �m(X1,X2) = θ (X1) + θ (X2) − θ (X1 + X2) + mX1Ẋ2
�

.
The expectation value of an arbitrary operator Ô measured in
the shifted reference frame is〈

ψ |ĜX2 ĜX1 Ô Ĝ†
X1
Ĝ†

X2
|ψ 〉 = 〈

ψ |ĜX1+X2 Ô Ĝ†
X1+X2

|ψ 〉
.

It immediately follows, for any cyclic transformation with∑
k Xk = 0, that

〈ψ |
(∏

k

ĜXk

)
Ô

(∏
k

ĜXk

)†

|ψ〉 = 〈ψ |Ô |ψ〉, (23)

which has no remnant measurable phase. This result, which
holds for every vector state |ψ〉, shows that the original descrip-
tion will always be retrieved under cyclic transformations. This
ought to be so, as the transformation ĜXk

reflects only a change
in the theoretical description; it is not real. That is, absolutely
no physical intervention is implied to the system by a cyclic
transformation which, naturally, just leads us back to the
original description. The actual issue with Eq. (8) derives from
considering that mass is an operator, a notion that figures as a
tacit assumption in Bargmann’s approach and a declared model
in Refs. [3,17], and that mass superpositions exist. Accepting
that a boost is a theoretical operation implies that the residual
phase in Eq. (8) should actually be viewed as an indication that
there is something wrong with some premise of Bargmann’s
argument, presumably with the assumptions that mass is an
operator and that mass superpositions exist (see discussion
below). If we stick to the standard nonrelativistic quantum
mechanics, according to which mass is just a parameter, and
adopt the framework proposed above, then no issue arises and
we can conclude that quantum mechanics is in full harmony
with GC and EEP.

In support of this conclusion, two crucial points have to be
underlined. First, quantum mechanics is not just about vectors
living in a complex space. To make the link with the real world,
we need to ask how observables behave when the system is
prepared in a given state. Hence, it may be the case that it
is not completely fair to demand, solely from Schrödinger’s
equation, compatibility with relativity principles. In fact, we
should critically ask: is the Schrödinger equation the ultimate
law of quantum physics from which we ought to demand
covariance? Consider the Hamiltonian given in Eq. (18).
Without solving the Schrödinger equation, it is not possible
to infer the real relevance of the “unwanted” term Ẋp̂′ for
the dynamics. Actually, to make accurate statements about the
dynamics relative to S, we need to look at d2〈x̂ ′〉/dt2. To this
end, the Heisenberg picture reveals itself particularly useful.
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Write the acceleration as d2〈x̂ ′〉/dt2 = 〈ψ(0)| ¨̂x ′
H|ψ(0)〉. In the

referred picture, the motion of P from S0’s perspective is
governed by the relation ¨̂xH = 0, which is derived from the
Hamiltonian (16). Now using the Hamiltonian operators given
in Eqs. (18) and (21), we obtain from both that

¨̂x ′
H = −Ẍ, (24)

which clearly respect GC for Ẋ constant and EEP for Ẍ

constant. Therefore, while the Schrödinger equation (18) is
not covariant, it is not correct to make the same statement for
the equations of motion it generates. This point can be further
appreciated via the Hamiltonian

Ĥ ′(α) = (p̂′ − α mẊ)2

2m
+ (1 − α) mẌx̂ ′, (25)

where α is a real number. Heisenberg’s equations give m ˙̂x ′
H =

p̂′
H − α mẊ, ˙̂p′

H = (α − 1)mẌ, and ¨̂x ′
H = −Ẍ. Interestingly,

the acceleration does not depend on α, which means that
the fictitious force −mẌ can be viewed as deriving either
from a vector potential (if α = 1), as in the formulation (18),
or from a gravitational field (if α = 0), as in (21), or even
from both elements simultaneously. The Hamiltonian (25) is
just an example of a gaugelike formulation which, as such,
cannot be regarded as the ultimate physical representation
of the dynamics. The object 〈ψ(0)| ¨̂x ′

