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Progress towards Bell-type polarization experiment with thermal neutrons
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Experimental tests of Bell-type inequalities distinguishing between quantum mechanics and local realistic
theories remain of considerable interest if performed on massive particles, for which no conclusive result has yet
been obtained. Only two-particle experiments may specifically test the concept of spatial nonlocality in quantum
theory, whereas single-particle experiments may generally test the concept of quantum noncontextuality. Here
we have performed the first Bell-type experiment with a beam of thermal-neutron pairs in the singlet state of
spin, as originally suggested by J. S. Bell. These measurements confirm the quantum-theoretical predictions, in
agreement with the results of the well-known polarization experiments carried out on optical photons years ago.
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Since the starting point of Bell’s theorem on nonlocality
of the quantum theory in 1965 [1], theoretical specula-
tions and search for experimental verifications of various
inequalities derived from the theorem have been pursued
over the years. Most of the performed experiments were
based on correlations between the polarization of pairs of
photons, in particular, high-energy photons produced by
positronium annihilation [2], or optical photons emitted by
atomic cascade [3,4] or by parametric down-conversion [5].
One test was also done on massive particles to measure
the spin correlation in proton pairs prepared in low-energy
proton-proton scattering [6]. These early experiments on
positronium annihilation and proton-proton scattering did not
give conclusive results, mainly because of the lack of efficient
linear polarization filters both for protons and high-energy
photons, and because of other difficulties related to the
apparatus. One more recent and complex test performed
on massive particles, pairs of entangled 9Be+ ions, appears
as conceptually questionable because the manipulations of
the two particles of a pair were not done individually and
independently of each other, as would be required to verify
spatial nonlocality [7]. The extensive tests working with
atomic cascades producing pairs of optical photons have been
the most successful (together with those completed afterward
by using parametric down-conversion), mainly because of
the availability of very efficient polarization filters and an
efficient technique for the manipulation of visible light beams.
The experimental limitations of such experiments are mainly
related to the relatively low quantum efficiency of the detectors
and the difficulty to select and detect both members of a photon
pair, because the variable recoil momentum of the emitting
atom diminishes their direction correlation. However, with a
supplementary assumption justifying that the detected photon
pairs constitute a statistically representative sample of the
whole ensemble of photons emitted from the source, these
experiments confirm the predictions of the quantum theory
with great accuracy. A detailed and comprehensive analysis
of the three classes of test experiments performed on Bell’s
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theorem (e.g., atomic cascades, proton-proton scattering,
positronium decay), is given in [8].

The above considerations, and particularly the limits of
the experiments with massive particles, have motivated us to
perform a Bell-type experiment working with a collimated
beam of thermal neutrons prepared in such a way that, within
the experimental limitations of the measurement, neutron pairs
in the singlet state of spin were identified by the detecting
system. We recall that an experimental test on such a physical
system is particularly interesting since Bell’s inequality is
violated by a large amount in the singlet state. We also recall
that beautiful interferometric measurements have been done
with single-neutron beams, testing correlations between two
degrees of freedom of the single particle [9–11]. However, such
experiments are not equivalent to those performed with two-
neutron beams, which refer to the issue of spatial nonlocality
for two separated particles. This latter concept is meaningless
for a single particle, and the interferometric experiments have
rather tested the general concept of quantum noncontextuality.

Following the results of the previous measurements on the
fermion antibunching [12,13], the present measurements have
been carried out at the Institute Laue Langevin (Grenoble,
France) by using the primary spectrometer of instrument IN10,
which produces a monochromatic beam of thermal neutrons
from an almost perfect Si(111) single crystal in the almost
perfect backscattering configuration. The neutron intensity at
the test position was 2 × 103 n/s on a beam size of 3 × 4 cm2.
The energy spread cannot be measured directly but it can be
estimated from the monochromator geometry to be �E <

0.02 μeV, corresponding to a coherence time τc = �/�E >

20 ns at 6.27 Å. The distance of the multianode detector from
the monochromator was ∼12 m and ∼2 m from the collimator
exit; the whole equipment was within the shielding of IN10.

