
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 91, 020301(R) (2015)

Testing randomness with photons by direct characterization of optical t-designs
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Generating and characterizing randomness is fundamentally important in both classical and quantum
information science. Here we report the experimental demonstration of ensembles of pseudorandom optical
processes comprising what are known as t-designs. We show that in practical scenarios, certain finite ensembles
of two-mode transformations—1- and 2-designs—are indistinguishable from truly random operations for 1- and
2-photon quantum interference, but they fail to mimic randomness for 2- and 3-photon cases, respectively. We
make use of the fact that t-photon behavior is governed by degree-2t polynomials (in the parameters of the
optical process), to experimentally verify the ensembles’ behavior for complete bases of polynomials, ensuring
that average outputs will be uniform for arbitrary configurations. It is in this sense that a t-design is deemed to
be a potentially useful pseudorandom resource.
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Introduction. Randomness is a workhorse in science and
technology, from simulating complex systems and modeling
error to probabilistic computation and information security. In
quantum mechanics, randomness is a fundamental feature, but
additional (classical) randomness can be a powerful resource
when purposely introduced into quantum protocols; examples
include quantum communication [1], quantum algorithms [2],
quantum data hiding [3], benchmarking unknown quantum
processes [4–8], and verifying the boson sampling conjec-
ture [9]. However, truly random quantum operations are inef-
ficiently realizable both in principle and in practice. Here we
report the realization and complete characterization of pseu-
dorandom photonic quantum operator ensembles: so-called t-
designs that simulate statistical properties of truly random op-
erators using fewer resources [10,11]. We make use of the fact
that t-photon behavior is governed by degree-2t polynomials
(in the optical process parameters), to perform complete exper-
imental verification of the ensembles’ behavior. We realize a 1-
design and a 2-design, and show that 1- and 2-photon quantum
interference [12,13] is sufficient for their complete verification.
Furthermore, we show that 2- and 3-photon interference, re-
spectively, can be used to test the limits of their pseudorandom
properties. We apply these ideas to distinguish, with a fixed
measurement setting, pseudorandom 1-design polarization
rotations from Haar random unitaries in a situation where
process tomography using single photon states would fail.

Unitary processes transform one pure quantum state
to another. Realizing fair and unbiased random unitary
operations requires sampling uniformly from a continuously
infinite group. This group is equipped with a unique invariant
(Haar) measure, which defines how one samples uniformly,
without bias, over the whole set. However, “true” randomness
is inefficiently realizable in practice, due to poor scaling
of the number of random parameters with the size of the

*jonathan.matthews@bristol.ac.uk
†Present address: The School of Physics, H. H. Wills Physics

Laboratory, Tyndall Avenue, University of Bristol, Bristol BS8 1TL,
UK; peter.turner@bristol.ac.uk

system. Fortunately, sampling uniformly from a restricted
subensemble of unitary operators can be done efficiently
and still exhibits some of the desired statistical properties of
truly random processes. Such pseudorandom operations are
therefore sought after for applications in quantum protocols.
Randomly sampled unitaries have been implemented
experimentally, for example, in NMR [4,5], trapped ion [7],
solid state [8], and photonic [14] qubits.

This notion of pseudorandomness is captured well by
unitary t-designs. These are subensembles of quantum op-
erations that, given t copies of a system, are statistically
indistinguishable from a uniformly distributed superensemble.
Equivalently, they are subensembles that have the same t th
order moments as the uniform Haar ensemble, and thus they
can be used to simulate statistical properties of truly random
quantum operations with fewer resources. These statistical
moments are given by polynomials in the parameters of
the quantum operators in question (see below). The work
presented here directly characterizes such pseudorandom
operators experimentally.

