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The observation of the nonlocal properties of multipartite entangled states is of great importance for quantum
information protocols. Such properties, however, are fragile and may not be observed in the presence of
decoherence exhibited by practical physical systems. In this work we investigate the robustness of the nonlocality
of symmetric states experiencing phase and amplitude damping, using suitable Bell inequalities based on an
extended version of Hardy’s paradox. We derive thresholds for observing nonlocality in terms of experimental
noise parameters and demonstrate the importance of the choice of the measurement bases for optimizing the
robustness. For W states, in the phase damping case, we show that this choice can lead to a trade-off between
obtaining a high violation of the nonlocal test and optimal robustness thresholds; we also show that in this
setting the nonlocality of W states is particularly robust for a large number of qubits. Furthermore, we apply our
techniques to the discrimination of symmetric states belonging to different entanglement classes, thus illustrating
their usefulness for a wide range of practical quantum information applications.
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I. INTRODUCTION

Entanglement refers to the property of a quantum state
of many systems to not be decomposable as product states.
It gives rise to the notion of nonlocality, whereby spatially
separated observers can create correlations in a way impossible
to reproduce by the use of shared classical randomness or,
equivalently, by a local hidden variable (LHV) model [1,2].
In addition to its fundamental interest, nonlocality has proven
to be a valuable resource for quantum information in many
settings such as communication complexity [3], randomness
amplification [4], device-independent quantum key distribu-
tion [5], and other device-independent protocols [6].

Bell inequalities [2] are used as witness to test the appear-
ance of nonlocality. Mathematically, these are bounds on some
expression, which is a linear superposition of probabilities
of measurement outcomes, found by assuming the existence
of local hidden variables. The violation of such expressions
proves the presence of nonlocal correlations, thus providing
an experimentally accessible way to detect such correlations
between spacelike separated systems. Interestingly, the degree
of violation of a Bell inequality for a particular state can be
linked to its usefulness for the information processing tasks
mentioned above.

Possibly the simplest and most used Bell inequality is the
Clauser-Horne-Shimony-Holt (CHSH) [7] inequality, which
pertains to the bipartite case. In recent years, however, a variety
of Bell inequalities have been developed and examined for the
multipartite setting. In Ref. [8] the authors propose a Bell
inequality that is violated by the W states; in fact, the violation
reaches its algebraic maximum in the asymptotic limit for
an increasing number of qubits in the state. The W states
belong to a larger set of states, namely, permutation symmetric
states. Such states present the important practical advantage
that their generation has been extensively studied [9,10]
and experimentally achieved using photonic [11,12] and
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trapped ion [13] systems. The entanglement of symmetric
states has been recently examined [14–16] and suitable Bell
inequalities have been developed [17,18]. The latter are based
on Hardy’s paradox [19] and use as a main tool the Majorana
representation of symmetric states [20], which facilitates the
study of the nonlocal properties of such states and allows us
to link these properties to the degeneracy occurring in the
representation.

The demonstration of nonlocal features discussed above
holds in the ideal case of dealing with pure states. However, in
any practical setting, the nonlocal properties of quantum states
can be degraded due to decoherence experienced by physical
systems. Decoherence describes the degrading of a quantum
system due to the interaction with its environment. Such
noise effects become particularly pronounced in many-particle
systems because of the complex nature of interactions between
all subsystems. Some studies have considered the effect of
noise on the nonlocality exhibited by multipartite states. It was
shown, for instance, that the asymptotic increase in violation
of the inequality of [8] with the number of parties is reversed in
the presence of decoherence as nonlocal correlations become
increasingly fragile for a high number of qubits [21,22]. We
see then that indeed sensitivity to noise can drastically affect
conclusions concerning nonlocality.

Other studies have considered the nonlocality of a variety
of states, including Greenberger-Horne-Zeilinger (GHZ), W ,
or graph states, under various noise models, such as depo-
larization, dephasing or dissipation [23–26]. Furthermore, the
effect of decoherence on nonlocality has been examined in
the context of loophole-free Bell tests [27–29], while some
works have focused on the finite detection efficiency in such
tests, illustrating its importance for the implementation of
quantum communication tasks [30,31]. Recent works have
proposed a practical inequality for multipartite states in the
device-independent framework [32,33].

In this work we study the robustness of the nonlocality
exhibited by symmetric states in the presence of decoherence
in the form of amplitude or phase damping. Our analysis
is based on recently developed Bell inequalities for such
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states [17,18] and aims at developing practical criteria for
testing the nonlocal properties of states that can be produced
experimentally, in realistic conditions.

The paper is structured as follows. In Sec. II we provide
the background of our analysis; in particular, we present
the quantum states that we will examine, the noise models
under consideration, and suitable nonlocal tests. In Sec. III
we describe the methods that we use to quantify the effect of
decoherence on the observation of nonlocality for the states and
tests that interest us. In Sec. IV the results of our analytical and
numerical models are described in particular cases. We analyze
and compare the robustness of several symmetric states for
different noise models. In Sec. V we compare the Bell tests
under study and comment on their behavior regarding the
type of noise considered. In Sec. VI we discuss the choice
of the measurement bases as a relevant factor in the robustness
of nonlocality. Interestingly, we find that the optimum basis,
which gives the highest violation, is in general not the basis
that leads to the highest robustness in the case of phase
damping. In Sec. VII we investigate the sensitivity of the Bell
inequality violation to small changes in the angular settings of
the measurement bases. In Sec. VIII our techniques are applied
to the discrimination of Dicke states using a nonlocal test that
is sensitive to degeneracy.

