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Perfect Zeno-like effect through imperfect measurements at a finite frequency
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The quantum Zeno effect is usually thought to require infinitely frequent and perfect projective measurements
to freeze the dynamics of quantum states. We show that perfect freezing of quantum states can also be achieved
by more realistic nonprojective measurements performed at a finite frequency.
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I. INTRODUCTION

The quantum Zeno effect (QZE), i.e., the phenomenon
that the dynamics of a quantum system can be inhibited
by frequent measurements, has recently attracted increased
interest as a tool in the field of quantum information processing
(QIP). There, the QZE promises a wide range of applications,
potentially playing a role in error-correcting codes [1–3],
decoherence-free subspaces [4], entanglement production and
state preparation [5–7], as well as gate implementation [8].
Moreover, due to experimental advances in the last decade,
there has also been a growing interest in Zeno-like effects in
the context of light-matter interactions [4,9–11].

In the conventional QZE, repeated instantaneous perfect
measurements are performed on the system. In the limit of
infinite measurement frequency, and only in that limit, does
the evolution of the measurement’s eigenstate freeze. To date,
experimental efforts have focused, therefore, on trying to ap-
proximate as best as possible the challenging limit of infinitely
frequent instantaneous perfect measurements [10,12–15].

Here we show that realistic, i.e., imperfect measurements,
performed at a finite frequency, can also completely freeze the
state of a system. In this sense, we can achieve a perfect Zeno-
like effect with finite-frequency imperfect measurements.
Moreover, which state of the system will be frozen can
be chosen by controlling parameters such as the strength
and frequency of the repeated imperfect measurements. In
contrast, in the usual Zeno effect (that follows from repeated
instantaneous perfect measurements at infinite frequency)
there is much less choice, as the state to be preserved can
only be an eigenstate of the repeatedly measured observable.

As a technical tool, in order to be able to determine to
what extent realistic finite-duration imperfect measurements
can freeze the dynamics, we will enlarge the Heisenberg
cut so as to include also the measurement devices in the
quantum description [16–21]. We will call the system under
consideration the target, and the measurement devices will
be called detectors. The measurements will be described
by a suitable target-detector interaction Hamiltonian, and
the repeated measurement processes will each be unitary.
The derivation of our results will not invoke any projective
measurements or wave-function collapse.

II. SETTING

The target and detector are initially uncorrelated, i.e., they
are in a product state. We let the target system evolve alone

under its free Hamiltonian H
(T)
0 for a time interval �tF. We

then measure the target by coupling it to a first detector, which
is prepared in the state ρ

(D)
0 . We let the bipartite system evolve

under the Hamiltonian HM = HI + H
(T)
0 + H

(D)
0 for a time

�tM, where HI is the interaction Hamiltonian describing the
coupling and H

(D)
0 is the free Hamiltonian of the detector. After

the measurement has taken place, we decouple the systems, set
aside the detector, and repeat the process with a fresh detector.
One may either use a series of identically prepared detectors,
or equivalently, one may use a single detector which is reset
after each interaction.

The net effect of each free evolution plus measurement
cycle on the target system can be described as a quantum
channel, � : L(HT) → L(HT), where L(HT) denotes the set
of linear maps on the target’s Hilbert space. To ascertain the
effect of many such cycles on target states, we analyze the
channel’s spectrum, {λj } ⊂ C, and its eigenvectors {Vj } ⊂
L(HT). While the Vj ’s need not correspond to physical
states when considered individually, any initial target state
can be decomposed into the eigenbasis which they form, as
ρ

(T)
0 = ∑

j cjVj . Note that this method readily generalizes to
the case where � is defective since the latter still admits a
Jordan Canonical Form. After n cycles, the target state will
be

ρ(T)
n = �n

(
ρ

(T)
0

) =
∑

j

λn
j cjVj , (1)

and thus components of ρ
(T)
0 in eigenspaces with λ = 1

will be preserved, while those in |λ| < 1 eigenspaces are
exponentially suppressed.

