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Accurate multipixel phase measurement with classical-light interferometry
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We demonstrate accurate phase measurement from experimental low photon level interferograms using a
constrained optimization method that takes into account the expected redundancy in the unknown phase function.
This approach is shown to have significant noise advantage over traditional methods, such as balanced homodyning
or phase shifting, that treat individual pixels in the interference data as independent of each other. Our interference
experiments comparing the optimization method with the traditional phase-shifting method show that when
the same photon resources are used, the optimization method provides phase recoveries with tighter error
bars. In particular, rms phase error performance of the optimization method for low photon number data (10
photons per pixel) shows a >5× noise gain over the phase-shifting method. In our experiments where a laser
light source is used for illumination, the results imply phase measurement with an accuracy better than the
conventional single-pixel-based shot-noise limit that assumes independent phases at individual pixels. The
constrained optimization approach presented here is independent of the nature of the light source and may further
enhance the accuracy of phase detection when a nonclassical-light source is used.
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Interferometric phase detection is one of the most important
techniques in physics. Optical interferometers are being used
routinely for metrology, biomedical applications, Fourier
transform spectroscopy, and holographic three-dimensional
(3D) imaging, to name a few applications [1]. Sensitive
phase detection is at the heart of large scale collaborative
efforts such as gravitational wave detection [2]. Our aim in
this Rapid Communication is to examine the interferometric
phase-detection problem with an optimization framework that
effectively models the redundancy in the unknown phase
signal. For given photon resources, we show that this approach
gives phase measurements with an accuracy better than the
conventional single-pixel-based shot-noise limit (SNL) even
when a classical-light source is used. This conclusion, though
somewhat surprising, suggests that limits such as SNL may
be generalized to incorporate the multipixel structure of the
unknown phase signal. While the quantum limits to the
measurement of stochastically fluctuating time-varying phases
have been studied before, our focus in this work is to exploit
the redundancy in the phase signal to obtain enhanced phase
measurement accuracy for experiments limited by low photon
numbers.

When two complex fields R (reference field) and O (object
field) interfere, the interference signal I detected by a square-
law detector is represented by

I = |R|2 + |O|2 + R∗O + RO∗. (1)

Given the prior knowledge about R, the typical methods for the
analysis of the interference data are linear in nature. The first
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step in estimating the phase from the interference data is to get
rid of the two intensity terms |R|2 and |O|2 in Eq. (1), followed
by processing of the remaining cross terms to estimate the
amplitude and the phase of the unknown complex field O.
The removal of |R|2 and |O|2 may be performed by high-
pass filtering of the interference signal I or by using multiple
recordings of the interference signal with known phase shifts
in R. When the phase of O is smaller than π/2 in magnitude,
a balanced detection scheme such as homodyning [3] may
be followed. However, if the phase of O can take any value
in the interval [−π,π ], typically four interference signals are
recorded with reference phase shifts of θ = 0, π/2, π , and
3π/2 applied to R [4]. The corresponding four interference
records are sufficient to provide information about the two
quadratures of the unknown object field O. Denoting the four
interference records as Iθ , the phase φO of the object field
relative to the phase φR of the reference field may be expressed
as

φO − φR = arctan

(
I3π/2 − Iπ/2

I0 − Iπ

)
. (2)

Henceforth, we will refer to this procedure as the phase-
shifting method (PSM). Improving the accuracy of the phase
estimation is of great interest to all the associated applications,
and this problem has been studied in detail in literature [5–8].
It is now well established that when classical-light sources are
used, the phase-detection accuracy is ultimately limited by the
shot noise or the