II. BACKGROUND

A. Symmetric states

A permutation symmetric state of n qubits can be written
as

|ψ〉 =
n∑

k=0

ck|S(n,k)〉, (1)

where |S(n,k)〉 are the Dicke states

|S(n,k)〉 =
(

n

k

)−1/2 ∑
perm

| 0, . . . ,0︸ ︷︷ ︸
n−k

1, . . . ,1︸ ︷︷ ︸
k

〉. (2)

A representation that is particularly useful for symmetric states
was introduced by Majorana [20]. In this representation, the
quantum state |ψ〉 is expressed as the sum of all permutations
of tensor products over a set of n qubits {ηi}, i ∈ {1,n},

|ψ〉 = K
∑
perm

|η1, . . . ,ηn〉, (3)

where K is a normalization factor. These qubits as mapped
onto the Bloch sphere are called the Majorana points of |ψ〉,
i.e.,

|ηk〉 = cos

(
θk

2

)
|0〉 + eiϕk sin

(
θk

2

)
|1〉, (4)

where θk and ϕk are the inclination and azimuthal angles,
respectively. This gives a convenient geometric representation
of symmetric states of n qubits as n points on the surface of
a sphere. We note that it is straightforward to switch between
the Dicke and Majorana representations through a one-to-one
map (see, e.g., [14,34]).

In addition to Dicke states themselves, other examples
of symmetric states that we consider in this work are

the W states |Wn〉=|S(n,1)〉, the tetrahedron |T 〉=
[|S(4,0)〉+√

2|S(4,3)〉]/√3, the cube |C〉=[
√

5|S(8,0)〉+√
14|S(8,4)〉+√

5|S(8,8)〉]/2
√

6, the octahedron |O〉=
[|S(6,1)〉+|S(6,5)〉]/√2, and the states |000+〉=[2|S(4,0)〉+
|S(4,1)〉]/√5 and |00 + +〉=[6|S(4,0)〉+6|S(4,1)〉+√

6|S(4,2)〉]/√78.
It is important to note that the Majorana points may not all

be distinct for some symmetric states. This leads us to define
the degeneracy configuration (DC) of a symmetric state as all
the numbers of redundancy of all its Majorana points [35].
Then the degeneracy d of a state is defined as the highest
among those numbers. Interestingly, the DC constitutes an
entanglement classification in the sense that each symmetric
state belongs to a single DC class, that is, the degeneracy
configuration of a state cannot be modified under stochastic
local operations and classical communication (SLOCC) [35].
This course-grained classification presents an advantage in
that it contains a finite number of classes for a state of n qubits
compared to the infinite number of classes contained in the
SLOCC classification for n � 4 qubit states.

B. Decoherence models

The effect of decoherence on a quantum state can been
seen as a map that transforms one density matrix to another
and can be described using the operator sum formalism. In this
formalism, we can write the noisy version of a state as

ρdec =
(1,...,1)∑

�k=(0,...,0)

K�kρK
†
�k, (5)

where ρ is the density matrix of the system before the
interaction with the environment and K�k is the tensor product
of a particular combination of Kraus operators K , given by �k,
that is, K�k = ⊗iKki

.
In this work we will consider two noise models that are

relevant for practical implementations, namely, amplitude and
phase damping. The former essentially describes losses that
are ubiquitous in experimental setups, while phase damping
appears, for instance, in photonic systems implementing
quantum communication protocols [36].

For amplitude damping, the Kraus operators are

K0 =
(

0
√

γ

0 0

)
, K1 =

(
1 0
0

√
1 − γ

)
, (6)

where the coefficient γ can be interpreted as the probability of
losing a photon. For phase damping, which can also been seen
as a phase flip channel, they are given by

K0 =
(

1 0
0

√
1 − λ

)
, K1 =

(
0 0
0

√
λ

)
, (7)

where λ can be interpreted as the probability for a photon to be
scattered. Further details on these noise models can be found
in Refs. [37,38].

C. Nonlocal tests for symmetric states

The main test of nonlocality that we will consider in this
work is based on an extended version of Hardy’s paradox. The
original paradox is a two-party logical proof of nonlocality [19]
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and is defined as a set of four probabilistic conditions. When
one takes all the conditions together, this leads to a logical
contradiction. The extended Hardy paradox can be seen as an
n-party game: n parties use the measurement settings 0 or 1 and
may obtain two outcomes, 0 or 1, for each setting. Compared to
the original Hardy paradox, the number of conditions increases
as a consequence of the increased number of parties. The first
condition imposes that if all parties use the setting 0 there is a
nonzero probability that they all obtain the outcome 0:

P (0, . . . ,0|0, . . . ,0) > 0.

Here we denote the probability of getting outcomes �r for
settings �M as P (�r| �M). The next condition (which is actually
a set of conditions) is similar to the first one, but one of the
parties uses the setting 1. In this case the joint probability for
all of them to obtain the outcome 0 is zero:

P (0, . . . ,0|10, . . . ,0) = 0,

P (0, . . . ,0|01, . . . ,0) = 0,

...

P (0 . . . 0|0 . . . 01) = 0.

These conditions can be gathered into one expression∑
π

P (0, . . . ,0|π (0, . . . ,01)) = 0,

where π ∈ Sn denotes the group of permutations of n objects
Sn. The final condition states that if all parties use the setting
1, the probability to obtain the outcome 1 for all the parties is
zero:

P (1, . . . ,1|1, . . . ,1) = 0.

