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A general method of the Foldy-Wouthuysen transformation is developed. This method is applicable to
relativistic particles with any spin in arbitrarily strong external fields. It can be used when the de Broglie
wavelength is much smaller than the characteristic distance. Contrary to previously developed relativistic
methods, the present method satisfies the condition of the exact Foldy-Wouthuysen transformation and
is well substantiated. The derived relativistic Foldy-Wouthuysen Hamiltonian is expanded in powers of
the Planck constant. In this expansion, terms proportional to the zero and first powers are determined
exactly in accordance with the above condition, and terms proportional to higher powers are not spec-
ified. The obtained result agrees with the corresponding formula for the Foldy-Wouthuysen Hamiltonian
previously deduced by an iterative relativistic method and proves the validity of results obtained with this
formula.
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I. INTRODUCTION

The Foldy-Wouthuysen (FW) representation [1] occupies a
special place in quantum theory due to its unique properties.
In this representation, the Hamiltonian and all operators are
block-diagonal (diagonal in two spinors). Relations between
the operators in the FW representation are similar to those be-
tween the respective classical quantities. Quantum-mechanical
operators for relativistic particles in external fields have the
same form as those in the nonrelativistic quantum theory. In
particular, the position operator [2] and the momentum one
are equal to r and p = −i�∇. The polarization operator for
spin-1/2 particles is defined by the Dirac matrix �. In other
representations, these operators are expressed by much more
cumbersome formulas (see [1,3]). A great advantage of the FW
representation is the simple form of operators corresponding
to classical observables. Thanks to these properties, the FW
representation provides the best possibility of obtaining a
meaningful classical limit of the relativistic quantum mechan-
ics [1,4]. The passage to the classical limit usually reduces
to a replacement of the operators in quantum-mechanical
Hamiltonians and equations of motion with the corresponding
classical quantities. The possibility of such a replacement,
explicitly or implicitly used in practically all works devoted
to the relativistic FW transformation, was recently rigorously
proved in Ref. [5].

Since the FW representation is very important for contem-
porary quantum mechanics and elementary particle physics,
the problem of passing to this representation is very real. A
diagonalization of a Hamiltonian does not necessarily lead to
the FW representation [6]. The condition uniquely defining the
FW representation has been formulated by Eriksen [7]. There
is an infinite set of representations different from the FW
representation whose distinctive feature is a block-diagonal
form of the Hamiltonian. Paradoxically, even the original
method by Foldy and Wouthuysen [1] is approximate and does
not lead to the FW representation [8,9]. The Eriksen method
[7] is exact, but it explicitly represents the FW Hamiltonian
as a series of relativistic corrections to a nonrelativistic

limit and does not give a compact relativistic expression
for this Hamiltonian. Nevertheless, the series of relativistic
corrections as a whole defines the exact FW Hamiltonian.
Some iterative (“step-by-step”) methods of the FW transfor-
mation widely used in quantum chemistry [10] possess similar
properties. They also express the exact FW Hamiltonian
as a series of relativistic corrections satisfying the Eriksen
condition.

Compact relativistic expressions for the FW Hamiltonian
are necessary to describe high-energy particles (e.g., in
accelerators and storage rings). In this case, the series of
relativistic corrections is insufficient, and a compact relativistic
formula is needed. Moreover, this series becomes divergent
on the condition that p2/(mc)2 � 1. In such cases, the FW
transformation can be carried out by relativistic methods. How-
ever, the known relativistic methods of the FW transformation
[3,11–15] are approximate. A determination of their precision
and of limits of their applicability has been made in Ref. [16].
Unfortunately, these methods are not well substantiated. In
particular, their accordance with the Eriksen condition was
never investigated.

In the present work, we propose a method for the FW
transformation. The method is general because it is applicable
to relativistic particles with any spin in arbitrarily strong
external fields. Contrary to previously developed relativistic
methods, it satisfies the condition of the exact FW trans-
formation. We rigorously derive the general formula for the
relativistic FW Hamiltonian which is expanded in powers of
the Planck constant. In this expansion, terms proportional to
the zero and first powers are determined exactly in accordance
with the above condition. The obtained result agrees with the
corresponding formula for the FW Hamiltonian previously
deduced by the iterative relativistic method [15] and therefore
proves the validity of results obtained with this formula. Like
other relativistic methods applying an expansion of the FW
Hamiltonian in powers of the Planck constant [13–15], the
proposed method can be used when the de Broglie wavelength
is much smaller than the characteristic distance.
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II. EXACT AND APPROXIMATE METHODS OF THE
FOLDY-WOUTHUYSEN TRANSFORMATION