√
N noise, where N is the mean number of

photon counts registered by a point detector. This noise limit
is often referred to as the SNL. Obtaining phase-detection
accuracy below the SNL requires the use of nonclassical
states of light such as squeezed or entangled states [9–12].
The introduction of a squeezed vacuum for sub-shot-noise
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phase detection is now implemented in gravitational wave
detection experiments [13,14]. Squeezing enhanced optical
phase tracking for optical communication applications has
also been demonstrated [15]. Another class of measurements
using an adaptive feedback mechanism has been suggested for
achieving accuracy below the SNL [16–18]. In the context of
optimally estimating a classical Markov process that is coupled
to a quantum sensing system, a time-symmetric quantum
smoothing framework has been developed and demonstrated
experimentally [19,20]. Fundamental quantum limits to time-
varying wave-form detection have been discussed recently in
the context of a force estimation problem [21,22]. A stochastic
Heisenberg limit has also been studied in the context of
optimally estimating the time-varying fluctuating phase [23].
In the present work we use a Mach-Zehnder interferometer
setup without any additional hardware and illustrate enhanced
phase-detection accuracy based on the redundancy or sparsity
of the phase function to be measured.

The analysis of interference records that leads to SNL
is traditionally performed with point detectors and a phase
extraction procedure such as balanced homodyning or phase
shifting is assumed. This leads to all the data points in a time
domain (e.g., photon counts recorded by a point detector as
a function of time) or in a space domain (e.g., pixels of an
array detector) being processed in parallel. In most practical
applications the underlying solution φO that one is seeking
has some structure (as opposed to random or white noise) and
hence the individual measurement points in the interference
data may not be treated as independent of each other. Recent
developments in the area of compressive sensing [24] suggest
that such redundancy in the desired solution may be exploited
to achieve excellent signal or image recovery even with data
that are traditionally considered incomplete. This expected
redundancy in the signal to be recovered is not considered in
methods such as PSM, but can be modeled in an optimization
framework to gain noise advantage, as we illustrate here.

For the phase measurement problem we consider a con-
strained optimization formulation [25] where we minimize a
cost function of the form [26]

C(O,O∗) = ||β(I )[I − (|R|2 + |O|2 + R∗O + RO∗)]||2
+αψ(O,O∗). (3)

The first term in the above equation is a weighted L2-norm
squared data fit and the second term is a constraint that models
some physically desirable property of the solution O. The
choice of ψ(O,O∗) depends on the problem at hand, as we
shall explain later. The weights β(I ) in the first term may be
selected such that the measurements with larger photon counts
gain more importance in the cost function. The parameter
α controls the relative importance of the two terms in the
cost function. The knowledge of R is required for both the
phase-shifting and the constrained optimization methods in
order to determine the amplitude and phase of O. Recently
we have demonstrated the advantage of such an approach
for achieving single-shot high-resolution digital holographic
imaging [26,27]. These experiments were, however, performed
at high light level and the issues such as accuracy relative
to SNL were of no concern there, as is the case in the
present study with low photon level interference data. In

FIG. 1. (Color online) (a) Reference phase map at the sensor
plane obtained using high light level (>5000 counts/pixel) phase-
shifting data. (b) Experimental setup for the low light level in-
terference experiment. SF: spatial filter; P: polarizer; A: aperture;
NDF: neutral density filter; QHQ: geometric phase shifter; L: lens
(f = 10 cm); BS: beam splitter; M1, M2: mirrors; EMCCD: electron
multiplier CCD sensor.