Fixed points of the process, for which �n(ρ(T)
0 ) = ρ

(T)
0

for all n, are those that lie entirely in a λ = 1 eigenspace
of �. We can straightforwardly apply Brouwer’s fixed-point
theorem [22] here to conclude that such a state always exists.
If the decomposition of a given state ρ

(T)
0 into eigenspaces

of � involves only eigenspaces whose eigenvalues are
very close to unity, then the exponential suppression of
|λ| < 1 eigenvalues can be exceedingly slow. In that case,
�n(ρ(T)

0 ) ≈ ρ
(T)
0 , for values of n which are not too large. If

an eigenvalue λj is not equal to but close to unity, let us
refer to its corresponding eigenvector Vj as an “almost fixed
point” of �. We will show that two types of fixed points
and the almost fixed points are at the heart of the Zeno
phenomena.
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III. A QUBIT MODEL

To demonstrate the emergence of the QZE from imperfect
measurements in a manner that is simple and experimentally
relevant, we consider the case in which the target and detectors
are qubits.

Without loss of generality, we take the free Hamiltonian
of the target qubit to be H

(T)
0 = ωσ (T)

z . We then consider a
Jaynes-Cummings-like coupling [23]

HI = gσ (D)
x σ (T)

x = g

4
(σ (D)

+ + σ
(D)
− )(σ (T)

+ + σ
(T)
− ). (2)

For simplicity, we take the free Hamiltonian of the detectors
to have the same form as that of the target, namely H

(D)
0 =

ωσ (D)
z . In order to be explicit, for now we choose the detectors

to arrive in their ground state, i.e., ρ
(D)
0 = |0〉D〈0|D. (Further

below, we will discuss the implications of choosing an arbitrary
other initial state for the detectors.) While our results will hold
for more general choices, this choice of coupling and initial
detector state commonly appears in real-world systems, e.g.,
in circuit QED [24,25] and dipole-dipole coupling [26] (Chap.
16), and thus provides a physically relevant example.

A. Recovering the conventional quantum Zeno effect as a
special case

To demonstrate the emergence of the usual Zeno phe-
nomenology from our model, we begin by considering the limit
of infinitely frequent measurements. In the usual description
of the QZE, the target system is observed periodically, and the
operators describing the measurement process do not depend
on the measurement frequency (i.e., the duration of the mea-
surements is assumed to be irrelevant). To mimic this setup,
we consider the limit �tF,�tM → 0 (infinite measurement
frequency), but hold the strength of the interaction—described
by g�tM—fixed by letting g grow unbounded.

In this idealized setting, the eigenbasis {Vj } of the channel
� describing a single free evolution plus measurement cycle,
consists of the identity and the Pauli matrices. As per Eq. (1),
if the target qubit starts in the state ρ

(T)
0 = 1

2 (I (T) + r · σ (T)),
then after n cycles its state is

ρ(T)
n = 1

2

⎛
⎝λn

0I
(T) +

3∑
j=1

λn
j rjσ

(T)
j

⎞
⎠ , (3)

where

λ0 = 1, (4)

λ1 = 1 − 2ω2 cot2(g�tM)�t2
F + O

(
�t4

F

)
, (5)

λ2 = λ3 = cos(2g�tM). (6)

We recall that to reproduce the usual QZE setting, g�tM is
finite and otherwise unconstrained, while �tF is vanishingly
small. Thus, the expansion of λ1 in Eq. (5) is well defined,
as the values of g�tM which cause the cotangent to diverge
correspond to a trivial interaction.

We note the main features of this result: (i) The maximally
mixed state is a fixed point of this process, as one might expect
on the basis of decoherencelike effects produced by frequent

interactions. (ii) The σ (T)
y and σ (T)

z components of the initial
target state are exponentially suppressed, as |λ2| = |λ3| < 1
almost everywhere in the space of parameters (g,ω,�tF,�tM).
(iii) The eigenvalue λ1 approaches unity quadratically in the
high measurement frequency limit, so target states of the
form ρ

(T)
0 = 1

2 (I (T) + r1σ
(T)
x ) are exactly preserved by strong

and infinitely frequent measurements, even though they are
affected by the free evolution. This is an archetypal instance
of the quantum Zeno effect.

(iv) In the current setting, the preservation of target states
diagonal in the X = {|0〉 ± |1〉} basis is the phenomenon
typically associated with a QZE induced through frequent
σ (T)

x projective measurements. One might expect that, in this
limit, the interaction constitutes a measurement of the σ (T)

x

component of the target’s state. Indeed, we observe that if
g�tM = π (2k + 1)/4 for integer k, a general target state is
mapped as

(
a b

b∗ c

)
[X ]

�→
(

a 0
0 c

)
[X ]

(7)

by the measurement, in the X basis. In other words, any
coherent superposition is collapsed to a probabilistic ensemble
of σ (T)

x eigenstates; exactly the effect of a σ (T)
x projective

measurement (PVM). Moving away from the above values
of g�tM leads to weaker x measurements.