Optical t-designs. Here we are concerned with the su-
perensemble of all unitary polarization rotations of an optical
channel. Ignoring global phase, these are parametrized by real
variables {x1,y1,x2,y2} with the constraint x2

1 + y2
1 + x2

2 +
y2

2 = 1, and expressed as

U =
(

x1 + iy1 x2 + iy2

−x2 + iy2 x1 − iy1

)
. (1)

Probability distributions that govern the outcomes of any
multiphoton interference experiment are polynomials in these
variables, whose degree is dictated by the number of photons.
In general, t-photon interference is modeled by a degree-2t

polynomial in the matrix elements of the unitary process [17]
[Fig. 1(a)]. For example, the transition probability of one
photon from input 2 to output 2 is the degree-2 polynomial
|U2,2|2 = x2

1 + y2
1 (note that this exactly agrees with how

the intensity of classically modeled light is distributed as it
passes through U ). Degree-4 polynomials describe 2-photon
nonclassical interference, including the probability to detect
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FIG. 1. (Color online) (a) t-photon interference is described by
degree-2t polynomials. (b) Our setup samples complete sets of
independent degree-2 (degree-4) polynomials in the matrix elements
of U using interference of 1-photon (2-photon) states, generated from
spontaneous parametric down-conversion (SPDC) in type-1 BiBO.
Polarized photon pairs generated in paths a and b are combined
onto d in the photon-number state |1〉H |1〉V , using a half-wave plate
(HWP) and a polarizing beam splitter (PBS). Degree-6 polynomials
were sampled with the 3-photon state |2〉H |1〉V in path d , observed by
postselecting from the 4-photon term of pulsed SPDC state: 3-photons
detected across single photon avalanche diodes (SPADs) 1–15 and
one photon heralded at SPAPD 16 (see Supplemental Material
for further details [15]). The quantum process T = QoutUQin was
implemented using wave plates (QWP, HWP, dashed boxes). Photon-
number-resolving detection [16] uses spatially multiplexed (SMUX)
SPADs (1–15), used in conjunction with a commercial 16-channel
time-correlated single photon counting system (TCSPC).

one photon in each output of U in a Hong-Ou-Mandel
experiment [12], given by [13] |U1,1U2,2 + U1,2U2,1|2.

A unitary t-design [11] is defined in terms of such polyno-
mials. Explicitly, a finite set Dt containing K unitary operators,
viewed as an ensemble with uniform distribution 1/K , is
defined to be a t-design if every degree-2t polynomial [18]
in the matrix elements of U , f2t (U ), has the same average
over Dt as it does when averaged over the uniform ensemble
of all unitaries:

EDt
[f2t ] =

∑
U∈Dt

1

K
f2t (U )

=
∫

dU f2t (U ) = EHaar[f2t ]. (2)

Uniformity in the continuous case is defined by the nor-
malized unitary Haar measure dU , and there are methods
for computing the integral over the unitary group (e.g.,
Ref. [19]). Note that a t-design is by definition also a
(t − 1)-design, hence experiments with t or fewer photons
sampled over a t-design are statistically indistinguishable from
the same experiments with operations sampled from the Haar
distribution. Multiphoton interference, being governed by such
polynomials, can therefore be used to verify the realization of
a t-design, and (>t)-photon interference can also be used to
test pseudorandomness as an alternative to standard process
tomography.

The unitary operators we use to realize a 1-design are drawn
from the uniformly distributed Pauli ensemble [20]

D1 = {I,iX, − iY,iZ}. (3)

Evidence that D1 is a 1-design follows from the fact that single
photons sequentially input into mode 1 will be distributed
equally between output 1 (due to I and Z) and output 2
(due to X and Y ), which agrees with the full Haar dis-
tributed random ensemble of SU(2) rotations:EHaar[|U1,1|2] =
EHaar[|U1,2|2] = 1/2. A proof that D1 is a 1-design can
be obtained by showing the equality in Eq. (2) holds for
each element of a complete basis of independent, degree-
2 monomials in the real variables x1,y1,x2,y2; assuming
unitarity there are nine, we choose:

f2 ∈ {
x2

1 ,x1x2,x
2
2 ,x1y1,x1y2,x2y1,x2y2,y

2
1 ,y1y2

}
. (4)

It is intuitive from a quantum optics perspective to see that
D1 is not a 2-design. Consider a Hong-Ou-Mandel experiment
where we estimate the probability for two indistinguishable
photons input into ports 1 and 2 to antibunch at the two
outputs [12]. When U corresponds to a 50:50 beam splitter
then there is ideally zero probability to detect one photon at
each output. Therefore, when sampling over the entire Haar
ensemble, the average probability for the photons to antibunch
must be strictly less than 1. Averaging over D1, however, will
always yield an antibunching probability of exactly 1, hence
Eq. (2) will not hold for all degree-4 polynomials.

