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Theoretical investigations of different routes to coherent perfect polarization rotation illustrate its phenomeno-
logical connection with coherent perfect absorption. Our study of systems with broken parity, layering, combined
Faraday rotation and optical activity, or a rotator-loaded optical cavity highlights their similarity and suggests
alternate approaches to improving and miniaturizing optical devices.
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I. INTRODUCTION

Coherent perfect polarization rotation (CPR) [1] is a
conservative, reversible example of a multiport, maximally
efficient, optical mode conversion process. As such, it shares
phenomenological correspondences with the coherent perfect
absorber (CPA, also called the antilaser) [2,3], which has
been well studied [4–7]. While many optical devices such
as laser wavelength locks, field sensors, optical isolators, and
modulators are based on the nonreciprocal nature of Faraday
rotation, one way to improve all of these devices is to process
all of the incident light coherently. CPR-based design is an
intrinsically multi (input)–port approach that combines the
nonreciprocal nature of the Faraday effect with interference to
convert all of the incident light into its orthogonal polarization.
An example of the basic two-port CPR device is shown in
Fig. 1.

For the apparatus shown in Fig. 1, one still must tune the
magnetic field to specific values to achieve complete con-
version of the polarization. The required field is significantly
below that of a single port rotator, however. For one example,
the complete conversion of one polarization into its orthogonal
polarization using an uncoated terbium gallium garnet slab
requires only 60% of the field-length product needed for the
same rotation in just the transmitted light [1]. Achieving com-
plete polarization conversion at a lower field-length product
is technologically useful because it is precisely the seeming
“incompressibility” of this product and the modest Verdet
coefficients of commercially available optical materials that
pose a major obstacle to the diffusion of single-port designs
into integrated optical assemblies and low-cost devices. The
primary motivation for the work reported here is to quantify
in typical one-dimensional optical geometries how CPR-based
optical design significantly lowers the field-length product. We
characterize the reduction of the threshold field-length product
at which coherent perfect processes first occur consequent
to specific design choices in optical dispersion, structural
dispersion, broken parity, and localization.

A second motivation for this study is to reveal general
principles common among coherent perfect processes. En-
larging the context for these phenomena builds intuition
useful for finding routes to improving optical devices. We
do this primarily by comparing and contrasting CPR and CPA.
Note that in both CPR and CPA, a tunable time-odd optical
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process (magneto-optical rotation for CPR versus absorption
in CPA) is combined with multiport wave interference to
achieve perfectly efficient mode conversion (to orthogonal
polarization in CPR and to electronic excitation in CPA).
Among other commonalities between CPA and CPR are their
critical dependence on the relative optical phases among the
input light fields. As in the single-port case of critical coupling,
CPA and CPR both require a particular (hereafter “threshold”)
magnitude for the time-odd process. In both CPR and CPA
the conversion efficiency has a resonance-like structure. Also,
for a fixed wavelength going both above or below the
threshold makes complete conversion impossible. Because
this “resonance” is not associated with a particular decay
time scale, coherent perfect resonances are intrinsically zero
width. Many of the remaining phenomenological differences
between CPR and CPA can be traced to the fact that CPR is
Hermitian, whereas CPA is not. For example, the time reverse
of CPA is lasing, whereas the time reverse of CPR is CPR
itself.

The understanding of CPA phenomena in diverse optical
systems has advanced steadily. Theory relates CPA states
to self-dual spectral singularities [2,8] of the S matrix. The
CPA threshold’s dependence on the depth of the sample
is well understood theoretically, and this dependence has
been modeled in complex (but still linear) media, such as
gold-silica composites and other plasmonic systems [9,10],
and nonlinear media [11]. Both ordinary and PT -symmetric
systems elicit a diverse set of CPA phenomena, with those most
relevant to CPA thresholds including gratings [12–15], surface
plasmonic polaritons [16], photonic crystals [17], near-zero-ε
materials [18], cavities with absorbers [19], controlled disorder
or other spatial ordering [20,21], and very thin absorptive
layers [22]. Some of these ideas are also being explored for
technological uses including all optical switching [23–27] and
CPA enhancement of photoluminescence [28].