(v) We see that, remarkably, the wave-function collapse
in Eq. (7) is not necessary to produce the ordinary QZE: As
one increases the measurement frequency (�tF → 0), Eq. (5)
shows the rate at which the ordinary Zeno effect is approached.
We notice then that values of g�tM can be chosen such that
the term O(�t2

F ) in (5) vanishes, which implies that λ1 will
approach unity two powers in �tF faster. Interestingly, the
values of g�tM that accomplish this do not correspond to the
case of PVMs, but instead correspond to “weaker” effective
POVM measurements.

B. Realistic settings

In experiments, there are bounds on the frequency with
which measurements can be repeated and on the coupling
strengths between realistic detector and target systems. Let us,
therefore, go beyond the usual infinite frequency assumption
into more experimentally relevant regimes. As in the infinite-
frequency case above we will analyze the eigenpairs {V ′

j ,λ
′
j }

of the channel � that represents a cycle—now at a finite
measurement frequency and at finite coupling strength. We
use primes to distinguish eigenvectors and eigenvalues from
their infinite-frequency counterparts.

We find that the eigenvalues and eigenvectors of � are now
more involved than in the idealized case considered earlier.
Concretely, the eigenvectors have the form

V ′
0 =

(
a 0
0 1 − a

)
[Z]

, V ′
1 =

(
0 θ

ϕ 0

)
[Z]

,

(8)

V ′
2 =

(
0 χ

η 0

)
[Z]

, V ′
3 =

(
b 0
0 −c

)
[Z]

expressed in the Z = {|0〉, |1〉} basis, where a, b, and c are
non-negative and all other variables are complex. The full
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form of these eigenvectors is discussed in the Appendix. Two
of the associated eigenvalues are

λ′
0 = 1, (9)

λ′
3 = cos2(g�tM) − g


sin2(�tM), (10)

where  =
√

g2 + 4ω2. The expressions for λ′
1 and λ′

2 are
lengthy. Their behavior is discussed below, and their full form
is also discussed in the Appendix. We note that, as in the
previous subsection, while any ρ

(T)
0 can be expressed in the

eigenbasis {V ′
j } of �, only V ′

0 represents a realizable state
when considered alone.

With the exception of λ′
0, all of the variables in Eqs. (8)–

(10) depend on the parameters (g,ω,�tF,�tM), or a subset
thereof. We present the emergent features analogously to how
we discussed the features of infinite measurement frequency
case:

(a) The eigenvalue λ′
0 = 1 is unique in that it is equal

to unity independently of all parameters, making V ′
0 a fixed

point of �. The σ (D)
x ⊗ σ (T)

x coupling in our scheme, together
with the initial detector state, has the effect of rotating the
state of the target qubit about the x axis (on the Bloch
sphere) during measurement. However, from the symmetry
of the scheme, target states which are diagonal in the Z basis
are not preferentially rotated in either direction, and so they
necessarily remain diagonal in this basis after the interaction.
Since these states form a compact, convex subset of a real
vector space, Brouwer’s theorem guarantees a fixed point
which is diagonal in the Z basis; namely V ′

0. Contrary to
what intuition might suggest, V ′

0 need not be the maximally
mixed state for finite measurement frequencies. Rather, for the
case where the detectors are prepared in the ground state, V ′

0
can be anywhere on the z axis of the Bloch sphere depending
on the parameters.

(b) Generically, |λ′
3| is smaller than unity, but as Eq. (10)

shows, it can reach unity at isolated parameter values. If
|λ′

3| < 1, it corresponds to an exponentially damped transient.
If |λ′

3| = 1 then it merely contributes to the z-axis polarization
of the fixed point.