We extend the Eriksen method of the exact FW trans-
formation [7] to particles with any spin s. As a rule, the
corresponding wave functions can be separated into two
spinor-like blocks. The FW transformation brings the initial
Hamiltonian to a block-diagonal form. One of the blocks of
the FW wave function (upper and lower blocks for states with
positive and negative total energy, respectively) is equal to
zero. The operator transforming the initial Hamiltonian to the
FW representation can be presented in the exponential form:

UFW = exp (iS). (1)

The even (block-diagonal) form of the final Hamiltonian
was the only condition of transformation used by Foldy and
Wouthuysen [1]. However, this condition does not define the
FW Hamiltonian unambiguously. The additional condition
eliminating this ambiguity has been proposed by Eriksen [7]
and substantiated by Eriksen and Kolsrud [8]. Additional
substantiation of the Eriksen method has been given in
Ref. [17]. The transformation remains unique if the operator
S in Eq. (1) is (i) odd,

βS = −Sβ, (2)

and (ii) Hermitian for fermions and β-pseudo-Hermitian (S =
S‡ ≡ βS†β) for bosons. Here β is the Dirac matrix for spin-
1/2 particles. It takes the form β = ρ3 ⊗ I for particles with
a different spin [ρ3 is the Pauli matrix whose components
act on spinor-like blocks of the wave function and I is the
(2s + 1) × (2s + 1) unit matrix].

Condition (2) is equivalent to [7,8]

βUFW = U
†
FWβ. (3)

Thus, the FW transformation operator should satisfy Eq. (3)
and should perform the transformation in one step. Eriksen [7]
has found the operator possessing the needed properties:

UE = UFW = 1 + βλ√
2 + βλ + λβ

, λ = H
(H2)1/2

, (4)

where λ is the sign operator. The two operator factors in the
denominator commute. The denominator is an even operator
and commutes with the numerator (see Refs. [6,7,16]). While
Eriksen has considered only a Dirac particle in stationary
fields, Eq. (4) remains valid for an arbitrary-spin particle in
nonstationary fields. This statement is based on the fact that
the operators 1 + βλ and UE vanish either a lower or a upper
spinor (or corresponding spinor-like blocks) for positive and
negative energy states, respectively. The operator UE satisfies
the Eriksen condition. The general form of the Hamiltonian
applicable for an arbitrary-spin particle is given by

H = βM + E + O, βM = Mβ, βE = Eβ,

βO = −Oβ, (5)

where βM + E and O are even and odd operators commuting
and anticommuting with the operator β, respectively. Similar
to the block structure of β, the block structure of any operator
in Eq. (5) can be presented in terms of the three Pauli matrices,
ρ1,ρ2,ρ3, and of the 2 × 2 unit matrix I multiplied by some
(2s + 1) × (2s + 1) operators.

We may suppose that the operators βM and E can be
presented in the form βM = ρ3 ⊗ M, E = I ⊗ E. However,
such a separation of the even part of H is not obligatory. We
need to require only that the commutators [O,M] and [O,E]
have an additional factor � compared with the corresponding
products of operators, OM and OE .

For electromagnetic interactions of a Dirac particle, the
operator M is replaced by the particle mass:

HD = βm + E + O. (6)

In this case, the FW Hamiltonian can be represented as a series
of relativistic corrections in powers of the operators E/m and
O/m. The Eriksen method cannot be used to obtain compact
relativistic formulas for this Hamiltonian (except for some
special cases [18]) because the general formula (4) is very
cumbersome and contains square roots of Dirac matrices.

The needed series of relativistic corrections can be obtained
analytically with a computer [17]. We present below the exact
FW Hamiltonian calculated by de Vries and Jonker up to terms
of the order of (v/c)8. They considered the stationary case and
supposed that O/m ∼ v/c and E/m ∼ (v/c)2. The result of
the calculations [17] has been presented in a more convenient
form [16] via multiple commutators:

HFW = β

(
m + O2

2m
− O4

8m3
+ O6

16m5
− 5O8

128m7

)

+ E − 1

128m6
{(8m4 − 6m2O2 + 5O4),[O,[O,E]]}

+ 1

512m6
{(2m2 − O2),[O2,[O2,E]]}

+ 1

16m3
β {O,[[O,E],E]}− 1

32m4
[O,[[[O,E],E],E]]

+ 11

1024m6
[O2,[O2,[O,[O,E]]]] + A24, (7)

where

A24 = 1

256m5
β

(
24{O2,([O,E])2} − 20([O2,E])2

− 14{O2,[[O2,E],E]} − 4[O,[O,[[O2,E],E]]]

+ 9

2
[[O,[O,[O2,E]]],E] − 9

2
[[O,[O,E]],[O2,E]]

+ 5

2
[O2,[O,[[O,E],E]]]

)
. (8)

In A24, the first and second subscripts indicate the respective
numbers of operators E and O in the product. A mistake in the
calculation of this term made in Ref. [16] is corrected here.