The extraction of a beam of correlated particles in the
singlet state can be described as follows. The nature of
the emission of thermal neutrons in the source (the neutron
moderator of ILL) is Poissonian, so that there is a small but
finite probability of having two neutrons within the detection
time of our apparatus. The beam emitted from the source is
monochromatized by reflection on a quasiperfect Si crystal.
The beam being spin unpolarized, it is equally likely that
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a neutron pair emitted within the coherence time τc of the
monochromator will either occur in one of the three triplet
states or in the singlet state, i.e., the triplet states will occur
3/4 of the time. In a gas of fermions there is the tendency
for particles of the same spin to avoid each other, a tendency
arising from the exchange antisymmetry of the wave function.
More specifically, the two neutrons of a pair emitted in the
triplet state and traveling along the long collimators (∼10 m)
from the monochromator to the polarizers are in the same
spatial mode (antisymmetrical spatial wave function), so that
they avoid each other scattering in directions different from
the one of the emerging collimated beam, and they will not
reach the detectors. The neutrons of a pair in the singlet state
do not avoid each other traveling along the collimators; they
will pass through the two separated polarizers, and after them,
are distinguishable particles that will be detected without
exhibiting interference effects. Consequently, within a time
interval of the order of τc, only neutron pairs emitted from the
source in the singlet state can be detected in our apparatus.
This is the physical effect already measured in [12,13], and
applied in the present experiment.

The conceptual scheme of the experiment was similar to
the one described in [13], with the addition of two polarizers
(1 and 2 in Fig. 1), each one mounted along two slightly
different neutron paths from the beam output window. Both
polarizers consisted of a disk, 3.8 cm diameter and 2.6 cm
thick, made of Fe3Al intermetallic compound and mounted
between the poles of a 0.2 T permanent magnet. The Fe3Al
intermetallic compound was chosen because the first Bragg
edge, corresponding to the (111) reflection of its DO3 structure,
is at λ = 6.67 Å, while the second Bragg edge due to the
(200) reflection is at λ = 5.78 Å. So, at the working neutron
wavelength of 6.67 Å the transmission of the disk is due
only to the capture cross section of Fe and to the (111)
Bragg scattering. If a polarizer is magnetically saturated, the
cross section is large when the Sz component of the neutron

FIG. 1. (Color online) Scheme of the experiment. Distances
along the z direction are not on scale. Sizes of the neutron guide
and collimating window are, respectively, 3 × 3 cm2 and 3 × 4 cm2.
64CH: 64 channels from the multianode pixels; DAQ: data acquisition
system; OR-module is a logical circuit triggering DAQ on receiving
a signal from whatever channel of the 64CH discriminator module.
The polarizers are separated vertically, fronting the two halves of the
detectors; erroneous visual impression may arise from the drawing
perspective.

spin is parallel to the magnetization, and it is small when
Sz is antiparallel [14]. With our 0.2 T magnet the measured
transmission coefficients were ε↓ = 22.1% and ε↑ = 8.4%. In
the present apparatus, polarizer 2 was mounted on a motorized
rotation stage and could be rotated with respect to polarizer
1 mounted within a fixed horizontal field. The relative angle
ϑ of their polarization axes was variable in the range from
0◦ to 360◦ ± 0.1◦. Since the polarizers can be considered as
state preparation devices, their position along the neutron path
was not important, provided that the two neutron paths were
identical as it was in our apparatus.

As in [13], the position-sensitive detector was a Hamamatsu
H8500 multianode photomultiplier having 8 × 8 anode pixels
with a pixel size of 5.8 × 5.8mm2. The photomultiplier was
coupled to a 0.15 mm thick lithium glass scintillator (6Li
98% enriched) directly coupled to the anode window with
a thin layer of optical grease. The scintillator was divided
into two different parts with a separation distance of �0.4
mm, so that each part of the scintillator was looking at the
neutrons passing through either polarizer 1 or polarizer 2,
and there was no cross-talk between the two detecting areas
due to the neutrons impinging on the separation area. Specific
pixel groupings could be defined during the off-line analysis to
optimize the view of the upper and lower parts of the neutron
beam, so that each of the two detectors, D1 and D2, recorded
the neutrons passing through one specific polarizer. Generally
each detector was formed of a row of 4–6 pixels with total
area �3.0 × 0.5 cm2, chosen so as they were illuminated only
by those neutrons that, filtered respectively by polarizer 1
and polarizer 2, could not be intercepted by the Fe magnetic
poles of polarizer 2 at any angle ϑ . The neutron arrival time
at each pixel was measured by using an internal 40 MHz
clock which provided 25 ns time resolution, shorter than
both the light decay time of the lithium glass scintillator
(�250 ns) and the neutron total traveling time through the
scintillating sheet (�240 ns). The data acquisition system
monitored events during repeated cycles of 10 s each, with
an effective duty cycle of about 99.90%, where the dead
time due to the VME readout cycle was of the order of
10 ms.