According to a LHV model, the joint probability of obtaining
the outcomes ri with the settings Mi is described by the
following expression:

P (r1, . . . ,rn|M1, . . . ,Mn)

=
∫




q(λ)
n∏

i=1

P (ri |Mi,λ)dλ, (8)

where q(λ) is the probability distribution of the hidden variable
λ in the space 
. It is then possible to show that if a
system verifies all the above conditions this leads to a logical
contradiction, hence proving that such a system cannot have a
possible LHV description.

Based on the above analysis, it is possible to derive the
following Bell inequality [17]:

Pn := P (0, . . . ,0|0, . . . ,0) − P (1, . . . ,1|1, . . . ,1)

−
∑
π

P (0, . . . ,0|π (0, . . . ,01) � 0. (9)

Using the Majorana representation for permutation symmetric
states, it was proven that all such states violate the above
inequality, i.e., they satisfy Pn > 0 [17], while more recently
this was also shown for all pure states [39].

Based on similar techniques, the extended version of
Hardy’s paradox can also be used to construct a Bell inequality

that is sensitive to the degeneracy of a symmetric state [17]:

Qn
d :=Pn − P (1, . . . ,1︸ ︷︷ ︸

n−1

| 1, . . . ,1︸ ︷︷ ︸
n−1

) − · · ·

− P (1, . . . ,1︸ ︷︷ ︸
n−d+1

| 1, . . . ,1︸ ︷︷ ︸
n−d+1

) � 0. (10)

Note that in this expression, since the state is symmetric,
a probability concerning only a subspace of the state is
independent of the space that is traced out. It was shown
that any state with degeneracy d will violate Qn

d [17], hence
illustrating that the degeneracy of symmetric states can indeed
be detected using their nonlocal properties.

In addition to the above inequalities, we will consider for
comparison purposes an extended version of the inequality
developed in Ref. [8], tailored to high-order Dicke states. This
inequality is given by the expression [18]

Hn
k :=

∑
π

P (π (0, . . . ,0︸ ︷︷ ︸
n−k

1, . . . ,1︸ ︷︷ ︸
k

)|0, . . . ,0)

−
∑
π

P (π (0, . . . ,0︸ ︷︷ ︸
n−k−1

1, . . . ,1︸ ︷︷ ︸
k−1

01)|π (0, . . . ,0︸ ︷︷ ︸
n−2

11))

−P (0, . . . ,0|1, . . . ,1) − P (1, . . . ,1|1, . . . ,1) � 0.

(11)

III. METHODS

We begin our analysis by detailing our approach for
quantifying the effect of noise on the nonlocality of symmetric
states. First, we use Eqs. (5)–(7) to calculate the noisy version
of the state under study ρdec for both noise models. To this
end, we sum over all combinations of Kraus operator elements
describing the amplitude and phase damping applied to the
pure density matrix of the system. This allows us to calculate
the fidelity of the noisy state with respect to the initial pure
state, which we will denote in the following as Famp and Fph

for the two noise models, respectively. These are functions of
the corresponding coefficients of the Kraus operators γ and
λ, respectively. We call these coefficients the noise factors.
For the amplitude damping case, we additionally translate
the probability of absorption γ to a detection efficiency,
assuming that the probability to lose a photon is mostly due
to the detection process in a practical experimental setup. In
particular, we define the detection efficiency as η = √

1 − γ

and attribute different detection efficiencies η0 and η1 to the
two measurement settings of our nonlocal tests, 0 and 1,
respectively. This choice corresponds to typical scenarios of
interest in photonics experiments.

The second step is to compute the probabilities in the
expressions corresponding to the inequalities of Eqs. (9)–(11)
and hence to derive the degree of violation achieved by the
noisy states in each case. For this purpose, it is necessary to
choose a measurement strategy, i.e., a measurement basis for
each setting. For simplicity, we assume that all parties make
the same basis choice. This may not be optimal in general, but
allows for the numerical and analytical solutions found here
and gives interesting bounds on robustness. We will consider
in the following different possible choices: In particular, the
parties can measure using the Majorana basis, which is defined
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by the Majorana points of the pure state through the procedure
outlined in Ref. [17], or the optimum basis, where optimum
here refers to the fact that the specific basis choice leads to a
maximal violation of the corresponding Bell inequality for the
pure state. Once the measurement strategy has been decided,
then, assuming projective measurements, the probabilities can
be calculated as follows:

P (r1, . . . ,rn|M1, . . . ,Mn) = tr

{
ρdec

n⊗
i=1

�ri |Mi

}
, (12)

where ri and Mi denote the outcomes and measurement
settings, respectively, for qubit i. The �ri |Mi

are projectors on
the Bloch sphere and can be written as �ri |Mi

= |bri |Mi
〉〈bri |Mi

|,
with

∣∣bri |Mi

〉 = cos

(
θMi

2
−ri

π

2

)
|0〉+eiϕMi sin

(
θMi

2
− ri

π

2

)
|1〉,

where θMi
and ϕMi

are the inclination and azimuthal angles on
the Bloch sphere, respectively. In this way, Pn, Qn

d , and Hn
k

can be written as polynomial functions of the angles of the
measurement bases and the noise factors only.

The final step is then to determine suitable thresholds
for nonlocality, which are derived by setting the obtained
expressions for Pn, Qn

d , and Hn
k to zero. For the amplitude

damping case, these thresholds can be expressed either by the
values of the fidelity Famp,th or the detection efficiencies η0,th

and η1,th, below which it is not possible to prove nonlocality
for a given Bell test and a given measurement strategy, or
by the value of the noise factor γth, above which again a
violation cannot be achieved. The noise factor and fidelity
thresholds are calculated assuming η0 = η1. For the phase

damping case, the corresponding thresholds refer either to the
noise factor λth or to the fidelity Fph,th. These various criteria
for characterizing the robustness will be useful for comparing
different states, measurement strategies, and nonlocal tests
under realistic conditions of interest.