H|ψ(0)〉, on the other
hand, seems to better incorporate the status of law of motion.
Now, by adhering to this conceptual framework, we face
no problem either with the Hamiltonian in Eq. (18) or with
its mass-independent generating transformation Ĝ = e−iXp̂/�.
Clearly, then, no issue can arise for the mass. One should
also note that within the classical Hamiltonian formalism,
we do have precisely the same transformations discussed
above and an entirely equivalent mathematical structure.
Accordingly, we could say that the Hamiltonian mechanics
does not satisfies GC. Yet, we do not charge classical physics
with any incompatibility with both Galilean relativity (GR)
and EEP. This is so because the figure of merit is, in fact, the
acceleration.

A second important point concerns the physical framework
that is usually invoked to justify the existence of the residual
phase. It has been suggested that this phase is a reminiscence
of the twin-paradox effect in a nonrelativistic regime [2,17].
The subtlety here, however, is that the resolution of the twin
paradox is given in terms of accelerations of the reference
frame, a physical phenomenon that necessarily demands inter-
actions and an inertial reference frame in the background. Now,
from a quantum mechanical viewpoint, physical interactions
may generate correlations among the interacting systems. This
process is fundamentally different from a mere change in the
theoretical description and can, actually, preclude the existence
of mass superpositions. Correlations also appear in the decay
of unstable particles (see, e.g., Refs. [25–27]), which is a
phenomenon that is taken as a primordial motivation for the
existence of mass superpositions [2]. To better appreciate this
point and its consequence, let us consider a system composed
of an excited atom of mass M and no radiation. In terms
of energy eigenstates, the global state is |ψ0〉 = |Mc2〉|0〉.
Before any measurement and at times comparable to the
emission mean life, the system evolves to |ψt 〉 = a|Mc2〉|0〉 +

beiθ |mc2〉|�ω〉, where ω is the excitation frequency,
b2 = 1 − a2 is the probability of emission, θ is an arbitrary
phase, and Mc2 ∼= mc2 + �ω reflects the energy-mass conser-
vation (the kinetic energy of the atom has been neglected).
Now, this entangled state is rather different from the usually
presumed mass superposition a|Mc2〉 + beiθ |mc2〉. In fact, for
a state such as |ψt 〉, which is typical of any decay process, it
is impossible to access the phase θ in any interferometric
experiment involving only the atom, as its reduced state is a
statistical mixture. This means that we can say at best that in
each run of the experiment, the atom has mass of either M

or m; it is not in a genuine superposition of both masses in
the same run. We see, therefore, that even the justification for
the existence of a mass superposition is debatable in the first
place.

IV. LIGHT REFERENCE FRAMES

Now we want to push the issue one step further. Considering
abstract coordinate systems whose motion is immutable by
principle, as if these reference systems were not themselves
susceptible to physical interactions, is a good approximation
in uncountable situations, particularly in regimes in which the
reference frame is much heavier than the system. However,
this is by no means the most fundamental approach one can
admit, especially where the quantum domain is concerned.
Here we want to consider as reference frames finite-mass
bodies initially prepared in some quantum state relatively
to a primordial reference system S0 [28]. We then ask how
the physics looks from the perspective of a quantum particle
(quantum reference frame) freely moving relatively to another
one. This scenario defines what we call a quantum Galilei
boost.

The notion of quantum reference frames was introduced by
Aharonov and Kaufherr [21], who showed that it is possible
to consistently formulate quantum theory without appealing
to classical reference systems. Later on, it was shown that
superselection rules commonly derive from the lack of a
quantum reference frame (see [22] and references therein).
More recently, the subject was revisited by one of us and
collaborators [23,24] and fundamental contributions were
provided in the field of quantum correlations and foundations
of quantum mechanics. Here we investigate the compatibility
of the laws of quantum mechanics with relativity principles
upon quantum Galilei boosts.