After fixing notation and giving a brief review of the basic
phenomena, Sec. III explores CPR and contrasts it with CPA
in different optical environments, highlighting the roles played
by dispersion, parity, and transport of mixed symmetry type.
In Sec. III A we focus on coherent perfect phenomena in
model multilayer systems, followed, in Sec. III B, by breaking
parity in two different ways (first, softly with randomness
and, then, explicitly with trinary multilayers). Thematically
up to that point, one sees a direct correspondence between the
layering effects on CPR and CPA states and thresholds. Subtle
differences between the two are discussed in one archetypal
example combining CPR and optical rotation in Sec. III C.
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FIG. 1. (Color online) Basic schematic of a two-port CPR device.
Not shown are attenuators and delay plates that balance the input
field’s amplitude and phase. When the CPR resonance condition is
achieved, the reflected light r1 and r2 vanishes.

A brief conclusion highlights new directions that may be
prompted by this study.

II. NOTATION AND PRELIMINARIES

We use matrices to represent linear transport and work
in the basis where the local field (complex) amplitudes for
light traveling along the ẑ axis are �v = (Ex,Hy,Ey,−Hx).
In terms of the individual polarization and motional states,
we use �eR = (Ex,Hy) = (1,1) for a right-moving wave and
�eL = (−1,1) for a left-moving one. Throughout this paper
we restrict ourselves to materials without linear birefringence
(in contrast with [29]). The O(2) symmetry about the axial
direction implies, for the transport �vi+1 = Mi �vi , that the 4 × 4
M can be written (in this basis) in terms of the 2 × 2’s M and

C as M = ( M C

−C M
), where C is only nonzero for transport

that mixes the polarization states.
For dielectrics (also the only case we consider below),

matrix M is proportional to the familiar 2 × 2 transfer matrix
for individual polarizations. For example, for a unit intensity
wave incident from the left, in steady state, the field amplitudes
at the surface are �ein = (1,1) + r(−1,1), where r is the
reflected amplitude. The outgoing field amplitude to the right
of the system is given via �eout = t(1,1) = M�ein, where t is the
transmission amplitude. In this basis, for a purely dielectric
material of thickness L, index n,

M =
[

cos δ i
n

sin δ

in sin δ cos δ

]
, (1)

where δ = nk0L and k0 is the vacuum wave number. Note that
det(M) = 1 always, but M11 and M22 are only equal in systems
that have overall spatial parity symmetry. We identify the real
part of the index n with refraction and its positive or negative
imaginary part with absorption or gain.

Analytically for a slab dielectric Faraday rotator the M and
C parts of the M in our field basis are [1,30]

M = 1

2

[
C1 + C2 i(S1/n1 + S2/n2)

i(n1S1 + n2S2) C1 + C2

]
(2)

and

C = 1

2

[
i(C1 − C2) −(S1/n1 − S2/n2)

−(n1S1 − n2S2) i(C1 − C2)

]
, (3)

where C1,2 (S1,2) refer to the cosine (sine) of δ1,2 = n1,2k0L

in which the n1 and n2 are the indices of refraction of the
left- and right-circular polarization in the slab, k0 refers to the
vacuum wave vector, and L is the thickness of the slab. For a
dielectric slab in an external magnetic field pointing along the
direction of propagation, �n = n1 − n2 ∝ V B, the product of
the Verdet and the magnetic field. Note that the resulting 4 × 4
matrix M is quite different from the one representing optical
activity (a time-even rotation process), which has the form
M = cos αM0 and C = sin αM0, where α is proportional to
the density of chiral centers in the slab and M0 is the usual
2 × 2 transfer matrix given by Eq. (1). Because CPR is a
reversible optical process we require constant local power flux
throughout in steady state. This condition thus requires the n’s
and the α to be real throughout for both the time-even and the
time-odd rotation processes we consider below.

For a single polarization whose linear transport is given
entirely in terms of a net 2 × 2 transfer matrix M in the
basis described above and used throughout, the CPA state
is reached when the condition (1,1)M(1,1)t = M11 + M12 +
M21 + M22 = 0 is satisfied. For a general 2 × 2 matrix, this
condition combined with the determinant indicates that CPA
implies four real conditions for four complex numbers. The
remaining freedom of the optical field (amplitude and phase)
then implies that CPA requires, at a minimum, tuning two
dimensionless experimental parameters, typically, the ratio
L/λ and the absorptive index Im(n).