In order to determine the spin correlation of two neutrons, a
time stamp was attributed to the neutron signals from the two
detectors, so that the neutron pair was time correlated when
two neutrons arrived at the two detectors D1 and D2 with time
stamp t1 = start and t2 = stop. In the off-line analysis we could
study the coincidence rate as a function of δ = t2 − t1, or in
other words, as a function of the virtual spatial separation vtherδ

along the propagation direction z. In [12,13] it is also shown
that, thanks to the specific characteristics of the IN10 primary
spectrometers, there is a good neutron correlation when the two
detectors D1 and D2 are separated in the transverse direction
up to a couple of centimeters. The issue of the existence or
amplitude of macroscopic lateral coherence and its possible
effects on coincidence measurements is controversial. For
this reason we prefer to limit ourselves to report our measured
value. We have no conclusive interpretation of this result,
and we feel that this effect requires further experimental
investigation.

According to the above description, the experimental
results that we are presenting provide the number of neutrons
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monitored by D2 at a time t2 delayed by δ with respect to time
t1 when the first neutron is detected at D1. It is interesting
to obtain a calculation of this number from the convolution
of the predicted neutron-correlation function c(ϑ,δ), and the
response function of the detecting system w(δ).

The function w(δ) = W exp[−δ/tw] describes the time
broadening of the detecting system due to the scintillator
thickness and to the decay time of the emitted light. Actually,
from the capture probability profile of the neutron along
the scintillator thickness, the average capture time is about
tc = 80 ns with an additional broadening from the light
decay curve of the order of td = 250 ns. By considering
that both effects can be roughly described by an exponential
function, the total decay time is expected to be tw = (1/tc +
1/td )−1 = 60 ns. The choice of the Gaussian form of c(ϑ,δ) =
1 − α(ϑ) exp[−δ2/(2τ 2

c )] was dictated first by the need of
describing reasonably (similarly to what was done in [12])
the antibunching effect which produces, for δ = 0 and for any
value of ϑ , a 3/4 depression of the coincidence counts with
respect to the random coincidences occurring for δ � τc; and
second by the need to add also the simultaneous depression
produced by the presence of the polarizers on the neutron pairs
in the singlet state [see prediction (7), recalled later in the text].
The value of the coefficient α(ϑ) must be 3/4 + 1/4 = 1 for
ϑ = 0◦. From the convolution [w ∗ c]c(t ′) of w and c, the
number of coincidences is then given by

C(ϑ,δ) = C(ϑ,∞)

�

∫ δ+�

δ

[w ∗ c](t ′)dt ′, δ > 0, (1)

where C(ϑ,δ) is the number of experimental coincidences
as a function of δ, C(ϑ,∞) is the number of experimental
coincidences for δ � τc, � is the coincidence time window of
the order of τc, and W = 1. In Fig. 2 the experimental results
are compared with the prediction of Eq. (1). Tests taking α(0),
tw, and τc as free parameters confirmed our estimates, and we
found α(0) = 1 ± 0.1, tw = 60 ± 9 ns, and τc = 78 ± 10 ns,
in agreement with the previous estimates [13].
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FIG. 2. C(ϑ = 0,δ) is shown as a function of the neutron time
delay δ = t2 − t1 along the longitudinal z direction; full square:
experimental points. Two 4-pixel rows with relative separation 0.4
cm, � = 150 ns.
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FIG. 3. P12(ϑ) as a function of the angle ϑ between the polar-
ization axes. Two 4-pixel rows with relative separation 0.4 cm, and
� = 150 ns. Full line: quantum prediction [Eq. (6)].