We consider coordinate transformations in a scenario
involving the following participants: a particle P of mass m, a
system S of mass M , to be eventually promoted to a reference
frame, and S0. Again, S0 is the primordial inertial reference
frame, a classical-like body with ideally infinite mass, within
which the quantum state of the composite system S + P is
prepared. From the perspective of S0, the Hamiltonian reads

Ĥ = P̂ 2

2M
+ V (X̂) + p̂2

2m
, (26)

where V̂ = V (X̂) is some potential to which S is submitted.
To obtain the description relative to S, we employ the
mass-independent unitary generator introduced by Aharonov
and Kaufherr in Ref. [21], ĜAK = e−iX̂p̂/�. The resulting
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coordinates are

X̂′ = X̂, P̂ ′ = P̂ + p̂,

x̂ ′ = x̂ − X̂, p̂′ = p̂. (27)

The Hamiltonian in the passive picture is

Ĥ ′ = P̂ ′2

2M
+ V (X̂′) + p̂′2

2μ
− P̂ ′p̂′

M
, (28)

where μ = mM/MT and MT = M + m. In this case, the
Hamiltonian is not given in terms of the wanted coordinates.
In fact, while x̂ ′ is the position of P relative to S, p̂′ is the
momentum of P relative to S0. In addition, in virtue of the
coupling P̂ ′p̂′, it is impossible to elect a term that would
separately account for the relative physics, even if V̂ = 0.
Clearly, GC is not respected. Also, as far as EEP is concerned,
there is no sign of a gravitational field in the Hamiltonian
(28). However, these conclusions change when we look at

the acceleration of the particle. Indeed, from ˙̂x ′
H = p̂′

H
μ

− P̂ ′
H

M
,

˙̂p′
H = 0, ˙̂X′

H = P̂ ′
H

M
− p̂′

H
M

, and ˙̂PH = −∂X̂′
H
V (X̂′

H), one shows that

¨̂x ′
H = 1

M
∂X̂′

H
V (X̂′

H) = 1
M

∂X̂H
V (X̂H) = − ¨̂XH,

which is an expression of EEP. If V̂ = 0, GC is retrieved, as
¨̂xH = ¨̂x ′

H = 0. Moreover, the compatibility with the relativity
principles is ensured for any initial state.

Of course, the above transformation is just one among many
alternatives. Another unitary generator is [24]

Ĝ = exp

(
− iX̂p̂

�

)
exp

(
i

�

m

MT

P̂ x̂

)
, (29)

which has a clear connection with (19). This generator gives
the well-known transformation

X̂′ = MX̂ + mx̂

M + m
, P̂ ′ = P̂ + p̂,

(30)

x̂ ′ = x̂ − X̂, p̂′ = μ

(
p̂

m
− P̂

M

)
,

where (x̂ ′,p̂′) are now the correct coordinates of P relative to
S. The Hamiltonian in the passive picture assumes the form

Ĥ ′ = P̂ ′2

2MT

+ V

(
X̂′ − m

MT

x̂ ′
)

+ p̂′2

2μ
. (31)

Once again, ¨̂x ′
H = − ¨̂XH. The benefit deriving from the genera-

tor (29) is evident: the transformed Hamiltonian is written in
terms of coordinates accessible from the frame S, so that we
can still look for a consistent relative Hamiltonian formulation.
To this end, let us take V̂ = 0. It becomes clear that GC
can be claimed only if one admits the replacement of masses
(M,m) → (MT ,μ). But this is a reasonable requirement, once
it is well known from the two-body problem that the relative
physics depends on the reduced mass. In fact, this requirement
is unnecessary only when the reference frame is much heavier
than the particle ( m

M
→ 0), a regime considered in all previous

works on this subject. Concerning EEP, assume that V (X̂) =
−MgX̂, so that S is moving with constant acceleration −g

relative to S0. In this case, the Hamiltonian (31) becomes

Ĥ ′ = P̂ ′2

2MT

− MgX̂′ + p̂′2

2μ
+ μgx̂ ′.