order to test the noise characteristics of this optimization
approach to phase detection, we performed a low light level
interference experiment where a tilted plane wave front and a
quadratic wave front were interfered. In order to obtain data
that are photon noise limited, we employed a sensitive electron
multiplier CCD (EMCCD) array sensor (Andor iXon3) in
a photon counting mode. A 128 × 128 pixel region of the
EMCCD was used for all the illustrations below. The schematic
setup of our experiment as shown in Fig. 1 consists of a
Mach-Zehnder interferometer. The illumination source is a
linearly polarized He-Ne laser which is collimated and split
at the first beam splitter. The mirror M1 in the reference
arm is used to produce a tilt in the plane reference wave
front. The lens L (f = 10 cm) in the object arm produces
an approximately quadratic phase front. The QHQ (Q =
quarter-wave plate, H = half-wave plate) arrangement in the
reference arm was used as a geometric phase shifter [28] for
generating four frames of the phase-shifting interference data.
The optimization procedure as in Eq. (3) requires a single
interference data frame. A separate interference data frame
with the number of photon counts approximately equal to the
sum of photon counts in the four phase-shifting frames was
thus recorded. This single interference frame was then used
with the optimization algorithm. The performance of the phase
estimation methods is compared against the average number
N0 of photon counts registered per EMCCD pixel. The total
photon resources used for the phase map measurement are
thus equal to N0 times the number of pixels, and this number
is equal in both PSM and the optimization method. In our
experiments N0 varied from approximately 800 to 10. Light
level reduction was achieved with the help of neutral density
filters and by controlling the exposure time (electronic shutter)
of the EMCCD array. In order to find a ground truth phase map
of the object beam O for a later comparison with the low light
level phase reconstructions, a phase-shifting data set with a
sufficiently high light level (N0 > 5000) was recorded. This
high light level data set is able to give a smooth phase map
φHLL for the object beam as shown in Fig. 1(a). In order to
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find R, a separate calibration interference pattern was recorded
without any object in the object arm of the interferometer, and
the straight line fringes were used to estimate the tilt in the
reference beam. The constrained optimization procedure was
implemented using a gradient descent iteration. Since the cost
function is a function of both O and O∗, the steepest descent
direction is computed with respect to O∗ [29]. The gradient of
the cost function in Eq. (3) is given by

∇O∗C(O,O∗)

= −β(I )[I − (|R|2 + |O|2 + R∗O + RO∗)](O + R)

+α∇O∗ψ(O,O∗). (4)

The iterative algorithm is then designed such that an updated
solution O(n+1) is obtained from the previous solution O(n) as

O(n+1) = O(n) − t[∇O∗C(O,O∗)]O=O(n) . (5)

The step size t may be selected in each iteration by a standard
backtracking line search [30]. We used the weights β(I ) with
I in photon count units proportional to

√
I so that the terms

with higher photon counts were weighted by their relative
detection signal-to-noise ratio. Further, since the object wave
front has resulted due to Fresnel diffraction from the (lens)
object, the resultant field O is expected to have a certain
degree of smoothness. The smoothness property for the Fresnel
diffraction field is expected irrespective of any sharp features
that the object may have. This desirable property can be
modeled with the penalty term ψ(O,O∗) defined as

ψ(O,O∗) =
∑

p

∑
q∈Np

wpq |Op − Oq |2. (6)

The first summation above is over all pixels p in the image, and
the pixels q belong to some neighborhood Np of a particular
pixel p. The window function wpq is a decreasing function
(e.g., a Gaussian) of the distance between the pixels indexed by
p and q. From the nature of ψ(O,O∗) it may be noted that large
differences in the numerical value of O at any pixel with those
in its neighborhood are penalized and a locally smooth solution
as guided by window function wpq is obtained. In practice,
we implemented the optimization algorithm by alternatingly
minimizing the two terms of the cost function in an adaptive
manner in a fashion similar to some recent work in image
recovery literature [31,32].

For our experimental data, approximately 15–20 iterations
were required in each case to achieve the convergence. The
relative change in the solutions from successive iterations was
seen to be less than 10−3 (or 0.1%) at this stage. Some of
the phase recovery results are shown in Figs. 2(a)–2(c). The
phase maps for the object field as obtained using the PSM
[Eq. (2)] and the corresponding result using the constrained
optimization method are shown such that both methods use
the same average number of photons per pixel. We clearly
observe the advantage of using the constrained optimization
procedure by visual comparison of the resultant phase maps
with the phase map φHLL as in Fig. 1(a). Denoting the phase
maps obtained using the PSM and the constrained optimization
approaches as φPS and φCO , respectively, we define the noise

FIG. 2. (Color online) (a)–(c) Single-shot interference patterns
used in the optimization method (left column), phase recovery
using the PSM (middle column), and the optimization method (right
column). The N0 values in (a)–(c) are 225, 58, and 10, respectively. (d)
Phase profiles of the center pixel column of the image φHLL [Fig. 1(a)]
and the phase recoveries using PSM and optimization methods as in
(c) above for N0 = 10 counts/pixel.