We can now define the function:

P12(ϑ) = C(ϑ,0)

C(ϑ,∞)
, (2)

which is independent of all possible fluctuations of the beam
intensity and other sources of instrumental uncertainties.
It represents the experimental value of the probability of
detecting the simultaneous occurrence, after transmission
through the linear polarization analyzers, of the two neutrons of
a pair emitted in the singlet state, with respect to all four states
of the physical system. The experimental results obtained for
P12(ϑ) at five different values of ϑ are shown in Fig. 3. The
acquisition time of each experimental point was in the range
18–24 h.

In order to obtain the quantum-theoretical prediction for
the outcome of the experiment, let us first calculate the
probability P12(ϑ) for perfect analyzers that transmit only
neutrons with spin antiparallel to the magnetic field. During
a given time interval, the source emits N neutron pairs. For
N large enough, we define Ni/N = ci , Ni being the number
of counts at detector i; and we also recall that Ni = N/2 is
the number of neutrons transmitted through perfect polarizer i
when δ = t2 − t1 � τc. Since the fraction of the neutron pairs
emitted in the singlet state and recorded after the polarizers at
short time delays is 1/4 of all the pairs, we obtain

P12(ϑ) = 1

4
〈ψs |Q↓

1 Q
↓
2 |ψs〉 = 1

4

[1 − cos(ϑ)]

4
, (3)

where |ψs〉 is the singlet wave function and Q
↓
i is the operator

which projects the spin of particle (i) on the direction of
magnetic field with value −�/2. Yet a more realistic analysis,
taking account of the limitations of the apparatus, can be
adopted for comparison with the real experiment. We can
adapt to result (3) the analysis adopted by Clauser, Horne, and
Shimony (CHS) [8,15] for pairs of optical photons with parallel
linear polarization. They derive the following prediction:
P12(ϑ) = c1c2[ε+

1 ε+
2 + ε−

1 ε−
2 cos(2ϑ)]/4 and P12(∞,∞) =

c1c2 with ε+ = εM
i + εm

i , ε− = εM
i − εm

i , where εM
i and εm

i

are, respectively, the maximum and minimum transmittance of
polarizer i. The symbol ∞ defines the absence of a polarizer.
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By adapting their approach, particularly the one in [8],
to our system of thermal neutrons, we have not performed
a direct mathematical derivation of their result, because the
significative differences to be considered between the two
cases have dictated to introduce changes in their calculation.
First we recall that a linearly polarized photon propagating
along the z axis has polarization direction in the x-y plane;
in contrast, a neutron propagating along the z axis has spin
components different from 0 only in one x-y semiplane.
We also recall that the optical linear polarizers have the
maximum transmittance in direction perpendicular to that
of minimum transmittance, while thermal neutron polarizers
have maximum and minimum transmittance in antiparallel
directions. Second, only coincidences occurring within a
time interval δ � τc are considered in our analysis, i.e.,
coincidences due to pairs of neutrons in the singlet state.

We must now remark that a neutron polarizer like ours
is a linear polarizer with oriented polarization axis, so
that two of such perfect polarizers (ε↓

1 = 1 and ε
↑
2 = 0)

with parallel orientation of their axes cannot transmit two
correlated neutrons in the singlet state (antiparallel spins),
and coincidences may be observed only in the angular range
90◦ � ϑ � 180◦. Consequently, the ideal result (3) can only
be confronted with Eq. (6), obtained later in the text, in this
angular range. However, with real polarizers (ε↓

1 = 0.221 and
ε

↑
2 = 0.084 in our experiment) with oriented polarization axis,

coincidence counts may also occur for 0◦ � ϑ � 90◦, but still
the probability of their occurrence cannot be confronted with
prediction (3).

As a consequence of such differences between optical
photons and neutrons, in the above CHS equation ε+

i and ε−
i

have become, respectively, ε
↓
i and ε

↑
i in the term proportional

to cos(ϑ). In addition, note that the neutron correlation function
sin2(ϑ/2)/2 [see Eq. (7)] substitutes the photon correlation
function cos2(ϑ)/2; the symbol ∞ does not denote the absence
of a polarizer, it denotes the absence of correlation between to
two spins of a pair for δ � τc instead; the beam of neutrons
in the singlet state is the fraction 1/4 of the whole ensemble
emitted from the monochromator.