The appearance of the gravitational energy μgx̂ ′ in S’s per-
spective signals the compatibility of the Schrödinger equation
with EEP. Note that the relation ¨̂x ′

H = − ¨̂XH implies compat-
ibility even when the frame S possesses a time-dependent
acceleration in relation to S0, with this being, therefore, a
more general statement.

V. QUANTUM GALILEI BOOST

We now examine a Galilei boost between quantum refer-
ence frames. To this end, we consider three physical systems,
S1, S2, and P, with respective masses M1, M2, and m. The first
two systems will eventually play the role of reference frames,
whose descriptions we want to compare. Once again, we elect
a primordial reference frameS0 relative to which the following
Hamiltonian holds:

Ĥ = P̂ 2
1

2M1
+ V (X̂2 − X̂1) + P̂ 2

2

2M2
+ p̂2

2m
. (32)

Here, however, there is no interaction between S0 and the
system, so that the former can eventually be abandoned.
Consider the following two sets of canonically conjugated
operators:

X̂′
1 = mx̂ + M1X̂1 + M2X̂2

MT

, P̂ ′
1 = p̂ + P̂1 + P̂2,

X̂′
2 = X̂2 − X̂1, P̂ ′

2 = M2

(
P̂2

M2
− P̂ ′

1

MT

)
, (33)

x̂ ′ = x̂ − X̂1, p̂′ = m

(
p̂

m
− P̂ ′

1

MT

)
,

and

X̂′
1 = mx̂ + M1X̂1 + M2X̂2

MT

, P̂ ′
1 = p̂ + P̂1 + P̂2,

X̂′
2 = M2

μ2
(X̂2 − X̂′

1), P̂ ′
2 = μ2

(
P̂2

M2
− P̂1

M1

)
, (34)

x̂ ′ = m

μ
(x̂ − X̂′

1), p̂′ = μ

(
p̂

m
− P̂1

M1

)
,

where MT = m + M1 + M2, μ = mM1
m+M1

, and μ2 = M2M1
M2+M1

are

reduced masses, and (X̂′
1,P̂

′
1) turn out to be the center-of-

mass observables relative to S0 in both sets. The respective
generators of the transformations (33) and (34) are

Ĝ1(S1) = e
−i

(
M2
MT

X̂2+ m
MT

x̂

)
P̂1
� ei

X̂1
�

(P̂2+p̂) (35)

and

Ĝ2(S1) = ei�̂e
iM1
MT

X̂1(P̂2+p̂)
� e

−
(

M2
M1

X̂2+ m
M1

x̂

)
iP̂1
� ,

(36)

�̂ = λ

2�
{x̂,p̂} +

∑
k=1,2

λk

2�
{X̂k,P̂k},
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where λ = ln( μ

m
), λ1 = ln(MT

M1
), λ2 = ln( μ2

M2
), and {X̂k,P̂k} =

X̂kP̂k + P̂kX̂k . We constructed these unitary operators based
on the fact that momentum is the generator of displacements.
The operator �̂ appears in the second generator because the
Jacobian of the transformation r → r′ is not the unit.

Now, a fundamental point emerges. The physical coordi-
nates, i.e., the ones accessible from S1, are (X̂′

2,x̂
′) of set (33)

and (P̂ ′
2,p̂

′) of set (34). However, they are not canonically
conjugated to each other, as [X̂′

2,p̂
′] = i� m

M1+m
and [x̂ ′,P̂ ′

2] =
i� M2

M1+M2
. This effect, discovered in Ref. [23], derives from

the lightness of the reference frame and introduces an intrinsic
inseparability in the joint Hilbert space. (In fact, this effect
disappears whenS1 is sufficiently heavy.) It follows, therefore,
that for general quantum systems, with more than two particles,
we should have no hope to obtain a Hamiltonian operator that
is given in terms only of the coordinates accessible to the
quantum frame of reference. In this sense, covariance will not
be observed in the Hamiltonian description. Indeed, using the
sets (33) and (34), we obtain