The uniform ensemble of 12 operators listed in Table I
is a 2-design, D2. This is confirmed by showing Eq. (2) is
satisfied with respect to the complete basis of (again, assuming
unitarity) 25 degree-4 monomials:

f4 ∈ {
x4

1 ,x3
1x2,x

2
1x2

2 ,x1x
3
2 ,x4

2 ,x3
1y1,x

2
1x2y1,x1x

2
2y1,x

3
2y1,

x3
1y2,x

2
1x2y2,x1x

2
2y2,x

3
2y2,x

2
1y2

1 ,x1x2y
2
1 ,x2

2y2
1 ,x2

1y1y2,

x1x2y1y2,x
2
2y1y2,x1y

3
1 ,x1y

2
1y2,x2y

3
1 ,x2y

2
1y2,y

4
1 ,y3

1y2
}
.

(5)

Experiment. We implement each element of D2 (and D1)
using a combination of two quarter-wave plates and one half-
wave plate, as shown in the box labeled U in Fig. 1(b), with
the settings θi given in Table I.

To verify experimentally that an ensemble Dt of unitaries
is a t-design, we must have access to a complete basis of
polynomials; this requires some added control over the optical
transformation. We achieve this by adding the reconfigurable

TABLE I. The wave plate settings for θi in degrees, as labeled
in Fig. 1(b), to realize the elements of D2 ⊃ D1. We adopt the
convention that rotation angles are from the vertical.

U ∈ D2 θ1 θ2 θ3

I 0 90 0
iX 0 −45 0
−iY 45 90 −45
iZ −45 90 −45
(I + iX − iY + iZ)/2 0 90 −45
(I + iX + iY + iZ)/2 −45 90 0
(I − iX − iY + iZ)/2 45 90 0
(I − iX + iY + iZ)/2 0 90 45
(I + iX − iY − iZ)/2 45 −45 0
(I + iX + iY − iZ)/2 0 −45 45
(I − iX − iY − iZ)/2 0 45 −45
(I − iX + iY − iZ)/2 −45 45 0
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TABLE II. Wave plate settings ωi in degrees for Qin, Qout,
as labeled in Fig. 1(b), for accessing polynomials pi (1-photon
experiments) and qi (2-photon experiments).

pi ω1 ω2 ω3 ω4 pi ω1 ω2 ω3 ω4

p1 0 0 0 0 p6 0 22.5 0 22.5
p2 0 0 0 22.5 p7 0 22.5 22.5 0
p3 0 0 0 45 p8 0 45 0 0
p4 0 0 22.5 0 p9 0 45 0 22.5
p5 0 22.5 0 0

qi ω1 ω2 ω3 ω4 qi ω1 ω2 ω3 ω4

q1 0 0 0 0 q14 0 45 0 60
q2 0 0 0 22.5 q15 0 45 22.5 0
q3 0 0 0 60 q16 0 45 22.5 22.5
q4 0 0 22.5 0 q17 0 60 0 0
q5 0 0 22.5 22.5 q18 0 60 0 22.5
q6 0 0 45 22.5 q19 0 60 0 60
q7 0 22.5 0 0 q20 0 60 22.5 0
q8 0 22.5 0 22.5 q21 0 60 22.5 22.5
q9 0 22.5 0 60 q22 0 120 0 0
q10 0 22.5 22.5 0 q23 0 120 0 22.5
q11 0 22.5 22.5 22.5 q24 0 120 0 60
q12 0 45 0 0 q25 0 120 22.5 0
q13 0 45 0 22.5

polarization transformations (Qin,Qout), yielding the total
unitary T := QoutUQin, shown in Fig. 1. For each choice of
configuration, the transition probability from a fixed input to
a fixed output is a polynomial in the elements of U ; thus
we can now choose polynomials. The wave plate settings for
(Qin,Qout) corresponding to our choice are given in Table II,
labeled according to Fig. 1(b). We find these settings give com-
plete bases of linearly independent [21] degree-2 and degree-4
polynomials as follows; nine 1-photon output probabilities
corresponding to |T1,1|2, which we label p1, . . . ,p9 (e.g.,
p1 = x2

1 + y2
1 ), and a set of twenty-five 2-photon probabilities

|T1,1T2,2 + T1,2T2,1|2, which we label q1, . . . ,q25 (e.g., q1 =
x4

1 − 2x2
1x2

2 + 2x2
1y2

1 + x4
2 − 2x2

2y2
1 + y4

1 ). We then average
each probability over U ∈ Dt , implemented as given in Table I,
and thus arrive at an estimate for the left-hand side of Eq. (2)
that we can use to verify uniformity.