Terms of higher orders up to (v/c)12 were calculated many
years ago (see Ref. [17] and references therein). This fact
clearly demonstrates the applicability and importance of the
Eriksen method for a calculation of the FW Hamiltonian as a
series of relativistic corrections.

The Eriksen condition is general and is applicable to
an arbitrary-spin particle. However, this condition was not
used by Eriksen or in other works even for a relativistic or
ultrarelativistic Dirac particle, let alone for a particle with
another spin.
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The problem of description of single relativistic and
ultrarelativistic particles in external fields may be solved
with relativistic methods of the FW transformation. These
methods use either the weak-field approximation [3,11,12]
or an expansion of the FW Hamiltonian into a power series in
the Planck constant [13–15]. All known relativistic methods
are iterative and approximate. A determination of the limits
of their applicability [16] has been based on a comparison of
the FW Hamiltonians obtained with the relativistic methods
and with the Eriksen method. However, such a comparison
can be fulfilled only for Dirac particles because the particle
mass cannot be replaced by the operator M in an expansion
in powers of the operators E/m and O/m.

To fulfill the FW transformation of the initial Hamiltonians
(5) and (6), a priori information about commutation relations
should be used. Any commutator of the momentum and
coordinate operators adds the factor �, while a commutator
of different Pauli (or Dirac) matrices does not affix such
a factor. Thus, we suppose that commutators like [O,M]
and [O,E] have the additional factor � compared with the
products of the operators, OM and OE . Odd terms contain
off-diagonal Pauli matrices, ρ1 and ρ2, acting on spinors (or
spinor-like blocks of bispinor-like wave functions for particles
with other spins). Since these matrices do not commute with
each other, we assume that multiple commutators of the
form [O,[O, . . . [O,E] . . . ]] are of the order of �/S0 with
respect to the operator product OO · · ·OE with the factor
� already appearing due to the first commutation. Here S0 is
some quantity with the dimension of action (see Ref. [16] for
details). In contrast, commutators of the forms [O2,[O,E]],
[O2,[O2,E]], and [[O,E],E] are of the order of (�/S0)2 (with
respect to the product of the operators appearing in them). This
property occurs because O2 and E are even (block-diagonal)
operators proportional to the 2 × 2 unit matrix. Of course, this
a priori information should be verified in any specific case.

When determining the order of magnitude, we indicate the
smallest possible degree in �. For example, the commutator
[O,[O,E]] can be of the order of (�/S0)2 instead of �/S0. The
commutator [O,E] with the nominal order of �/S0 can addi-
tionally contain terms of the orders of (�/S0)2,(�/S0)3, . . . ,
can be second or higher order in �/S0, or can be equal to zero.

The general relativistic method proposed in Ref. [15] is
applicable for an arbitrary-spin particle and transforms the
Hamiltonian (5) to the FW representation in the nonstationary
case. The first iteration is made with the transformation
operator

U = βε + βM − O√
(βε + βM − O)2

β,

U−1 = β
βε + βM − O√
(βε + βM − O)2

. (9)

Here U−1 = U † when the Hamiltonian (5) is Hermitian (H =
H†), U−1 = U ‡ when it is β-pseudo-Hermitian (H = H‡), and

ε =
√
M2 + O2. (10)

We consider the general case when external fields are non-
stationary. In this case, the exact formula for the transformed

Hamiltonian has the form

H′ = βε + E + 1

2T
([T , [T ,(βε + F)] ] + β[O,[O,M]]

− [O,[O,F]] − [(ε + M), [(ε + M),F]]

−[(ε + M), [M,O]] − β{O, [(ε + M),F]}
+β{(ε + M), [O,F]}) 1

T
, (11)

where F = E − i�
∂

∂t
and T =

√
(βε + βM − O)2.

Hamiltonian (11) still contains odd terms proportional to
the first and higher powers of the Planck constant. Additional
transformations bring it to the block-diagonal form. If one
holds only terms proportional to the zero and first powers of
�, the final FW Hamiltonian takes the form

HFW = βε + E + 1

4

{
1

2ε2 + {ε,M} ,(β[O,[O,M]]

− [O,[O,F]])
}
. (12)

It should be emphasized that Eqs. (9)–(12) are applicable for
arbitrarily strong external fields. For a Dirac particle, M = m.