It is also straightforward to find the condition associated
with CPR resonances using the 4 × 4 basis. For fields
incident from the left, take �vl = (1,1, − l,l), where l is the
amplitude of the reflected, rotated wave. On the right, take
�vr = (−d,d,s,s); this configuration thus consists of incoming
fields of one polarization and outgoing fields of the orthogonal
polarization only, the CPR state. In analogy with the CPA
state, these boundary conditions lead to a condition on the
size, wavelength, and rotary power of the system. For CPR
resonance in uniaxial systems with the 4 × 4 form of M as
described earlier, we require

M

(
1
1

)
+ C

(−1
1

)
l =

(−1
1

)
d (4)

and

−C

(
1
1

)
+ M

(−1
1

)
l =

(
1
1

)
s. (5)

Counting the conditions (four complex) for the three complex
fields (d,l,s), we see that to achieve CPR by simultaneously
solving Eqs. (4) and (5) requires, at a minimum, tuning two
experimental parameters (here, generically, the ratio L/λ and
the circular birefringence �n = n1 − n2), which we note is
analogous to the CPA case (where the parameters are (L/λ)
and the absorption coefficient). Eliminating the fields d, l, s,
we can write the CPR condition succinctly for a general M
as a single complex condition det(R) = 0, where the 2 × 2
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matrix R has the following elements:

R11 = (−1,1)C−1M

(−1
1

)
, (6)

R12 = −(−1,1)C−1

(
1
1

)
, (7)

R21 = (1,1)[MC−1M + C]

(−1
1

)
, (8)

R22 = −(1,1)MC−1

(
1
1

)
. (9)

We now summarize CPR phenomenology in a series of
optical systems in order to build a deeper intuition about the
CPR state and its connection to and contrast with CPA, with
an eye towards its potential utility in optical devices.

III. CPR IN MODEL SYSTEMS

A. CPR in layered binary systems

Studying CPR in multilayer interference films provides a
straightforward comparison of CPR and CPA phenomena and
their dependence on dispersion, both material and structural.
For simplicity, consider, first, a perfectly periodic multilayer
composed of N alternating layers of a material A that is a
dielectric with a zero Verdet and a material B that has a nonzero
Verdet. We compare these systems to the CPA model system in
which the bilayers have one nonabsorbing species (A) and the
other absorbing (B). In all the model systems described here,
only the B species rotates (for CPR) or absorbs (for CPA). The
species have different indices of refraction in the absence of a
magnetic field (for CPR) or absorption (for CPA), which we
denote nA and nB , creating an optical (reflection) band gap.
We denote these layered systems (AB)N , but here, to eliminate
any spurious effect from explicitly broken parity, we restrict
our attention to parity-symmetric layered systems formed by
adding one terminal A layer, that is, (AB)NA.

One finding of these simulations (see Fig. 2) is that for the
lowest thresholds, layered films with an odd number of bilayers
(e.g., 31 layers) had threshold CPR states of even parity,
and those with an even number of bilayers (e.g., 33 layers)
had threshold CPR states of odd parity. A simple explanation
for this observation is given in the next subsection (Sec. III B),
on the consequences of parity symmetry (and parity breaking).

Note also that the wavelength at which the lowest CPR
resonance occurs is at a band edge. As is well known, across
the reflection band gap there is pronounced optical dispersion,
resulting in large increases in the group velocity delay
symmetrically at the band edges and significant reductions
in the delay in the middle of the band. (Reference [32] is a
recent relevant summary.) The reduction in the threshold for
CPR or CPA with increases in the group velocity delay at
the band edge is most clearly seen by plotting the product
of the threshold value of the rotary power of the B layers
times the number of layers versus the number of layers, as in
Fig. 3 [dashed (green) trace], which hews closely to a plot of
the group velocity minima versus the number of layers [solid
(red) trace].