IV. RESULTS FOR THE Pn TEST

We apply the method described previously to quantify
the nonlocal properties of several symmetric states under
decoherence based on the Bell inequality of Eq. (9). Our goal
is to determine whether it is possible to observe such properties
in realistic environments.

A. Examples

We start by presenting our results first for Dicke states and
then for two specific examples of symmetric states, namely,
the W states and the tetrahedron state. In each case, our results
correspond to a specific choice of a measurement strategy. The
role of this choice will be discussed in Sec. VI.

1. Dicke states

Starting from the pure Dicke states (2), we can write the
states under phase damping noise as follows:

ρdec,ph =
(1,...,1)∑

�k=(0,...,0)

K�k|S(n,k)〉〈S(n,k)|K†
�k, (13)

where K�k = ⊗n
i=1 Kki

, ki ∈ {0,1}, K0 and K1 are given in
Eq. (7). Since Bell tests are linear, we can then write an
analytical expression for the Pn value of this state as a
superposition of the values corresponding to each component
in the state. Using the Majorana measurement bases defined by
the two settings M0 = {θ0 = π/2,ϕ0 = 0} and M1 = {θ1 =
π,ϕ1 = π} for all parties, we find

Pn(ρdec,ph) = Pn
(
K⊗n

0 |S(n,k)〉〈S(n,k)|K⊗n
0

) +
k∑

j=1

∑
perm

Pn
(
K

⊗n−j

0 ⊗ K
⊗j

1 |S(n,k)〉H.c.
)

= 1

2n

⎡
⎣(

n

k

)
(1 − λ)k

(
1 − 2k2

n

)
+

k∑
j=1

λj (1 − λ)k−j

(
k

j

)(
n − j

k − j

)
(1 − 2k)

⎤
⎦ . (14)

Following a similar procedure for the amplitude damping case, we find

Pn(ρdec,amp) = 1

2n

⎡
⎣(

n

k

)
(1 − γ )k

(
1 − 2k2

n

)
+

k∑
j=0

γ j (1 − γ )k−j

(
n

j

)(
n

k

)−1(
n − j

k − j

)
[1 − 2(k − j )]

⎤
⎦ − γ k. (15)

We first remark that, in the absence of noise, a violation of Pn can be obtained only under the condition that k �
√

n/2. This
means that for large k, a violation can only be observed for a high number of qubits in the state.

The fidelities between the pure Dicke states and the states that have experienced decoherence are given by the following
expressions:

Fph =
⎡
⎣(1 − λ)k +

k∑
j=1

(
n

j

)(
n

k

)−2(
n − k

k − j

)2
⎤
⎦1/2

, (16)

Famp = (1 − γ )k/2. (17)
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FIG. 1. (Color online) Noise factor threshold as a function of the
number of qubits for different Dicke states under phase damping
noise.

By setting the expressions of Eqs. (14) and (15) to zero, we can
calculate the noise factor thresholds λth and γth as a function
of the number of qubits in the Dicke state n for various k.
The results are shown in Figs. 1 and 2 for phase and amplitude
damping, respectively. It is interesting to note that the behavior
of the noise factor thresholds is very different for the two types
of noise. In the phase damping case, the threshold increases
with the total number of qubits, but decreases with increasing
k, while in the amplitude damping case, the threshold decreases
rapidly to zero. This shows that states with small k (respecting
the condition k �

√
n/2) can withstand more phase damping

noise, while all states are quite sensitive to amplitude damping
noise. In general, the robustness of the Dicke states depends
crucially on the type of noise; this is true for all symmetric
states and will be further discussed in the following.

2. The W states

The W states are a special case of the Dicke states,
corresponding to k = 1. Whereas the solutions that we found
for Dicke states are numerical, for the W states we derive
analytical bounds. Their Dicke representation is very simple:

|Wn〉 = |S(n,1)〉. (18)

FIG. 2. (Color online) Noise factor threshold as a function of the
number of qubits for different Dicke states under amplitude damping
noise.

TABLE I. The Pn values for the pure states W3,4,5,6 and
corresponding detection efficiency thresholds for amplitude damping
noise.

State Pn η0,th η1,th

W3 0.1250 70.7% 91.3%
W4 0.1250 57.7% 92.6%
W5 0.0938 50.5% 94.8%
W6 0.0625 45.8% 96.7%

In terms of Majorana representation, these states have one
Majorana point corresponding to the state |1〉, while all the
others correspond to |0〉. The Majorana measurement bases
are then defined as M0 = {θ0 = π/2,ϕ0 = 0} and M1 =
{θ1 = π,ϕ1 = π}. Note that because of the state geometry,
a measurement is invariant under any rotation on the plane
formed by the eigenvectors of the Pauli matrices σx and σy .
Assuming all parties use the above measurement settings, we
find that a violation of Pn can be observed for the pure states
for all n.

For the amplitude damping case, these violations are shown
in Table I for the states W3,4,5,6, together with the detection
efficiency thresholds η0,th and η1,th corresponding to the
two measurement settings. An interesting observation here
is that there is an asymmetry between the detection efficiency
thresholds for the two settings. This is due to the structure
of Pn, which is not symmetric with respect to the settings 0
and 1 [see Eq. (9)]. We also note that η0,th decreases with the
number of qubits in the W state, while the opposite is true for
η1,th. Furthermore, in general, the W states under study can
withstand more losses in the 0 setting than in the 1.