gain as

G = EPS

ECO

= ||φHLL − φPS ||
||φHLL − φCO || . (7)

The gain G is a ratio of the rms (or L2-norm) phase errors
in φPS and φCO with respect to φHLL [Fig. 1(a)]. In Fig. 3,
we show log-log plots of the gain G, and the two rms errors
EPS,ECO as in Eq. (7) with respect to N0. EPS is observed to
scale as N−0.53±0.04

0 , which is close to the expected shot-noise
behavior, whereas ECO is seen to scale as N−0.20±0.06

0 . The
noise gain G is seen to scale as N−0.33±0.04

0 . Here the ± ranges
in the scaling relations show a 95% confidence interval for
the scaling coefficient for fitting of our data. While we have
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FIG. 3. (Color online) Plot of noise gain G, EPS , and ECO

[Eq. (7)] with respect to the average number N0 of photon counts
per pixel (on a log-log scale) used for phase map estimation.

made experimental measurements for N0 as low as 10 based
on detector limitations, our tests on simulated interference
patterns for lower photon counts (up to N0 = 1) show that
the trend in scaling of EPS , ECO , and G as above continues
to hold. An rms error scaling of N−0.25

0 has been obtained
in a feedback-based interferometric scheme in Ref. [17] for
time-varying phase signals. The scaling law obtained by us
is, however, likely to change depending on the sparsity in the
phase function to be measured. The most important point to
note from Fig. 3 is that in the range of N0 considered, the
error ECO for the optimization method is always lower than
the error EPS for the phase-shifting method which defines the
SNL. Since the two solutions φPS and φCO are almost equal
at high light levels, the optimization solution is significantly
better as N0 is reduced, and in this sense the optimization
method provides sub-shot-noise performance. For example, if
N0 is reduced by a factor of 2, the PSM solution gets worse by
≈√

2 whereas the optimization solution gets worse by a factor
20.20 = 1.15. The weak dependence of ECO on N0 in the low
N0 range highlights the importance of the smoothness penalty
term in the optimization solution. A further analysis leading to
a generalized multipixel SNL is required that incorporates the
statistics of the light source as well as a measure of redundancy
in the phase function φO that is to be estimated.

The noise gain G may be interpreted in two different
ways—when traditional approaches such as PSM are used
and ideal detectors are assumed, achieving a similar accuracy
as offered by the optimization method will require (i) classical
light that is more intense by a factor of G2 or (ii) nonclassical
sub-Poissonian light with fluctuations below the shot noise
by a factor of G. In our opinion, the noise gains >5 as
observed in our experiments can be significant for sensitive
phase-detection applications that are currently considered
limited by shot noise. The optimization framework we have
used here exploits the redundancy in the function φO to
achieve improved phase-detection accuracy even when a
classical-light source is used. We expect further improvement
in phase-detection accuracy if nonclassical states of light (e.g.,
squeezed states, spatially entangled light fields) or schemes
such as adaptive feedback [16,17] are used in combination with
this optimization-based approach to phase estimation. While
we have considered a stationary two-dimensional (2D) wave
front in this work, a similar approach will apply equally well
if a series of interference data points is recorded in time with
a point detector and an appropriate penalty term is designed
that models the desirable properties of a time-varying phase
function. Also, we are not restricted to the smoothness penalty
function as used in this work—other forms of penalties such as
L1-norm based penalties (e.g., total variation) or generalized
Gibbs priors [33] may well be used if required.

In conclusion, our work suggests that noise performance
better than conventional single-pixel-based SNL for phase
detection in an interference experiment may be achievable
even with classical light if an optimization approach to phase
detection as described here is used. Any interferometric
scheme (using either classical or nonclassical states of light) is
expected to benefit from such an approach to achieve enhanced
phase-detection sensitivity. The limits such as SNL that are
traditionally defined with considerations of the statistics of the
light source alone may thus be generalized to take into account
the redundancy in the phase signal that we intend to measure.
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