FIG. 2. (Color online) Typical CPR resonance in a one-
dimensional photonic crystal. The dashed (green) trace is the
transmission trace and the solid (red) trace is the total output light in
the same polarization as the input polarization. This example is 31
alternating layers (each 100 nm thick) of index 1.55 (non-Faraday)
and 1.38 (Faraday), corresponding to the first row in Table I [31].
Clearly shown in the dashed (green) trace is the reflection band
gap that extends from 550 to 625 nm. The CPR resonance is the
pronounced reduction in the output light polarized along the input
polarization for wavelengths near the short-wavelength edge of the
band.

Changes in the group velocity delay are, in and of
themselves, not enough to explain the pattern of CPR (and
CPA) resonances in these systems; the lowest threshold for
the CPR or CPA resonances for nA > nB occurs on the
short-wavelength side of the band gap, but for nA < nB it
occurs at the long-wavelength edge of the band gap. As
the time reverse of CPA, actual lasing [33], indicates, the
simplest way to explain this difference is by apportioning the
group velocity delay across the two species of the multilayer
and noting that only in the B species is the light subject
to polarization rotation (CPR) or absorption or gain (CPA

FIG. 3. (Color online) Correspondence between the group veloc-
ity delay and the CPR thresholds in layered media [left axis; dashed
(green) trace]. Varying the number of layers only, we plot the CPR
threshold Verdet-magnetic field product (V B) times the number of
layers versus the number of layers. We also plot the group velocity
minimum at the band edge versus the number of layers [right axis;
solid (red) trace].
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or lasing). Simulations of the local electric field of the
light traversing the multilayer indicate that, off-band, the
apportionment of the total velocity delay should follow
the ratio of the indices. Near the long-wavelength side of the
band edge, however, the light’s integrated electric energy is
higher in the larger index species, whereas the reverse occurs
at the short-wavelength edge of the band gap [34]. Equating
the field energy to the probability that the light will visit
that species, and apportioning part of the total propagation
time (and thus the overall Faraday rotation) to each species in
proportion to that probability, qualitatively explains both the
wavelength and the threshold of the CPR or CPA resonances.

Just as in CPA, there are other CPR states that arise at
different wavelengths as �n is increased beyond threshold.
Note that for these simple binary multilayers, the next-to-
lowest CPR resonance typically occurs at the opposite band
edge, as expected and formerly noted [12] for CPA. To
summarize the results from this study of CPR in multilayers
in experimental terms, a 0.76-mm-thick multilayer of 160-nm
layers of each bismuth-substituted iron garnet (BIG; index of
refraction of ∼2.3 at 633 nm, at which the Verdet is ∼−7 ×
103 rad/Tm [30]) and ordinary SiO2 glass would achieve CPR
at 0.5 T, whereas a slab of BIG of length 2.4 cm would be
needed at this field, indicating in concrete terms the substantial
reductions in CPR thresholds associated with photonic bands.

In practice, with real multilayer systems, nonideality
typically moves the lowest CPR or CPA threshold states from
the band edge to defect states in the band gap itself. This
is consonant with the experience in lasing, where it is well
documented that layer nonuniformity and other perturbations
cause lasing to occur first through defect states typically
located within the band gap itself. The defect states still
correspond to maxima of the group velocity delay [35]. (See
the discussion of parity breaking in Sec. III B.)

It is illustrative to compare thresholds for CPA (lasing) and
CPR in simple multilayer systems with deliberate structural
defects, such as “phase-slip” (sometimes called “folded”)
distributed-feedback systems [34,36]. Here we compare the
multilayers (AB)N (BA)N and (BA)N (AB)N , where the time-
odd process (either Faraday rotation, in the case of CPR, or
absorption or gain, in the case of CPA/lasing) again occurs only
in the B layers. Table II lists calculated threshold �n values
for CPR for four configurations of simply folded symmetric
systems, which agree qualitatively with the corresponding
results for CPA or lasing summarized in Fig. 4 (adapted from
Ref. [37]). For example, controlling for overall gain, the folded
distributed-feedback structure with the lowest lasing threshold
(as inferred from the largest gain in the figure) is that which
has the gain medium in the low-index material and is folded
on the low-index layer. This result agrees with our simulations
of the CPR threshold as reported in Table II (folded on B,
nA > nB).