(c) V ′
1 and V ′

2 describe the off-diagonal elements of ρ
(T)
0

in the Z basis, and in the limit of strong and high-frequency
measurements, they tend towards σ (T)

x and σ (T)
y respectively, as

per the previous subsection. In this limit, λ′
1 tends towards

unity, conserving the σ (T)
x component of the initial target

state. From (2), this is indeed the limit of instantaneous σ (T)
x

measurements, i.e., we here recover the conventional Zeno
effect. We also recover the phenomenon that, at finite mea-
surement frequency, the QZE is transient [10,12–14]. Namely,
for high—but finite—measurement frequencies, generically
|λ′

1| � 1, and therefore any mixture of σ (T)
x eigenstates is at

best an “almost fixed point.” Furthermore, in our generalized
framework we are now able to tell where the escape from
the QZE will take the system: For an initial detector state
ρ

(D)
0 = |0〉D〈0|D, the off-diagonal elements (in the Z basis)

of an initial target state decay exponentially. In fact, more
precisely, any target state will decay to the fixed point V ′

0
under repeated measurement.

Crucially now, under closer inspection, we find that even
though |λ′

1| and |λ′
2| are generically smaller than 1, there

exist parameter values where λ′
1 or λ′

2 become arbitrarily
close to, or reach, unity. This occurs for a large number
of parameter combinations corresponding to finite frequency
measurements with finite coupling strengths; see Fig. 1(a).
In other words, finite frequency imperfect measurements can
preserve certain quantum states which are not preserved
under free evolution, a phenomenon which we refer to as a
“Zeno-like effect.”

As Fig. 1(b) shows, the Zeno-like fixed points cover the
entire xy plane. This is a further improvement over the standard
Zeno effect, where only states on the x axis can be frozen by
an interaction that measures σ (T)

x . We notice that the Zeno-like
fixed points lie on the plane perpendicular to the polarization
of the states of the incoming detectors. For generic detector
polarizations the distribution of the Zeno-like fixed points can
be moved out of the xy plane. Even further, while Zeno-like
fixed points only arise for specific choices of the parameters,
strong results can also be shown for the “Brouwer”-type fixed
point V ′

0 whose existence is guaranteed by Brouwer’s theorem
for all values of the parameters. Namely, V ′

0 can be made to
lie anywhere on the z axis of the Bloch sphere, which again
happens to be the polarization axis of the initial state of the
detectors.

Then, crucially, as Fig. 1(c) shows, by choosing a suitable
initial state for all the detectors in the series of measurements,
we can make V ′

0 be at any position in the Bloch sphere. This is
a dramatic improvement over the standard Zeno effect since it
implies that one can completely and stably halt the evolution of
any state of the target system by suitably choosing interaction
parameters and the initial state of the detector. In fact, for
generic parameter values, i.e., in the absence of a Zeno-like
fixed point, any state of the target system will eventually be
driven towards V ′

0, a state which one can choose arbitrarily
by suitably choosing the initial state of the detectors and the
measurement parameters.

IV. TARGET-DETECTOR INTERACTION AS A
MEASUREMENT

Recall that we are including the detector inside the
Heisenberg cut. This means that each detection process is
described as the unitary evolution of a closed system. Our
results about the Zeno-like effect do not depend on whether
the detectors, once discarded, are read out or interact with an
environment. Notice that this also means that, unlike in the
usual QZE, in our approach one naturally does not postselect
for measurement outcomes..

Nevertheless, for illustration, let us now consider the case
when the discarded detectors are being read out in a specified
way. Recall that, in this case, classical detection outcomes will
be generated, occurring with classical probabilities. The full
process can be described as a positive operator-valued measure
(POVM)

This POVM is determined by the requirement that it
produces the correct probabilities for the outcomes of the
detector readout, along with the correct state update rules
for the target. Namely, this means that the Kraus operators
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FIG. 1. (Color online) (a) Location of the Zeno-like fixed points in the three-dimensional parameter space. Plotted are the neighborhoods
in which the eigenvalue λ′

2 differs from 1 by at most 10−2. The thickness of these neighborhoods illustrates the level of fine-tuning required to
realize Zeno-like fixed points with this accuracy. (b) Top view of the Bloch sphere. Locations of Zeno-like fixed-point states (where λ′

1 = 1 or
λ′

2 = 1) are in blue. They are highly concentrated on the xy plane. States preserved by the conventional Zeno effect are shown as a horizontal
bold red line. (c) Bloch sphere locations of target states preserved by Brouwer fixed points (λ0 = 1) when the initial state of the detectors is
arbitrarily varied, while being held fixed for each set of repeated measurements. We see that by varying the choice for the initial state of the
detectors, the fixed points cover the full sphere isotropically about the z axis. For comparison, the bold red line on the x axis shows the states
that can be preserved by the conventional QZE.

are determined by the requirement that the quantum channel
for the target is reproduced, and that the POVM elements
correspond to the chosen readout variable.