However, this method was substantiated only indirectly,
namely, by its agreement with a similar method developed for
a Dirac particle and by the consistency of the obtained FW
Hamiltonians with the corresponding classical Hamiltonians.

The related relativistic method of the FW transformation
for a Dirac particle [3] uses both the exponential and nonex-
ponential transformation operators. In Ref. [16], this method
has been substantiated [for p2/(mc)2 < 1], and the limits of
its applicability have been determined. It has been shown that
terms in the relativistic FW Hamiltonians proportional to the
zero and first powers of � are exact within the precision of the
analysis. In Ref. [16], relativistic corrections up to the order
of (v/c)8 [when E/m ∼ (v/c)2, O/m ∼ v/c] obtained with
the Eriksen method have been taken into account. The FW
transformations of the Dirac and Dirac-Pauli Hamiltonians for
a particle in electric and magnetic fields have been fulfilled
in Ref. [19] with the Kutzelnigg diagonalization method
[20] up to terms of (|π |/mc)14 ≈ (v/c)14, where π is the
kinetic momentum. This method satisfies the Eriksen condition
and is applicable in the weak-field approximation. The FW
Hamiltonians calculated in Ref. [19] are in agreement with the
corresponding relativistic Hamiltonians derived in Refs. [3,16]
as well as with the classical ones. Thus, the important results
obtained in Ref. [19] also confirm that the relativistic method
[3] gives FW Hamiltonians exact for terms proportional to the
zero and first powers of �.

The presented analysis nevertheless shows that the main
disadvantage of all known relativistic methods [3,11–15] is a
lack of their substantiations. The most important substantiation
[16] of the method developed for single Dirac particles [3] is
the full agreement of the obtained relativistic FW Hamiltonian
(8) with the exact FW Hamiltonian calculated by the Eriksen
method and expressed by Eqs. (7) and (8) as a series of
relativistic corrections. However, such a substantiation can
be made only on the condition that p2/(mc)2 < 1. The FW
Hamiltonians obtained with the method elaborated in Ref. [3]
and with the other methods developed for single Dirac particles
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[11–14] agree. This agreement demonstrates the validity of the
methods presented in Refs. [11–14] (for details, see Ref. [16]).

The only relativistic method applicable to single arbitrary-
spin particles [15] is substantiated by the consistency of the FW
transformation operator used with the corresponding operator
for a Dirac particle [3]. The validity of all relativistic methods
is supported by an agreement between the obtained quantum-
mechanical Hamiltonians in the FW representation and the
corresponding classical Hamiltonians. But this substantiation
is not satisfactory.

In the next sections, we will expound a method of
the relativistic FW transformation for single arbitrary-spin
particles. In contrast to all known relativistic methods, this
method is based on the fulfillment of the Eriksen condition
of the exact FW transformation presented in this section.
The developed method exploits the exponential transformation
operator and is general because it is applicable for arbitrarily
strong interactions.

III. APPROXIMATE FOLDY-WOUTHUYSEN
TRANSFORMATION FOR A RELATIVISTIC

ARBITRARY-SPIN PARTICLE

Let us choose the exponential transformation operator as
follows:

S = −iβ�. (13)

In this case

U = cos S + i sin S. (14)

Power series expansions of the sine and cosine functions show
that

U = cos � + i(−iβ) sin � = cos � + β sin �. (15)

The transformation of the initial Hamiltonian (5) to another
representation is given by

H′ = i�
∂

∂t
+ U

(
H − i�

∂

∂t

)
U−1

= i�
∂

∂t
+ U

(
βM + E + O − i�

∂

∂t

)
U−1. (16)

When [O,M] = [O,F] = [M,F] = 0, the transformation
(15) and (16) is exact and leads to the FW representation (cf.
Ref. [3]):

HFW = (cos � + β sin �) (βM + F + O)

× (cos � − β sin �) + i�
∂

∂t

= (βM + O) (cos � − β sin �)2 + E
= (βM + O) (cos 2� − β sin 2�) + E
= β (M cos 2� + O sin 2�) + O cos 2�

−M sin 2� + E .