For contrast, we conclude this section with a case in
which dispersion, but not field placement, is important: the
loaded optical cavity as a layered optical system. Consider a
dielectric Faraday rotator inside an optical cavity composed
of transversely isotropic perfectly thin mirrors of reflectivity
amplitude r (so that the reflectivity is R = |r|2). The mirrors

are represented by the transfer matrix Mr = [Mr 0
0 Mr

], where

FIG. 4. (Color online) Transmission gain versus wavelength for
folded structures analogous to those in Table II, where, instead of
rotation in the B layers, a complex index of refraction is used to
represent the optical gain. In this case the optical band stretches from
450 to 520 nm, and the prominent fold defect state appears near the
center of the band. (Figure adapted from Ref. [37] with permission
of The Optical Society of America.)

the 2 × 2 matrices Mr for the simple case of completely
nonabsorbing mirrors are given in our “field” basis as Mr =

1√
1−|r|2

[ 1 i|r|
−i|r| 1

]. Algebra indicates that all effects of the

cavity reflectivity modify the conditions for CPR via a
single parameter, γ = 2|r|

1+|r|2 . One finds for this loaded cavity
configuration (mirror-rotator-mirror) that the CPR condition
becomes (compare the r → 0 limit with Eq. (14) in Ref. [1])(

n1 + 1

n1

)
S1C2 −

(
n2 + 1

n2

)
S2C1 + γ

(
n1

n2
− n2

n1

)
S1S2

= ±
[(

n1 − 1

n1

)
S1 −

(
n2 − 1

n2

)
S2 + 2γ (C2 − C1)

]
, (10)

where, as before, n1,2 = n0 ± �n/2 and k0�n = 2V B.
To compare this result with CPA, it is straightforward to

show that the lowest CPA resonance threshold for a cavity
loaded with a lossy dielectric modeled as a complex index
n is given by the solution of [compare with the r → 0 limit
of Eq. (7) in Ref. [2], also reproduced in Eq. (13) here for
completeness]:

ei2nk0L = (n − 1)2 − (n2 + 1) 2R
1+R

+ iγ (n2 − 1)

(n + 1)2 − (n2 + 1) 2R
1+R

+ iγ (n2 − 1)
. (11)

In Fig. 5, we have used Eq. (11) for n0 = 2.0 and k0L ∼ 820
to plot the fractional reduction in the lowest CPR resonance
threshold (�n) as a function of the reflectivity, R. The graph
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FIG. 5. (Color online) The lowest CPR [dot-dashed (red) trace]
and CPA [dashed (blue) trace] resonance thresholds in a loaded cavity
decrease as one increases the finesse of the mirrors, going to 0 with
the inverse of the group velocity delay [solid (green) trace].

shows a strong similarity to the inverse of the time spent in the
cavity (i.e., the fractional reduction in the group velocity), as
expected, and also corresponds with the reduction in the CPA
threshold of an absorber-loaded cavity shown in the graph.
Not shown in Fig. 5, we have also analyzed a realistic (e.g.,
complex dielectric) gold mirrored cavity at 780 nm and found
qualitatively the same behavior as in Fig. 5 with increasing
gold layer thickness. In that study there are no 780-nm CPA
states from tuning the loss in the dielectric slab inside the cavity
if the gold layer thickness exceeds 35 nm (corresponding to
an R of about 85% in each mirror) because at that depth the
absorption in the gold itself is above the CPA threshold.

B. CPR with explicitly broken parity

In a parity-symmetric absorbing structure, the fields of all
CPA states must also be of definite parity, even or odd. These
two possibilities generally occur at different absorption thresh-
olds. Since we have already discussed layered optical systems,
one particularly intuitive way to understand this difference is
shown in Fig. 6, where one of the species (B) is absorbing
(or rotating, in the CPR case) and the other species (A) is

FIG. 6. Parity and CPA or CPR. For an odd number of bilayers,
we see that (a) the even-parity fields have a maximum on the B

species, whereas (b) in the odd-parity case, the field on the B layer
is significantly smaller. For an even number of bilayers, however, the
situation is reversed, so that (c) even-parity fields do not have their
maxima on the B layers, but (d) odd-parity fields do.

TABLE I. CPR thresholds (�n values for the circular polarization
propagation eigenstates in layer B) at the reflection band edge for the
layered binary systems described in Fig. 2. Here and in Table II the
letters after the threshold values indicate the spatial symmetry (O,
odd; E, even) of that CPR resonance’s fields.