Concretely, the channel � admits an operator-sum repre-
sentation of the form

�
(
ρ

(T)
0

) =
∑

j

Kjρ
(T)
0 K

†
j , (11)

where {Kj } ⊂ L(HT) are Kraus operators. Defining Ej =
K

†
jKj , it follows immediately that

∑
j Ej = I (T), E

†
j = Ej ,

and Ej � 0 (see [27] Chaps. 2 and 8). Thus, {Ej } forms a
POVM, with the probability of outcome j given by

pj = tr
(
Ejρ

(T)
0

)
. (12)

The postmeasurement state corresponding to this outcome
is

ρ
(T)
1,j = Kjρ

(T)
0 K

†
j

pj

, (13)

and so the action of the channel in Eq. (11) can be understood
as

�
(
ρ

(T)
0

) =
∑

j

pj ρ
(T)
1,j . (14)

Equation (14) shows that, as expected, the measurement
process collapses the target to a classical ensemble of the
different possible measurement outcomes.

A. An idealized example

In the case of infinitely frequent projective measurements
discussed in Sec. III A, point (iv), we can explicitly compute
a decomposition of � given by Eq. (11):

K+ = |+〉〈+|, K− = |−〉〈−|, (15)

where |±〉 = (|0〉 ± |1〉)/√2. This means that we can interpret
this particular � as a dephasing channel. The POVM elements
associated with Eq. (15) are E± = K±, as one would expect
from Eq. (7), which describes the target state update rule
of a projective σ (T)

x measurement. The channel describes
how arbitrary input states are mapped after the idealized
measurement into the state that is the correct probabilistic
mixture of the pure states associated that describe the possible
measurement outcomes.

B. A realistic example

Let us now consider an example of a particular Zeno-like
fixed point resulting from finite frequency measurements with
a finite coupling strength. For the parameter values

�tf = 15.13 ω−1, �tm = 14.96 ω−1,
g

ω
= 0.865, (16)

the channel � has the eigenvectors

V ′
0 =

(
0.5 0
0 0.5

)
[Z]

, V ′
1 =

(
1.0 0
0 −1.0

)
[Z]

,

V ′
2 =

(
0 0.42 − 0.27i

0.42 + 0.27i 0

)
[Z]

, (17)

V ′
3 =

(
0 0.27 + 0.42i

0.24 − 0.42i 0

)
[Z]

,

and the eigenvalues

λ′
0 = 1.0, λ′

1 = 0.73,
(18)

λ′
2 = 1.0, λ′

3 = 0.73.

Thus, we have that �(V ′
0 + αV ′

2) = V ′
0 + αV ′

2 for α ∈ [−1,1].
In particular, the pure states V ′

0 ± V ′
2 are perfectly preserved
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(to numerical precision) by the Zeno-like effect originating
from finite-frequency measurements.

A set of Kraus operators for � in this example is

K ′
± = (0.36 + 0.55i) I (T) ± 0.22 σ (T)

x ± 0.14 σ (T)
y . (19)

One can readily check that the results in Eqs. (17)–(19) are
stable under small perturbations of the parameters in Eq. (16).
Observe that � represents a nontrivial—albeit nonprojective—
measurement in this case. The POVM elements arising from
Eq. (19) are

E′
± = 1

2 (I (T) ± n · σ (T)), (20)

where n = (0.32,0.20,0).

V. CONCLUSIONS AND OUTLOOK

We conclude that the Zeno effect is a special instance of a
more general Zeno phenomenon that allows one to effectively
halt the evolution of a target system through measurements,
even if they are imperfect and repeated only at a finite
frequency. Also, in contrast to the conventional Zeno effect,
in this more general scheme the preserved states need not be
eigenstates of the interaction Hamiltonian and instead can be
placed anywhere in the Bloch sphere by suitably choosing
measurement parameters such as the interaction time and
coupling strength.

Generally, imperfect measurements performed at a finite
frequency do not freeze the target system, of course. However,
we found that any one of a wide range of states can be
arranged to be a Zeno-like fixed point for the target system
by suitably choosing the measurement parameter values, as
shown in Fig. 1(b). The conventional Zeno fixed point is
merely that special case of these Zeno-like fixed points where
the measurement parameters approach perfect measurements
at infinite frequency.