If we set equal detection efficiencies in the two settings,
i.e., for η0 = η1, we can derive analytical expressions for the
noise factor and fidelity thresholds, as follows:

γth = n − 2

2n + n − 3
, Famp,th =

√
2n − 1

2n + n − 3
, (19)

again for measuring in the Majorana bases. The fidelity
threshold tends to 1 for a large number of qubits, which means
that it becomes hard to demonstrate nonlocality in practice in
this case.

For the phase damping case, using the same measurement
strategy as before, we calculate the Pn values as a function
of the noise factor λ for the W3,4,5,6 states. Note that we
use the same bases for all states, adding a Majorana point
corresponding to |0〉 for each added qubit. The results are
shown in Fig. 3. Interestingly, the violation decreases but the
curves become flatter with an increasing number of parties.
This means that a larger noise can be tolerated for higher n,
hence leading to an increased robustness, albeit at the expense
of a smaller violation.

It is possible to derive in this case as well analytical
expressions for the noise factor and fidelity thresholds

λth = n − 2

n − 1
, Fph,th =

√
2

n
. (20)

Contrary to the amplitude damping case, here the fidelity
threshold decreases with an increasing number of qubits,
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FIG. 3. (Color online) The Pn values as a function of the noise
factor for the W3,4,5,6 states under phase damping noise.

indicating a particularly good robustness obtained in this
case. We remark again that, as with general Dicke states, the
robustness of W states to phase damping noise is better than
that to amplitude damping. Note also that the robustness of
W states to dephasing has been previously reported in the
literature [24,26].

3. Tetrahedron state

The last example that we will consider in detail is the
tetrahedron [14], a 4-qubit state with the following Dicke
representation [40]:

|T 〉 =
√

1
3 |S(4,0)〉 +

√
2
3 |S(4,3)〉. (21)

In terms of the Majorana representation, this state has the

Majorana points |η1〉 = |0〉 and |η2,3,4〉 =
√

1
3 |0〉 + eiξ

√
2
3 |1〉,

where ξ = π
3 ,π, 5π

3 . Because of its geometry, each combina-
tion of measurement bases can be reproduced four different
times (corresponding to the four different vertices of the
tetrahedron). For the pure tetrahedron state a violation of
Pn = 0.1621 is obtained with the Majorana measurement
bases defined by M0 = {θ0 = 0.899,ϕ0 = 2.435} and M1 =
{θ1 = 2.005,ϕ1 = 4.285}. In Figs. 4 and 5 we assume that all
parties choose these measurement settings.

FIG. 4. (Color online) The Pn values as a function of the detec-
tion efficiencies of the two settings for the tetrahedron state under
amplitude damping noise.

FIG. 5. (Color online) The Pn values as a function of the noise
factor for the tetrahedron state under phase damping noise.

For the amplitude damping case, we show in Fig. 4 the
values of Pn as a function of the detection efficiencies η0

and η1 corresponding to the two measurement settings defined
above. These results allow us to derive the detection efficiency
thresholds; we find η0,th = 87.18% and η1,th = 76.16%. It
is interesting to note that for this choice of measurement
strategy, more losses can be tolerated in the 1 setting than
in the 0 setting, contrary to what we found for the W

states. However, for the optimum basis, which is defined
by the settings M0 = {θ0 = 1.885,ϕ0 = 1.047} and M1 =
{θ1 = 0.105,ϕ1 = 4.189} and leads to the maximal violation
Pn = 0.1638, we find that the situation is inverted, with η0,th =
71.41% and η1,th = 90%. This illustrates the importance of
the choice of the measurement strategy for demonstrating
nonlocality in practice.

For the phase damping case, we show in Fig. 5 the values
of Pn as a function of the noise factor λ with the same
measurement bases as in the amplitude damping case. The
noise factor threshold takes the value λth = 0.3.

B. Comparison between symmetric states

The detailed analysis of a representative set of symmetric
states has allowed us to identify some important features
concerning the behavior of the nonlocal properties of such
states in the presence of decoherence. We will now provide
a comprehensive comparison of the robustness of this set of
states, complemented with some additional states, based on the
detection efficiency and fidelity thresholds defined previously,
pertaining to the Hardy paradox Bell test of Eq. (9).

In Table II we summarize our results for several symmetric
states containing a variable number of qubits: We show the
Pn values of the pure states obtained in each case with the
measurement strategy that we have called optimum because it
maximizes the violation achieved by the state, as well as the
detection efficiency thresholds η0,th and η1,th obtained for the
amplitude damping noise case as explained in Sec. III. Below
these thresholds, it is not possible to observe a violation of the
nonlocal test for the state under study.

As we have noted previously, the asymmetry in the two
detection efficiency thresholds is due to their different role
in the construction of the Pn inequality. In general, most
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TABLE II. The Pn values of the pure states and corresponding
detection efficiency thresholds for amplitude damping noise.

State Pn η0,th η1,th

3 qubits
W3 0.1926 64.07% 85.40%

4 qubits
S(4,2) 0.1407 76.81% 90%
W4 0.1811 64.04% 85.36%
tetrahedron 0.1638 71.41% 90%
|000+〉 0.0141 82.46% 73.48%
|00 + +〉 0.0194 90% 90%

5 qubits
W5 0.1835 55.64% 86.80%

6 qubits
W6 0.1815 53.08% 87.06%
octahedron 0.1234 72.80% 92.74%

8 qubits
cube 0.0890 79.37% 79.37%
W8 0.1791 49.07% 87.46%

symmetric states under study present a lower threshold in the
0 measurement setting than in the 1, which means that they
can tolerate more losses in the former than in the latter. We
also note that the |000+〉 state, i.e., the cube, and the W states
feature thresholds lower than 90% in both settings, which
designates those as the most robust states among the ones
analyzed.