The transformed Hamiltonian is even when

tan 2� = O
M . (17)

The same transformation operator can be used in the general
case. However, a noncommutativity of operators requires

additional steps of transformation. The needed generalization
of Eq. (17) to noncommutative operators O and M is given
by

2� = arctan X, X =
{

1

2M ,O
}

. (18)

The operator � is odd. It is also Hermitian for spin-1/2
particles and other fermions and β-pseudo-Hermitian for
bosons. It is convenient to utilize the operator relations

sin � = tan 2�√
2
√

1 + tan2 2�(1 + √
1 + tan2 2�)

, (19)

cos � = 1 + √
1 + tan2 2�√

2
√

1 + tan2 2�(1 + √
1 + tan2 2�)

. (20)

Operator relations (19) and (20) repeat the correspond-
ing trigonometrical ones. In the general case, tan � =
tan 2�/(1 ±

√
1 + tan2 2�), but only the plus sign corre-

sponds to the FW transformation [3].
The nonexponential transformation operator can be pre-

sented as follows:

U = 1 + √
1 + X2 + βX√

2
√

1 + X2(1 + √
1 + X2)

. (21)

When we take into account only terms proportional to the
zero and first powers of �, we obtain the following relation:

(1+
√

1 + X2 + βX)(βM + F + O)(1+
√

1 + X2 − βX)

= β

2
{(1 +

√
1 + X2),(2M + {O,X})}

+ {
√

1 + X2(1 +
√

1 + X2),F}
+ β

2
[X,[X,M]] − 1

2
[X,[X,F]]

+ β

2
{(1 +

√
1 + X2),[X,F]} − β

2
{X,[

√
1 + X2,F]}.

The transformed Hamiltonian is given by

H′ = βε + E + 1

4

{
1

2ε2 + {ε,M} ,(β[O,[O,M]]

− [O,[O,F]])} + O′,

O′ = β

4

{
1√

1 + X2
,[X,F]

}

− β

4

{
X√

1 + X2(1 + √
1 + X2)

,[
√

1 + X2,F]

}
,

(22)

where ε is defined by Eq. (10). The last commutator can be
approximated as

[
√

1 + X2,F] ≈
{

1

2
√

1 + X2
,[X2,F]

}
.

Since the remaining odd term, O′, is proportional to �, it is
comparatively small. This term can be eliminated thanks to a
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second transformation with the exponential operator, which is
given by

S ′ = − iβ

4

{
1

ε
,O′

}
= − i

16

{
1

ε
,

{
1√

1 + X2
,[X,F]

}}

+ i

32

{
1

ε
,

{
X

(1 + X2)(1 + √
1 + X2)

,[X2,F]

}}
.

(23)

Additional even terms appearing after the second transfor-
mation can be neglected. Therefore, the obtained Hamiltonian
is even and equal to

H′′ = H′ − O′ = βε + E + 1

4

{
1

2ε2 + {ε,M} ,

× (β[O,[O,M]] − [O,[O,F]])} . (24)

IV. CORRECTION OF THE FOLDY-WOUTHUYSEN
HAMILTONIAN

To calculate the relativistic FW Hamiltonian, we need
to determine corrections to H′′. The Hamiltonian (24) does
not satisfy the Eriksen condition. This statement is based on
the Baker-Campbell-Hausdorff (BCH) formula [21], which
defines the product of two exponential operators:
exp(A) exp(B)

= exp
(
A + B + 1

2 [A,B] + 1
12 [A,[A,B]] − 1

12 [B,[A,B]]

− 1
24 [A,[B,[A,B]]]+higher-order commutators

)
. (25)

The product of two exponential operators can be calculated
with any needed accuracy [22].

When A = iS,B = iS ′, and the operators S,S ′ are odd
and Hermitian (β-pseudo-Hermitian for bosons), the operators
[A,B] and [A,[B,[A,B]]] are even. Therefore, the resulting
transformation operator Ures = exp (iS ′) exp (iS) can be pre-
sented in the form Ures = exp (iR), where the operator R is
not odd and does not satisfy the Eriksen condition (2).

Any subsequent exponential operator of the iterative FW
transformation is of a smaller order of magnitude than the
preceding one. Therefore, the BCH formula allows us to
determine and to eliminate an error. Such a possibility was
first noticed by Eriksen and Kolsrud [8]. As the double
commutators [S,[S,S ′]], [S ′,[S,S ′]], and commutators of
higher orders are negligible as compared with [S,S ′], Eq. (25)
leads to the approximate relation

exp(iS ′) exp(iS) = exp
(

1
2 [S,S ′]

)
exp [i(S ′ + S)]. (26)

Since the operator i(S ′ + S) is odd and the Hamiltonian H′′ is
even (with a needed accuracy), the left multiplication of the
FW transformation operator by the even operator

Ucorr = exp
(− 1

2 [S,S ′]
)