Results. Figure 2 shows normalized 1-photon intensities
|T1,1|2 extracted from the experiment, taken for p1, . . . ,p9 and
averaged uniformly over the ensembles D1 [Fig. 2(a)] and D2

FIG. 2. (Color online) Polynomials p1, . . . ,p9 extracted from the
measured normalized single photon intensity |T1,1|2, averaged over
settings corresponding to (a) D1 and (b) D2. Measured distributions
(solid color) are plotted with ideal theoretical values (empty boxes).
Dashed lines represent the ideal Haar value PH = 1/2, which is
always uniform for normalized probability distributions.

FIG. 3. (Color online) Polynomials q1, . . . ,q25 extracted from
experiment by measuring the 2-photon correlation |T1,1T2,2 +
T1,2T2,1|2 and averaging over settings that correspond to realizing
(a) D1, (b) D2, and for comparison (c) 12 unitary operators chosen
randomly from the Haar distribution that do not form a 2-design.
Photon distinguishability alters the realized polynomials from their
ideal values and the average they would converge to when sampling
U over a Haar distribution (green line). This is characterized in
the experiment and the ideal theoretical polynomials (empty boxes)
and the Haar average (dashed line) are corrected accordingly (see
Supplemental Material for details [15]). The average statistical
fidelity,

∑
i

√
piqi , between the probability distributions extracted

from our experiment and the ideal distributions is 99.26 ± 0.02% for
the 600 2-photon experiments used to generate these plots.

[Fig. 2(b)]. Both agree with the uniform Haar average over all
unitaries. Since p1, . . . ,p9 are a complete basis, this agreement
directly verifies the two ensembles D1 and D2 are both at least
unitary 1-designs.

The difference in the behavior of D1 and D2 is clear when
observing 2-photon interference. Figure 3 shows expected and
measured 2-photon correlations |T1,1T2,2 + T1,2T2,1|2 taken
for q1, . . . ,q25 and averaged uniformly over the ensembles
D1 [Fig. 3(a)] and D2 [Fig. 3(b)]. The average of degree-4
polynomials over D1 shows behavior clearly distinct from
the uniform behavior that would be observed from averaging
over the Haar measure (black dashed lines). Together with
the results of Fig. 2(a), this agreement directly verifies the
ensemble D1 is a 1-design only. In contrast, the uniformity
of the degree-4 polynomials averaged over D2 [Fig. 2(b)]
agrees closely with the average over the Haar measure.
Since q1, . . . ,q25 is a complete set of degree-4 polynomials,
this verifies the ensemble D2 is at least a 2-design. For
completeness, Fig. 3(c) shows 2-photon interference statistics
averaged over a set of 12 matrices chosen from the Haar
distribution [22]. The data illustrate that, in general, an
ensemble of 12 operations—the size of D2—is not sufficient to
simulate the Haar average, though of course a larger ensemble
eventually will (see Refs. [23,24] for convergence results). As
t increases, it will be harder to distinguish between t- and
(t + 1)-designs due to experimental noise.
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TABLE III. Wave plate settings ωi in degrees to access a selection
of degree-6 polynomials using 3-photons.

pi ω1 ω2 ω3 ω4 pi ω1 ω2 ω3 ω4

r1 94.0 117.3 64.9 24.5 r4 179.7 11.36 24.6 108.1
r2 129.5 67.1 118.3 6.8 r5 1.9 114.0 162.5 160.7
r3 112.8 67.9 159.2 3.6

To complete the characterization of D2, we use 3-photon
interference for a set of five arbitrarily chosen degree-6 poly-
nomial settings (labeled r1, . . . ,r5, with wave plate settings
given in Table III). The data are shown in Fig. 4, verifying
that D2 is not a 3-design due to the existence of polynomials
whose average over D2 differs from the Haar value. Note
that a single degree-6 polynomial that deviates from the Haar
average is sufficient to demonstrate failure to simulate the Haar
distribution.