Configuration 31 layers 33 layers

nA > nB 0.049(E) 0.044(O)
nA < nB 0.090(E) 0.080(O)

not. For wavelengths nearly four times the layer thickness
(near the band edge), as in the example shown in Fig. 6, the
even-parity case has a larger field overlap on the absorber or
rotator (species B) than the odd-parity field for an odd number
of bilayers (in this case, one bilayer), thus the former will have
a lower CPA threshold (compare with Table I).

When a rotator (absorber) is not parity symmetric, there
are still CPR (CPA) states, but the state’s fields will not be
of definite parity. To illustrate the effect of parity breaking on
CPR and its comparison with CPA (see Refs. [5,38]), in this
section we consider two examples of parity-broken systems: (i)
an (AB)NA multilayer, but with layer-to-layer thickness varia-
tions, and (ii) a trinary regular layered system of type (ABC)N

[in both cases only B is rotary (CPR) or absorptive (CPA)].
As one introduces layer thickness variations into the

(AB)NA structures discussed in Sec. III A, formerly localized
reflection band states mix with extended states, whereas some
formerly extended states become localized [35]. Initially,
weak localization increases the group velocity delay and
thus reduces the CPA or CPR threshold for some states
near the band edge (see Fig. 7 for one example). As
the localization length shrinks further with increasing layer
thickness variations, random scattering reduces the coherent
band edge reflections that were responsible for the increase
in the group velocity delay in the first place. As the level
of randomness is increased, the lowest resonant CPR or CPA
state’s wavelength at threshold moves into what was previously
the reflection band. Note also that adding layer thickness
randomness explicitly breaks the original parity symmetry of
the system. As a consequence, at finite randomness in the CPA
case, the amplitude ratio of the input fields is no longer ±1.

The consequence of parity breaking through broken struc-
tural symmetry in CPR is different from that in CPA [39].
Solving Eqs. (4) and (5) for the amplitude ratio of the incident

TABLE II. CPR threshold values of �n for “folded” layered
systems comprised of 52 total layers. Every entry is for a CPR
resonance occurring on the defect state inside the reflection band. The
lowest CPR threshold occurs with even parity when rotation occurs
in the lower index material and the fold is on that low-index material.
CPR threshold ordering in the chart is in one-to-one agreement
with that of lasing thresholds in these “folded” distributed-feedback
systems reproduced in Fig. 4.

Configuration Fold on A Fold on B

nA > nB 0.032(O) 0.013(E)
nA < nB 0.017(E) 0.028(O)
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FIG. 7. (Color online) Percentage reduction of CPR [filled
(green) circles] and CPA [open (red) squares] in the thresholds for the
lowest CPR or CPA state, which, as described in the text, occur near
the band edge. For this example, a particular random layer thickness
variation map for the 65-layer multilayer with nB > nA [only species
B is Faraday (CPR case) or absorptive (CPA case)] is programmed
into the simulation and increased across the horizontal axis.

fields, l, indicates that

l = (M11 + M12 + M21 + M22)

(C11 + C21 − C12 − C22)

= (C11 + C21 + C12 + C22)

(M22 + M12 − M11 − M21)
(12)

in the CPR state. For any optical system composed of sections
without birefringence or optical activity, it was shown in
Ref. [1] that the 4 × 4 M has underlying 2 × 2 matrices M

and C, with the M being time-even and of the form [R I
I R]

and the C being time-odd and of the form [I R
R I ], where R

means a purely real quantity and I a purely imaginary one.
This matrix structure in the formulas for l gives |l| = 1, which
in turn forces all the optical fields to have the same intensity for
a CPR state in any system. The broken parity in the CPR state
is instead manifest by the appearance of mismatched phases
(not shown) between the input fields.

Explicit parity breaking via structural asymmetry is also
evident in the trinary films, (ABC)N , again, in which only B

is rotary (CPR) or absorptive (CPA). As an example, Table III
reports a comparison of the CPR and CPA lowest resonance
thresholds near the band edges of the very first reflection band
of trinary films. Thus, even for perfectly ordered trinary films,
it is the phase mismatch between the left and the right input
fields that varies universally, while the amplitude ratios only

TABLE III. Thresholds for (ABC)N layered systems where the
indices of refraction are chosen from the list {1.55,1.51,1.38} and the
total number of layers is 45 (each layer is 100 nm thick).