Another important observation concerns the value of the
violation that can be expected in a realistic scenario. Clearly,
even when a pure state can achieve a high violation, if
the corresponding detection efficiency thresholds are very
high, it will actually be difficult to observe nonlocality in
practice [21,22]. It is therefore important to take into account
all the relevant parameters, namely, the desired violation and
the characteristics of the available experimental equipment,
when designing a nonlocal test for quantum information
applications. This suggests that it is possible to provide a
classification of symmetric states in terms of suitability for
a given experimental setup.

In Table III we provide a comparison of the two types
of noise that we have considered by presenting the fidelity
thresholds for all symmetric states under study, obtained using
the optimum measurement strategy in each case. For amplitude
damping, this threshold is derived by assuming the same
detection efficiency in both settings. Again, for fidelities below
these thresholds, it is not possible to demonstrate nonlocality
in practice.

As we have observed previously, in general, the fidelity
thresholds for phase damping are lower than the ones for
amplitude damping, suggesting a greater robustness of most
symmetric states under study to the former type of noise. This
may be understood by the form of the Kraus operators, which
are diagonal in the case of phase damping [see Eq. (7)], thus
affecting in a less significant way the density matrix of the
state. An exception to this remark is the 8-qubit cube state;
further investigation of other 8-qubit states might be helpful to
elucidate this feature. We also observe that some states present
a particularly pronounced difference between the two fidelity

TABLE III. The Pn values of the pure states and corresponding
fidelity thresholds for amplitude and phase damping noise.

State Pn Famp,th Fph,th

3 qubits
W3 0.1926 90.04% 79.16%

4 qubits
S(4,2) 0.1407 86% 81.34%
W4 0.1811 89.94% 77.14%
tetrahedron 0.1638 85.62% 77.15%
|000+〉 0.0141 99.48% 99.22%
|00 + +〉 0.0194 99.16% 98.95%

5 qubits
W5 0.1835 90.24% 75.89%

6 qubits
octahedron 0.1234 83.23% 65.85%
W6 0.1815 90.27% 75.28%

8 qubits
cube 0.0890 70.93% 81.81%
W8 0.1791 90.32% 75.06%

thresholds. In the case of the W states, their small robustness to
amplitude damping noise in terms of fidelity can be explained
by the fact that k = 1 in those states; indeed, photonic systems,
for instance, are very sensitive to photon loss. It is therefore
not surprising that the S(4,2) state features a lower Famp,th

value. The 6-qubit octahedron state also features an important
difference between the two fidelity thresholds, indicating that,
as in the 8-qubit case, it will be necessary to examine more
such states in order to understand this property.

It is important to note that the threshold values shown in
Tables II and III put stringent constraints on the experimental
conditions required to observe nonlocality in the presence of
amplitude or phase damping. In photonics experiments, the
detection efficiencies of Table II can be achieved using, for
instance, superconducting transition edge sensors, for which
the maximum reported efficiency reaches 95% [41]; however,
note that losses here are attributed to inefficient detectors only,
while in practice more losses will occur in other parts of the
setup too. Fidelities that can be achieved experimentally are
around 80% and 85% for the W3 and S(4,2) states, respectively,
in photonic systems [11,12], while values ranging from 85%
for the W4 state to 72% for the W8 state have been reported in
trapped ion experiments [13]. Comparing these values with the
results shown in Table III allows identifying suitable realistic
configurations for observing nonlocal correlations.

V. COMPARISON BETWEEN NONLOCAL TESTS

Our analysis up until now has focused on examining the
robustness of several symmetric states based on the Pn Bell
inequality of Eq. (9). It is now interesting to look into how
these results may depend on the nonlocal test under study. To
this end, we consider the Bell inequalityHn

k defined in Eq. (11)
and derive the noise factor thresholds γth and λth in the case of
amplitude and phase damping, respectively, for W states, as-
suming a measurement strategy defined by the Majorana bases
given in Sec. IV A 2. Our results for the thresholds as a function
of the number of qubits in the W states are shown in Fig. 6.
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FIG. 6. (Color online) Noise factor thresholds corresponding to
Pn (◦ and �) and Hn

k (+ and ×) inequalities as a function of the
number of qubits in W states under amplitude damping (red + and
◦) and phase damping (blue × and �) noise.

We observe that the results given by the two tests in the
amplitude damping case are very similar. The Hn

k test leads to
slightly higher thresholds, which indicates a better robustness
of this test to this type of noise, but in fact the situation is
reversed for the S(n,2) Dicke state. In the phase damping
case, however, we observe a strikingly different behavior: The
Hn

k test exhibits similar features as for amplitude damping,
whereas the noise factor threshold tends to 1 for large numbers
of qubits in the case of the Pn test. This has already been
observed earlier, in Fig. 3, and has been quantified in Eq. (20).
Clearly, the role of the nonlocality test used to evaluate the
robustness of a state to noise is of great importance and has to
be carefully considered in each case.