Ĥ ′ = P̂ ′2
1

2MT

+ V (X̂′
2) + P̂ ′2

2

2μ2
+ p̂′2

2μ
+ P̂ ′

2p̂
′

M1
(37)

and

Ĥ ′ = P̂ ′2
1

2MT

+ V

(
X̂′

2 + μ

M1
x̂ ′

)
+ γ

(
P̂ ′2

2

2μ2
+ p̂′2

2μ
− P̂ ′

2p̂
′

M1

)
,

(38)

respectively, where γ = M1M2m
MT μ2μ

. In both cases, the center-of-
mass kinetic energy decouples. Still, none of these Hamil-
tonian operators is written only in terms of the coordinates
relative to S1. Once again, however, we should observe that
despite the manifest noncovariance of Schrödinger’s equation
for finite-mass references frames, we cannot maintain that
quantum mechanics is not consistent with GC and EEP, for the
Heisenberg equations give

¨̂x ′
H = − 1

M1
∂X̂′

2H
V

(
X̂′

2H

) = − ¨̂X1H , (39)

for (37), and

˙̂p′
H

μ
= − ¨̂X1H , (40)

for (38). Note that in the latter case, the pertinent object is
the time derivative of momentum because it is the relative
quantity [see set (34)]. Again, it is clear that the relations
〈ψ(0)|ẍ ′

H|ψ(0)〉 and 〈ψ(0)|ṗ′
H/μ|ψ(0)〉 are in total harmony

with GC and EEP, even within the context of quantum
reference frames with arbitrary masses.

So far we have discussed the physics seen by the finite-mass
reference system S1. Now we are ready to make the boost to
S2’s view. Since we have employed no special assumption
on the masses involved, it is trivial to infer that the same
conclusions we arrived at above will hold from the perspective
of the other finite-mass reference system S2. Formally, the
way to move to the physics seen by S2 is via the generator
Ĝk′(S2) Ĝ†

k(S1) (k,k′ = 1,2). This will give the physics of the
center of mass of the global system S1 + S2 + P relative to S0

along with the physics ofS1 andP relative toS2. Alternatively,

we can explore the following conceptually different strategy
for the implementation of the boost.

Assume that S0 is an absolute reference frame [21,23,24],
i.e., an immaterial coordinate system. As such, it plays the
auxiliary role of providing an ideally inertial description
typical of infinite-mass frames. In this case, the state of
the system can be thought of as having been prepared by
some apparatus, no longer present, or, e.g., by S1 [29]. The
real physics is then given by the Hamiltonians (37) and
(38), provided we neglect the absolute center-of-mass energy
P̂ ′2

1 /2MT . Thus, hereafter, we focus, for simplicity, on the
relevant part of the Hamiltonian (37),

Ĥ ′
S1

= P̂ ′2
2

2μ2
+ V (X̂′

2) + p̂′2

2μ
+ P̂ ′

2p̂
′

M1
. (41)

Now, one can apply the generator (29) with the appropriate
replacements: (X̂,P̂ ) → (X̂′

2,P̂
′
2) and MT → M2 + m. In this

case, the resulting description will be composed of the center
of mass of the system S2 + P relative to S1, plus the physics
of P relative to S2. The transformation reads

X̂′′
2 = mx̂ ′ + M2X̂

′
2

m + M2
, P̂ ′′

2 = p̂′ + P̂ ′,

(42)

x̂ ′′ = x̂ ′ − X̂′
2, p̂′′ = μ′

(
p̂′

m
− P̂ ′

2

M2

)
,

where μ′ = mM2
m+M2

. In terms of the absolute coordinates, one

has the relations x̂ ′′ = x̂ − X̂2 and p̂′′ = μ′( p̂

m
− P̂2

M2
), which

show that (x̂ ′′,p̂′′) indeed correspond to coordinates relative to
S2. The Hamiltonian transforms as