(27)

does not add any odd terms to the Hamiltonian and allows us to
cancel the error of the iterative FW method in the leading order.
For the stationary case, this procedure has been established in
Ref. [8]. The final FW Hamiltonian is equal to

HFW = Ucorr

(
H′′ − i�

∂

∂t

)
U−1

corr + i�
∂

∂t

= H′′ −
[

1

2
[S,S ′],

(
H′′ − i�

∂

∂t

)]
. (28)

In this equation, only the leading correction is taken into
account. The commutator of the exponential operators is equal
to

[S,S ′] = − iβ

2
{arctan X,S ′}. (29)

Equations (23), (28), and (29) clearly show that corrections
to the Hamiltonian (24) are of the order of (�/S0)2 and can be
neglected in the considered case. As a result,

HFW = H′′, (30)

and the relativistic FW Hamiltonian for the arbitrary-spin
particle in external fields is given by Eq. (24). This equation
coincides with Eq. (12), but the validity of the Hamiltonian is
now rigorously proven.

The result obtained solves the problem of the FW transfor-
mation for the relativistic particle of arbitrary spin in arbitrarily
strong external fields. Contrary to previously developed
relativistic methods, the present method satisfies the Eriksen
condition of the exact FW transformation, and therefore, its
validity is appropriately proven. The derived FW Hamiltonian
is expanded in powers of the Planck constant and contains
terms proportional to the zero and first powers. These terms are
in accordance with the Eriksen condition and are determined
exactly. The agreement between the formulas for the FW
Hamiltonians obtained in Ref. [15] and in the present work
substantiates previously obtained results for single relativistic
particles in external fields. However, additional terms of the
order of (�/S0)2 which are also presented in the final equations
for the FW Hamiltonian obtained in Refs. [3,11,12,14,15] are
not relevant. Certaily, all corrections of the order of (�/S0)2

to the Hamiltonian (24) can be equal to zero. In the next
section, we will consider an example of the relativistic FW
transformation illustrating this possibility.

Unfortunately, none of the known relativistic iterative
methods admit a derivation of corrected relativistic FW
Hamiltonians including terms of second and higher order in
�. In particular, the method stated in this section does not
give an explicit relativistic expression for the anticommutator
{arctan X,S ′}. As a result, the correction to the FW Hamil-
tonian (24) can be obtained only as a series for powers of
{(1/M),O} and {(1/M),F}.

Thus, the present method of the FW transformation does
not use an expansion in powers of v/c and does not need a
weak-field approximation. An expansion in powers of �/S0

means that this method is applicable when the de Broglie
wavelength is much smaller than the characteristic distance
[15]:

�

p
	 l. (31)

For example, this condition is always satisfied for particles
or nuclei in accelerators and storage rings. In this case,
quantum-mechanical effects can be very important (see, e.g.,
Ref. [23]). It seems to be particularly important that the FW
Hamiltonian (24) can be applied in variational approaches. The
FW Hamiltonians expanded in powers of v/c and obtained
in the framework of the weak-field approximation are useful
only for perturbation calculations. Nevertheless, the relative
smallness of the de Broglie wavelength may lead to some
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restrictions. When condition (31) is not satisfied, omitted terms
of the order of (�/S0)2,(�/S0)3, . . . may not be small.

V. RELATIVISTIC SPIN-1 PARTICLE
IN A UNIFORM MAGNETIC FIELD

In this section, we use the system of units c = 1 while � is
included in all equations.

As an example of the application of the present method for
the FW transformation, let us consider a relativistic pointlike
spin-1 particle in a uniform magnetic field. Such a particle is
described by the Proca equations [24] with the added Corben-
Schwinger term [25] characterizing the anomalous magnetic
moment. The Sakata-Taketani transformation [26] allows us
to obtain the Hamiltonian form of the initial equations. The
sign of the direct product ⊗ will hereinafter be omitted. The
general Hamiltonian in the Sakata-Taketani representation has
been derived in Ref. [27]. For a spin-1 particle in the magnetic
field B, it can be presented in the form [16]

H = ρ3M + E + O, M = m + π2

2m
− e�

m
S · B,

E = −ρ3
e�(g − 2)

2m
S · B,

O = iρ2

[
π2

2m
− (π · S)2

m
+ e�(g − 2)

2m
S · B

]
, (32)

where g − 2 defines the anomalous part of the magnetic mo-
ment μ′ = e(g − 2)�s/(2mc), π = −i∇ − eA is the kinetic
momentum, and S is the 3 × 3 spin matrix. We imply that
spin-independent terms are multiplied by the 3 × 3 unit matrix
I. The even operators ρ3M and E and the odd operator
O are commutative and anticommutative with the matrix
β, respectively. The wave function in the Sakata-Taketani
representation is a six-component analog of a Dirac bispinor.