Analysis of uniformity. How accurately the finite ensembles
we realize mimic Haar distributed unitary matrices can be
quantified by the uniformity of the average probabilities over
the different polynomial settings, and how much they deviate
from the expected Haar average in each case. We quantify
the uniformity of the ensemble behavior in Fig. 5; note
that while theory predicts that t-photon interference over a
t-design should yield perfectly uniform results, experimental
imperfections in realizing design elements can give rise to
nonuniformity. Figure 5 indicates that variance, in particular,
is an excellent discriminator for t-designs.

Example application. If a random optical channel is fluc-
tuating slowly, then the ensemble could be broken down into
its constituent elements and each interrogated by full process
tomography [25], enabling x1,y1,x2,y2 to be reliably estimated
and condition, Eq. (2), tested mathematically. When probing
individual elements of an ensemble is limited, it may be
convenient to use multiphoton states with a fixed measurement
to directly distinguish an ensemble from the Haar ensemble.
Figure 6 shows the real-time failure of a photonic 1-design to
behave Haar randomly in the low photon rate regime. The wave
plate configurations U were set to realize uniformly at random
one of the four D1 operations, and Qin and Qout were fixed to
realize the polynomial q19. For each implementation of U , we

FIG. 4. (Color online) Detection outcomes for 3-photon polyno-
mials ri , averaged over D2. Solid color represents measured data,
empty boxes represent theory, and error bars are computed from
assuming Poisson-distributed detection noise. Haar averages for
perfect interference and characterized photon distinguishability are
marked by the black dashed and green lines, respectively. The average
statistical fidelity between measured probability distributions and
theory is 97.55 ± 0.03% for the seventy-two 3-photon experiments.

(a) (b)

FIG. 5. (Color online) Uniformity of each data set, plotted in
terms of (a) the variance over the set of polynomials measured and (b)
the maximum deviation of the average probability, as a percentage,
from the expected Haar average (black dashed line in Fig. 2 and green
solid lines in Figs. 3 and 4).

estimate the probability distribution of each 2-photon detection
outcome using O(10) correlated detection events, which yields
a noisy estimate of the distribution that is insufficient to
perform reliable process tomography; this could be performed
with, on average, a single photon pair for each U by further
attenuation. As we increase the number of samples of D1

from 1 to 500, we compute a running average for the estimate
of Pest = |T1,1T2,2 + T1,2T2,1|2 which converges to a value of
0.603 ± 0.001. For characterized photon indistinguishability,
Pest should converge to 0.594 (blue line). Confidence that
we are not sampling U according to the Haar measure is
quantified by the number of standard deviations Pest is from
PH = 1/3—for example, for 11 trials (∼220 photon pairs) is
more than six standard deviations.

Conclusion. We have realized unitary 1- and 2-designs
in two dimensions, using multiphoton interference for a
complete verification of their pseudorandom properties. To

FIG. 6. (Color online) Left-hand axis: Running average of Pest =
|T1,1T2,2 + T1,2T2,1|2 estimated from each of 64 independent 2-photon
experiments (overlaid orange points) as U implements uniformly at
random elements of D1 for polynomial q19. The blue line marks
the value that Pset should ideally converge to, taking into account
characterized indistinguishability of photon pairs (see Supplemental
Material [15]). Green and black dashed lines mark the values that Pest

would converge to when sampling uniformly from the Haar measure,
for perfect and characterized indistinguishability, respectively. Right-
hand axis, purple line: The number of standard deviations that Pest

differs from the Haar average PH = 1/3, quantifying confidence of
directly discriminating a non-Haar ensemble.
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do so, we have made use of the fact that multiphoton transition
probabilities are polynomials in the matrix elements of optical
unitaries. In general, (t + 1)-photon interference can be used
to distinguish a t-design from a truly random ensemble
of unitary operations. Although this can be mimicked with
a reduced visibility of interference features using intensity
correlation measurements of several input light fields [26],
reaching the same visibility requires an overhead in mea-
surement and data analysis [27,28]. Furthermore, we have
demonstrated a scenario where standard process tomography
would be incapable of inferring the “degree” of randomness
(as given by a value of t). Interestingly, it has been suggested
that such ensembles will likely be required to demonstrate

conjectured extra-classical capabilities of linear quantum
optics [29].
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