Ĥ ′′ = P̂ ′′2
2

2μ′
2

+ V

(
X̂′′

2 − m

m + M2
x̂ ′′

)
+ p̂′′2

2μ′ , (43)

where μ′
2 = M1(m+M2)

M1+(m+M2) . From ˙̂x ′′
H = p̂′′

H/μ′ and ˙̂p′′
H =

μ′
M2

∂X̂′
2H

V2(X̂′
2H

), it is easy to show that ¨̂x ′′
H = − ¨̂X2H . This is the

result expected for the motion of P relative to S2. In particular,
if V̂ = 0, it follows from the present analysis that

〈ψ(0)|ẍ ′′
H |ψ(0)〉 = 〈ψ(0)|ẍ ′

H|ψ(0)〉 = 0. (44)

This relation is the proof that the physics generated by quantum
mechanics for the motion of a particle is indeed covariant
under Galilei boosts between two distinct quantum reference
frames.

VI. CONCLUDING REMARKS

Schrödinger’s equation inherited, from classical mechan-
ics, a Hamiltonian structure with many benefits and some
subtleties. Canonical transformations, in particular, are known
to constitute an important mathematical tool that allows for
explicit integration of the equations of motion in a number
of relevant problems. However, the physical interpretation
underlying the transformed structure is often not obvious. In
addition, by either adding constant terms or adopting specific
gauges, one can construct an infinite number of Hamiltonian
functions for the same physical dynamics. In this paper,
we show that the longstanding tension between quantum
mechanics and both Galilean covariance (GC) and Einstein’s
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equivalence principle (EEP) dissipates when submitted to a
careful analysis of the quantum mechanical structure and its
connection with observable quantities. By relying on standard
concepts of quantum theory, such as unitary generators,
quantum reference frames, and expectation values, we were
able to identify the defining features of the aforementioned
issue and solve it in a natural and intuitive way.

Specifically, our results can be summarized as follows.
First, we identified a proper interpretation for unitary trans-
formations employed within the vector state formalism. In
particular, we distinguished between the passive and active
pictures, which are often used simultaneously in a very
inaccurate way. Second, within this framework, we showed
that the Schrödinger equation is fully compatible with GC and
EEP when we consider Galilei boosts between infinite-mass
reference frames. Also, we argued that Bargmann’s superselec-
tion rule is not demanded by the formalism, provided we stick
to the standard notion of mass as a c number. Moreover, by
explicitly exhibiting an example in which an invariant dynam-
ics emerges from a gaugelike Hamiltonian formulation, which
interpolates between vector potentials and gravitational fields,
we showed that the experimentally accessible expectation
value 〈ψ(0)| ¨̂x ′|ψ(0)〉 better encompasses the physical features
of a quantum law of motion. Third, we defined the notion of
a quantum Galilei boost, i.e., a transformation of coordinates
that brings the physical description to the perspective of a
finite-mass reference frame, which is itself describable by
the quantum theory. This fundamental approach remarkably

exposes the limitations of the Hamiltonian formulation in
respecting GC, while the Schrödinger equation and the respec-
tive equations of motion reveal full compatibility with Galilean
relativity (GR) and EEP. In addition, our analysis shows that
quantum mechanics does not need to rely on classical-like
notions, such as infinite-mass reference frames, to correctly
describe the relativity of motion in the microscopic realm.

Finally, it is worth emphasizing that we should not
regard the sophisticated form of the transformed Hamiltonian
operators as a symptom of violation of any physical principle
because this is the way the Hamiltonian formalism implements
the lightness of reference frames. Actually, it is immediately
conclusive from our results, which are based exclusively
on canonical transformations, that in classical mechanics,
we have exactly the same manifestations of Hamiltonian
noncovariance. However, no one is willing to deny the
compatibility between classical mechanics and GR based on
this fact. Most probably, rather than concluding that classical
physics violates GC, many would say, along with us, that it is
the Hamiltonian formalism that does so.
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