VI. EFFECT OF MEASUREMENT STRATEGY

In the previous sections we have used several measurement
strategies to examine the robustness of the symmetric states
under study to noise. We will now discuss the importance of
the choice of this strategy focusing initially on the W4 state
and using thePn test to derive the corresponding thresholds. In
particular, in this case, we search numerically the entire Bloch
sphere to identify the measurement strategies that optimize the
noise factor threshold for phase damping λth. The results are
shown in Fig. 7, where we plot the Pn values for the pure W4

state versus the obtained values for λth for a wide range of mea-
surement settings. In this figure each point corresponds to a pair
of measurement settings (bases). Horizontal lines indicate the
measurement bases that give the same violation when no noise
is considered but different noise factor thresholds, whereas
vertical lines indicate the bases that give the same threshold
but different violations for the pure state. Obviously, the
most interesting measurement strategies are those that give
the maximum pure state Pn value for a given noise factor
threshold, i.e., those that are situated at the envelope of the
curve in Fig. 7. Interestingly, some measurement strategies
can still provide a nonzero violation even for a state under
maximal phase damping noise. This comes, however, at the
expense of very small violation levels, which indicates that the
measurement strategies that are optimum in terms of violation
are not necessarily optimum in terms of robustness. This leads

FIG. 7. (Color online) The Pn values for the pure W4 state vs
the phase damping noise factor threshold. Each point represents one
particular pair of bases. The presence of two different peaks is due to
the fact that there are two areas on the Bloch sphere that give rise to
violation.

to a trade-off that needs to be taken into account in a practical
setting of quantum information protocol implementations.

To gain further intuition into this trade-off, we show in
Fig. 8 a two-dimensional view of thePn values for the W4 state
as a function of the measurement settings for three different

FIG. 8. (Color online) Colored surfaces represent the Pn values
for the W4 state under the phase damping noise for noise factor
λ = 0,0.25,0.77 (from top to bottom). The angles θ0 and θ1 define
the two measurement settings. We observe here the two different
peaks that are also present in Fig. 7.
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FIG. 9. (Color online) The Pn values for the pure W4 state vs the
amplitude damping noise factor threshold. Each point represents one
particular pair of bases.

values of the phase damping noise factor λ = 0,0.25,0.77.
The measurement settings are defined here by the inclination
angles θ0 and θ1, while the difference between the azimuthal
angles ϕ0 and ϕ1 is set equal to π . In this figure we observe
a shift of the position of the maxima as well as a decreasing
area of possible violation with increasing noise. Clearly, as
the noise increases, the measurement settings that were giving
the maximal violation for the pure state initially cannot give
a violation above a certain threshold. Then, other possible
measurement strategies may exist that can give a violation.
This is true up to a global noise factor threshold, above which
no violation can be obtained for any measurement setting. For
the W4 state, we find the maximum threshold λth = 0.996.

Following the same procedure as for phase damping, we
perform the optimization over the measurement strategies for
the amplitude damping case, again for the W4 state, seeking
to maximize the corresponding noise factor threshold values
γth. The results are shown in Fig. 9. As we have seen earlier
in Sec. IV, the robustness of the symmetric states that we
have examined differs significantly with the type of noise
considered. It is therefore not surprising that the behavior with
respect to the measurement strategy is quite different as well.
Indeed, we observe here that the measurement settings that
lead to high Pn values for the pure W4 state are also the ones
giving the optimal noise factor thresholds, contrary to the phase
damping case, where good robustness can be obtained even at
low violation levels. Hence, we conclude that in this case the
optimum measurement strategy in terms of violation is also
optimum in terms of robustness.

Finally, we can compare the two types of noise as well as
two different measurement strategies, namely, the Majorana
and the optimum ones, in terms of the fidelity thresholds
obtained in each case. In Table IV we show these thresholds
for the W3,4,5,6 states, together with the Pn values for the
corresponding pure states. We notice here that, as expected
from the previous discussion, the Majorana basis, which gives
smaller violations, leads to higher fidelity thresholds in the
amplitude damping case. The values are also less spread
out than in the phase damping case, where in general the
Majorana basis provides lower fidelity thresholds and hence
better robustness.

TABLE IV. ThePn values of the pure state and fidelity thresholds
for both types of noise and for two different measurement basis
settings.

State Pn Famp,th Fph,th

Majorana basis
W3 0.1250 93.27% 81.65%
W4 0.1250 93.81% 70.53%
W5 0.0938 95.39% 62.61%
W6 0.0625 96.95% 57.74%

Optimum basis
W3 0.1926 90.04% 79.16%
W4 0.1811 89.94% 77.14%
W5 0.1835 90.24% 75.89%
W6 0.1815 90.27% 75.28%

VII. SENSITIVITY TO ALIGNMENT

The measurement settings that determine the strategy
followed by the parties in the nonlocal tests that we have
considered are defined by precise choices of the corresponding
inclination and azimuthal angles; these angle settings, how-
ever, have a limited precision in practice. For instance, in
experiments where information is encoded in the polarization
of photons, a typical error in the angles determining the desired
polarization set by suitable waveplates is about ±2◦, which
translates to about ±0.07 rad on the Bloch sphere. A natural
question that arises then is the following: Can such a small
misalignment in the chosen angles affect significantly the
possibility to observe nonlocality under realistic conditions?

In order to examine this question, we consider again the
setting of Fig. 8, but for a larger range of noise factor values in
Fig. 10. This allows us to see how the surface of the violation
evolves when the noise increases. The important point here
is that the uncertainty in the angle settings may prohibit
the observation of violation when the surface becomes small
enough due to increased noise. Indeed, this uncertainty will in
general lead to a lower noise factor threshold, which depends
on the precision attainable with the available experimental
equipment. Considering, for example, the aforementioned
typical alignment error found in photonics experiments of

FIG. 10. (Color online) Colored surfaces represent the Pn values
for the W4 state under phase damping noise for several noise factor
levels as a function of the inclination angles θ0 and θ1 that define the
two measurement settings.
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FIG. 11. (Color online) The colored surface represents the Pn

values for the W4 state under amplitude damping noise for the
noise factor λ = 0.186. The black oval line shows the typical angle
sensitivity in photonics experiments and is centered around the
maximal violation point.