The presented separation of the even part of H into ρ3M

and E is very convenient because [IM,E] = [IM,O] = 0.
As a result, the initial Hamiltonian (32) is similar to the Dirac
Hamiltonian (6), and the results obtained with the Eriksen
method can be applied.

We may restrict ourselves to the consideration of a particle
with an anomalous magnetic moment moving in the plane
orthogonal to the field direction. When the magnetic field is
uniform and B = Bez, the operator πz = pz commutes with
the Hamiltonian (32). The FW transformation of the operator
πz does not change its form. Therefore, this operator also
commutes with the FW Hamiltonian and has eigenvalues
Pz = const. Consequently, a consideration of the particular
case Pz = 0 is quite reasonable [16]. The general case of a
nonzero vertical momentum can be reduced to this one by an
appropriate Lorentz transformation.

The use of Eq. (24) allows us to obtain the following FW
Hamiltonian [16]:

HFW = ρ3ε − ρ3
e�(g − 2)

2m
S · B

+ ρ3
e2

�
2(g − 1)(g − 2)

16m3

{
1

ε(ε + m)
,{B2(S · π)2

− [S · (π × B)]2 − e�(g − 1)B2(S · B)}
}
,

ε =
√

m2 + π2 − 2e�S · B − e2�2g(g − 2)

4m2
(S · B)2.

(33)

In this case, S0 = ε2/(|e|B) ∼ m2/(|e|B). Therefore, Eq. (33)
contains even terms of the order of (�/S0)3. However, the
precision is not exceeded. Since we can apply the results
obtained with the Eriksen method, we can evaluate corrections
introduced by the next terms in the expansion of the FW
Hamiltonian in powers of � with Eqs. (7) and (8). The operators
in these equations satisfy the relations

[O2,E] = 0, [O,E]=ρ1
e2

�
2(g−1)(g−2)

2m2
(S · B)2,

{O,[[O,E],E]} = −e4
�

4(g − 1)2(g − 2)2

2m4
B2(S · B)2,

([O,E])2 = e4
�

4(g − 1)2(g − 2)2

4m4
B2(S · B)2. (34)

In Eqs. (7) and (8), among the terms with a nominal order
of (�/S0)2, only two, which are proportional to {O,[[O,E],E]}
and ([O,E])2, are nonzero, and they are in fact fourth order in �

and B. Because S0 = ε2/(|e|B) ∼ m2/(|e|B) in the considered
case, the relativistic FW transformation allows us to determine
the Hamiltonian for spin-1 particles up to terms of the order of
(|e|�B)3/m5 inclusively. It is difficult to find another method
which would ensure such high precision in this case. Certainly,
the important possibility to derive the FW Hamiltonian with
an accuracy of the order of (�/S0)2 and higher exists only in
some special cases.

Let us obtain the energy spectrum with an accuracy of the
order of (�/S0)2 to demonstrate the usefulness of the present
method for the relativistic FW transformation. In this case,
we should take into account terms proportional to B2 and to
squared spin operators. These terms characterize the tensor
electric and magnetic polarizabilities of a moving particle. We
will apply results obtained in Refs. [16,28,29].

To solve the problem, it is convenient to omit terms of the
order of (�/S0)3 and to represent the FW Hamiltonian in the
form [29]

HFW = H0 + ρ3ω0Sz − ρ3
e2g(g − 2)

8m2ε′ S2
z B

2

−ρ3
e2(g − 1)(g − 2)

16m3

{
ε′ − m

ε′ ,
(
S2

π×B − S2
π

)}
B2,

H0 = ρ3

√
m2 + π2 − 2eSzB, ε′ =

√
m2 + π2,

ω0 = −e(g − 2)

2m
B, (35)

where the spin matrices define projections of the spin operator
onto the corresponding directions.

It can be proven [28] that the operators Sz,Sπ , and Sπ×B

commute with H0. Therefore, the operator H0 commutates
with the total FW Hamiltonian HFW .