Following the above considerations, we obtain for 0◦ �
ϑ � 90◦,

C(ϑ,0) = c1c2

4

[
εt

1ε
t
2 − (ε↓

1 ε
↑
2 + ε

↑
1 ε

↓
2 ) cos(ϑ)

4

]
,

(4)

C(ϑ,∞) = c1c2ε
t
1ε

t
2

4
,

and for 90◦ � ϑ � 180◦,

C(ϑ,0) = c1c2

4

[
εt

1ε
t
2 − (ε↑

1 ε
↑
2 + ε

↓
1 ε

↓
2 ) cos(ϑ)

4

]
,

(5)

C(ϑ,∞) = c1c2ε
t
1ε

t
2

4
,

where εt
i = ε

↑
i + ε

↓
i . Following the definition of Eq. (2) and

assuming identical polarizers (ε↓
1 ε

↑
2 = ε

↑
1 ε

↓
2 ), we derive

P12(ϑ) = 1

4

[
1− 2ε

↓
1 ε

↑
2

εt
1ε

t
2

cos(ϑ)

]
for 0◦ � ϑ � 90◦ and

(6)

P12(ϑ) = 1

4

[
1− ε

↑
1 ε

↑
2 + ε

↓
1 ε

↓
2

εt
1ε

t
2

cos(ϑ)

]
for 90◦ � ϑ � 180◦.

The results obtained by using Eq. (6) are shown in Fig. 3
(full line) as a function of ϑ . Clearly the theoretical prediction
of the quantum theory is in agreement with the experimental
points, within the errors of the present experiment.

Recall also that for an analogous experiment which might
be performed with ideal instrumentation and with a source
emitting only neutron pairs in the singlet state, the quantum
prediction substituting Eq. (6) is

P ideal
12 (ϑ) = 〈ψs |Q↓

1 Q
↓
2 |ψs〉 = [1 − cos(ϑ)]

4
, (7)

and that this simple sinusoidal form of the ideal prediction
(as other simple sinusoidal forms of quantum predictions, in
other cases) is the sole origin for the violations of the CH
inequality [16].

Let us summarize the most significant experimental features
of the present measurement: (1) from the highly monochro-
matic and collimated beam of thermal neutrons produced at
the IN10 beam of the ILL, by utilizing the antibunching effect
of the neutrons in the triplet states, the two members of a pair
in the singlet state could be detected at small time separation
as a function of the angle ϑ between the two polarizers; (2) the
effects on the data analysis due to the presence of undesirable
and uncertain instrumental origin were greatly reduced by
measuring P12(ϑ) from the ratio of the coincidence rate at
small time separation to the coincidence rate at large time
separation (t2 − t1 � τc).

The measurement seems adequate to confirm the quantum-
theoretical prediction (6) which takes account of the real
limitations of the present experiment, and, by extrapolation,
the theoretical prediction (7) for an ideal experiment performed
with perfect instrumentation.

We wish to remark explicitly that the efficiency of our
polarizers was insufficient for a decisive confrontation of the
experimental data with the Clauser-Horne (CH) inequality,
confrontation which requires very high efficiency of all
of the components of the apparatus. We also note that
such limitation prevents one from performing loophole-free
measurements. On the other hand, we consider our result as a
helpful contribution to this issue. Actually, the confirmation of
quantum prediction (6) could but be reinforced by experiments
performed with greater efficiency and statistical precision, as
was shown in the optical polarization experiments, and also
commented by Bell [17]: “ . . . it is hard for me to believe that
quantum mechanics works so nicely for inefficient practical
set-up and is yet going to fail badly when sufficient refinements
are made . . . .” Therefore, our results seem adequate to verify
the predictions of the quantum theory for massive particles
in the spin singlet state and, although by extrapolation
from the real measurement, to confirm violations of the CH
inequality.

We are grateful to P. Facchi and S. Pascazio for enlightening
discussions and we acknowledge the Institut Laue Langevin
of Grenoble for the beam time, which enabled the realization
of the experiment.
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