Further, when the measurement parameters are not specially
chosen, and when there is, therefore, no Zeno-like fixed point,
then the target system’s state will eventually approach a state
that is a universally attractive fixed point. We showed that
the existence of this fixed point is guaranteed by applying
Brouwer’s theorem. One might have expected this “Brouwer
fixed point” to be generally maximally mixed. Surprisingly,
however, as Fig. 1(c) shows, the Brouwer fixed points can be
chosen all over the Bloch sphere, by suitably choosing the
initial state of the detectors and the measurement parameters.
In experiments, whether Zeno-like or Brouwer fixed points are
more readily implementable depends on how well and in what
range the measurement parameters and the initial state of the
detectors can be prepared.

The Zeno-like fixed points are similar in nature to the
conventional Zeno fixed point because the latter is a special
case. There is a different intuition for the Brouwer fixed
points: Consider the case where the detectors are prepared
in the ground state, i.e., cold. On one hand, the detectors will
therefore generally take away heat from the target. On the other
hand, the suddenness of the target-detector interactions tends
to heat the target. After transients, the resulting fixed-point
state, which is of course generally not a thermodynamical
equilibrium state, is the Brouwer fixed-point state.

While in this paper we mostly focused on qubits, we expect
Zeno-like and Brouwer fixed points to be present much more
generally. Consider, for example, the setup of entanglement
farming from an optical cavity field [28]. There, identically
prepared unentangled pairs of atoms are successively sent
through an optical cavity. The successive pairs of atoms were
observed to drive the cavity field towards a certain entangling
state. While no connection to the Zeno effect was made in [28],
we can now see that this entangling state is likely an instance
of a Zeno-like fixed point, with each pair of atoms playing
the role of a detector and the cavity field being the target
system. In addition, the existence of Brouwer-type universally
attractive fixed points for systems with higher dimensional,
or even infinite dimensional, Hilbert spaces can be shown, as
above, using Brouwer’s [22] and Schauder’s theorems [29],
respectively.

Finally, we note that it is also possible for repeated
measurements to enhance—rather than freeze—evolution, a
phenomenon known as the anti-Zeno effect [13,21,30,31]. It
will be interesting to study also this phenomenon with the
approach that we pursued here.
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APPENDIX: EIGENPAIRS OF THE CHANNEL �

In the general case of finite frequency measurements,
certain eigenpairs of � are highly complicated functions
of the measurement parameters (�tf , �tm, ω, g). In the
main text, we gave explicit expressions for two partic-
ularly simple eigenvalues, and restricted ourselves to a
more qualitative discussion of the other eigenvalues and
eigenvectors.

Here, we provide a matrix representation for �, from which
the eigenpairs can easily be extracted using any computer
algebra system. The rationale is that the expressions for certain
eigenpairs have on the order of 1000 terms, and are thus too
lengthy to be useful when written out explicitly. In particular,
we define a 4 × 4 matrix M�, such that if A = �(B), where
A,B ∈ L(H(T)), then

vec(A) = M�vec(B), (A1)

where the vectorization operation is defined as

vec

(
a1,1 a1,2

a2,1 a2,2

)
≡

⎛
⎜⎝

a1,1

a2,1

a1,2

a2,2

⎞
⎟⎠. (A2)

The eigenvalues of � are the same as those of M�.
The eigenvectors of � can be determined by inverting the
vectorization operation on those of the M�. The nonzero
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elements of M� are as follows:

M�
11 = 2[(g3 + g4 + 2g2ω2) cos2(�tm) + 4gω2 + 4g2ω2 + 8ω4]

2(g + )2
, (A3)

M�
1,4 = (g + g2 + 4ω2)2 sin2(�tm)

2(g + )2
, (A4)

M�
2,2 = M�

3,3 = cos(g�tm)(g + 2)e2iω�tf [(g + g2 + 4ω2) cos(�tm) + 2i(ω + 2ωg) sin(�tm)]

2(g + )2
, (A5)

M�
2,3 = M�

3,2 = e−2iω�tf g sin(�tm) sin(g�tm)(g + g2 + 4ω2)

2(g + )2
, (A6)

M�
4,1 = g2 sin2(�tm)

2
, (A7)

M�
4,4 = (g + g2 + 4ω2)2 cos2(�tm)

2(g + )2
, (A8)

where  =
√

g2 + 4ω2.
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