For a particle with the normal magnetic moment (g = 2),
the operator π2 commutates with the FW Hamiltonian, and its
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eigenvalues are defined by the Landau formula:

π2
n = |e|B(2n + 1), n = 0,1,2, . . . (36)

The eigenvalues of the operator H0 are given by [16]

H(nλ)
0 =

√
m2 + (2n + 1)|e|�B − 2λe�B,

n = 0,1,2, . . . , λ = +1,0, − 1. (37)

As a result, the eigenvalues of this operator are degenerate.
When n − esz/|e| � 1, the degree of their degeneracy is equal
to 3. The reason for the degeneracy is the commutation of H0

with all spin components (Sz,Sπ , and Sπ×B). The energy levels
(except for the lower level) of a Dirac particle with g = 2 in a
uniform magnetic field are twice degenerate.

In the considered case (g 
= 2), the eigenvalues of the
operator H0 are also defined by Eq. (37), but the operators π2

and Sz do not commute with HFW and do not have separate
eigenvalues. Thus, particle polarization in stationary states is
defined by the remaining terms in the total FW Hamiltonian.
It has been found in Ref. [29] that

〈±1|Sz| ± 1〉 = ±Y, 〈±1|S2
π×B| ± 1〉 = 1 ± BY

2
,

〈±1|S2
π | ± 1〉 = 1 ∓ BY

2
, 〈±1|S2

z | ± 1〉 = 1,

〈0|Sz|0〉 = 0, 〈0|S2
π×B|0〉 = 〈0|S2

π |0〉 = 1,

〈0|S2
z |0〉 = 0, Y = 1√

1 + B2
,

B = e(g − 1)(ε′ − m)

4m2ε′ B. (38)

In any stationary state,

〈Sπ×B〉 = 〈Sπ 〉 = 0,

〈{Sπ×B,Sπ }〉 = 〈{Sπ×B,Sz}〉 = 〈{Sπ,Sz}〉 = 0. (39)

While the spin projections in two stationary states are not
integers, we retain the traditional designation of spin states.
With the required precision, ε′ is determined with Eq. (37).

Equations (35) and (38) define the eigenvalues of HFW and
therefore the energy spectrum:

HFW
λ = Eλ
λ (λ = +1,0,−1),

E±1 = H(n,±1)
0 ± ω0

√
1 + B2 − e2g(g − 2)

8m2ε′ B2,

E0 = H(n0)
0 . (40)

To analyze the energy spectrum, the degeneracy of the
energy levels of H(nλ)

0 should be taken into account. It
is convenient to take n|e| − λe = const (λ = +1,0,−1) and
therefore to substitute the values of H(nλ)

0 independent of n

and λ into the expressions for Eλ.
We can conclude that the relativistic FW transformation

has allowed us to obtain the high-precision equation for the
energy spectrum of pointlike spin-1 particles (W± bosons) in a

uniform magnetic field. Equation (40) clearly demonstrates a
rather nontrivial form of the contribution of the tensor polariz-
abilities to the energy spectrum. This example shows the great
possibilities opened by the relativistic FW transformation for
finding important physical properties of particles in external
fields.

VI. SUMMARY

We have presented a method for the FW transformation that
is useful for relativistic particles with any spin in arbitrarily
strong external fields. Contrary to previously developed
relativistic methods [3,11–15], it is rigorous and satisfies
the Eriksen condition of the exact FW transformation. This
method is general because it is applicable to relativistic
particles with any spin in arbitrarily strong external fields. The
final equation (24) is useful when the de Broglie wavelength is
much smaller than the characteristic distance. The relativistic
FW Hamiltonian is expanded in powers of the Planck constant.
In this Hamiltonian, terms proportional to the zero and first
powers of the Planck constant satisfy the Eriksen condition
and are determined exactly, while lower-order terms are not
specified. Let us mention that the Eriksen condition was not
used by Eriksen or in other works even for a relativistic or
ultrarelativistic Dirac particle, let alone for a particle with
another spin. We also note that the relativistic method of
the FW transformation for a Dirac particle in external fields
developed in Ref. [30] satisfies the Eriksen condition.

The derived equation (24) agrees with the corresponding
formula for the FW Hamiltonian previously deduced in
Ref. [15] with the iterative relativistic method and rigorously
proves its validity. This substantiates previously obtained
results for single relativistic particles in external fields. The
present approach gives a convergent expression for any particle
energy, while the applicability of methods expanding the FW
Hamiltonian into a series of relativistic corrections [7,9,10] is
restricted by the condition p2/(mc)2 < 1.

If a priori information about commutation relations stated
in Sec. II is right, corrections to the Hamiltonian (24)
are proportional to the second and higher powers of the
Planck constant. The example presented in Sec. V shows
that these corrections can be lower is some specific cases.
This example demonstrates the usefulness of the relativistic
FW transformation for a high-precision description of an
arbitrary-spin particle in external fields.
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