±2◦, we find that the noise factor threshold decreases from
λth = 0.996 to 0.81.

We perform the same analysis for the amplitude damping
case, in the same setting, and we show in Fig. 11 the results
for a specific noise factor value. This allows us to observe in
detail the variation of the violation value within the typical
angle error surface for photonics experiments. Although for
this noise factor the violation can be observed, it is clear that
this will not be true for higher noise factors. Indeed, we find
that in the amplitude damping case, the noise factor threshold
decreases from γth = 0.2 to 0.186 when the sensitivity to the
angle setting is taken into account.

VIII. APPLICATION: DEGENERACY CLASS
DISCRIMINATION USING NONLOCAL TESTS

As an application of the techniques that we have developed
in the previous sections, we would like to consider the case
of symmetric states exhibiting degeneracy d, as discussed in
Sec. II A. In particular, we are interested in determining not
only the conditions under which the nonlocality of such states
can be observed in the presence of noise but also whether
states featuring different degeneracy can be discriminated in
such conditions. The available tool for this purpose is the Bell
inequality Qn

d , defined in Eq. (10), which has been shown
to be violated by any (pure) Dicke state with degeneracy
d [17]. It is important to note here that the discrimination of
entanglement classes using a nonlocal test [17,18,42] implies
that this task can be performed in a device-independent way;
this means that even when the parties do not have control over
their measurement equipment, observing a violation of the
Qn

d inequality, for instance, proves that the state under study
belongs to the corresponding degeneracy class.

We perform this analysis for three 6-qubit Dicke states
featuring different degeneracies and we find the results
summarized in Table V. We can first observe that if we obtain
the result Q6

4 > 0 [with a maximum at Q6
4 = 0.0177 reached

by the S(6,1) state using the measurement strategy given by
M0 = {θ0 = 0.60,ϕ0 = 0} and M1 = {θ1 = 0.65,ϕ1 = π}],
then the state under study is necessarily S(6,1), regardless of
the measurements performed on the other states. This result

TABLE V. The Q6
d violations for three 6-qubit Dicke states. The

symbol X means that there is no possible violation.

Test Q6
3 Q6

4 Q6
5

S(6,1) 0.0519 0.0177 0
S(6,2) 0.0069 0 X
S(6,3) 0 X X

therefore identifies the class of Dicke states with degeneracy
d > 4, in a device-independent way. Furthermore, we can
see that if we restrict our analysis to Dicke states with
degeneracy d = 2 or 3, then the result Q6

3 > 0 identifies the
state S(6,2) (with a maximum at Q6

3 = 0.0069 obtained using
the measurement strategy given by M0 = {θ0 = 0.56,ϕ0 = 0}
and M1 = {θ1 = 0.61,ϕ1 = π}).

Applying the techniques of the previous sections, we can
further determine conditions under which this degeneracy class
discrimination is possible in the presence of phase damping
noise. In particular, we find that, for the S(6,1) state, a violation
can be observed when the noise factor is below the value λth =
0.004, while an angle precision of ±0.15◦ is required in this
case, assuming a photonics implementation using polarization
encoding. Finally, the S(6,2) state can be discriminated for a
noise factor below λth = 0.008, with a required precision of
±0.1◦. Clearly, these thresholds put stringent constraints in
experiments aiming at demonstrating such nonlocal properties
in practice.

IX. CONCLUSION

In this work we have performed a detailed study of the
robustness of the nonlocality exhibited by a wide range of
permutation symmetric states against decoherence in the form
of amplitude and phase damping. Our analysis was based
primarily on a Bell inequality using an extended version of
Hardy’s paradox to test the nonlocality of symmetric states.
This work was motivated by the need to develop experi-
mentally relevant criteria for observing nonlocal correlations
that are useful for quantum information applications in the
complex multipartite case. To this end, we performed a full
optimization analysis over the measurement settings used for
the nonlocal tests and have thus derived the levels of violation
that can be achieved in realistic conditions as well as thresholds
for the observation of nonlocality, quantified by several
parameters of importance in experimental implementations.
Although the obtained values set stringent constraints for such
implementations, it is possible to perform some of the tests
that we have considered with current technology.

For the W states, we have found that the fidelity threshold
for phase damping noise scales as 1/

√
n with the number

of qubits n in the state; our result, derived using a Bell
inequality based on the full range of multipartite correlations,
confirms previous results on the robustness of the nonlocality
of these states against dephasing, derived using CHSH-
type correlations [26], and indicates these states as being
particularly well suited for practical quantum information
applications involving many qubits. For these states, and for
several others, we have additionally observed the different
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behavior with respect to the type of noise under consideration.
For example, the octahedron state seems more robust against
amplitude damping than the W or Dicke states.

We have demonstrated the importance of the measurement
basis choice, of practical imperfections such as the limited
precision of standard components, and, for the phase damping
case, of the choice of the nonlocal test. In general, it
is important to continue the search for Bell inequalities
tailored to specific states that can provide better thresh-
olds with correspondingly higher violations. For instance,
in the discrimination case that we have examined, very
low noise thresholds are obtained; this is mainly due to the
fact that the Qn

d inequality is a subclass of the general Pn

inequality, hence leading to less tight results, albeit with the
possibility to detect different degeneracy classes.

Finally, further analysis should consider the case where
each party chooses a measurement basis for the nonlo-
cal test independently. This will require the use of ad-
vanced optimization tools such as semidefinite programming.
We expect that such extensions of our techniques will
be important for studying the practical implementation of
a wide range of device-independent quantum information
tasks.
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