Type Configuration Threshold Amplitude ratio

CPR nA > nC > nB 0.0465 1
CPR nA > nB > nC 0.0652 1
CPR nB > nA > nC 0.0752 1
CPA nA > nC > nB 0.0528 1.44
CPA nA > nB > nC 0.092 0.215
CPA nB > nA > nC 0.087 1.52

FIG. 8. (Color online) CPR threshold reduction [dashed (red)
trace] is monotonic to 0 as the index of refraction of the slab is
increased, following the same relation as in the CPA case [∼1/n at
large n as described in the text; here, the solid (green) trace].

vary for the CPA case. Note also that the threshold values for
the cases nA > nC > nB and nB > nA > nC are ordered the
same in both CPR and CPA. In particular, for each of these
cases in Table III, the CPR or CPA state forms at the appropriate
band edge as discussed in the previous section. The spectral
location of the CPR or CPA state in the intermediate case
nA > nB > nC depends on the indices’ values.

Two additional facts of interest emerge from these simula-
tions. As one might expect, the intensity ratios are more varied
for the trinary films (explicit parity breaking) than for the
random (AB)NA layered system (which breaks parity more
softly) studied here to only 15% layer thickness variation.
Also, for the case of random (AB)NA layered systems, the
variation in the phase is much larger in the CPR case than in
the CPA case. Note in this regard that the CPR state forces
the intensity ratio to remain unity, whereas for CPA both the
amplitude ratio and the phase adjust to remain resonant in a
parity-broken system.

C. Combined Faraday rotation and optical activity

To highlight the time-reversal symmetries underlying CPR
and CPA, we now address the effect that the time-even part
of the transport has on the CPR or CPA threshold. In the
original derivation of the CPR effect [1] in a simple slab
dielectric, increasing the index of refraction of the material
reduces the CPR threshold, as shown graphically in Fig. 8
using the formula in Ref. [1]. This is also the case with the
CPA threshold, which (see Eq. (7) in Ref. [2]), for an absorbing
slab dielectric of index n = n0 + inabs and length L, is

eink0L = ± (n − 1)

(n + 1)
. (13)

In the large-n0 limit, because the log is vanishing as ∼1/n2
0,

the threshold nabs must decrease as ∼1/n0 at large n0. A graph
of this reduction of CPA in a bulk absorber from Eq. (13) is
included in Fig. 9(b). We note in passing that this reduction is
what one would expect for the single-transit-time reduction,
and not that associated with the etaloning as was the case for
the optical-cavity-assisted reduction in the thresholds.

In CPA, the index of refraction real and imaginary parts
can be considered the time-even and time-odd contributions
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FIG. 9. The lowest CPR and CPA resonance thresholds decrease
monotonically to 0 as the time-even part of the transport is increased.
(a) Reduction in CPR threshold for a Faraday (time-odd) constituent
sandwiched between two optically active slabs as a function of
the total optical activity of the time-even part alone (in radians).
(b) Reduction in CPA threshold as a function of the real part of the
material’s refractive index.

to the transport. The analogous processes for transport of
the polarization are optical activity (time-even) and Faraday
rotation (time-odd). Recall that one cannot achieve CPR with
optical activity alone, but the question we would like to address
is how the presence of optical activity in a system modifies the
threshold Faraday rotation needed for CPR.

Consider a system with both of these processes operating.
Instead of a single bulk piece, for simplicity we analyze a
three-layer system composed of two optically active blocks
with a Faraday rotator in between. [See discussion following
Eq. (1) for the matrix representation of optical activity.]
It is then straightforward to identify the CPR state in this
system, again in terms of the equation det(R) = 0, where
the matrix elements of the 2 × 2 complex matrix R are as in
Eqs. (6)–(9), but where we make the substitutions for M and C

via

(
M

C

)
=

(
cos 2α − sin 2α

sin 2α cos 2α

) (
M0MM0

M0CM0

)
, (14)

where M0 is given by Eq. (1) for the optically active blocks
(with chiral density proportional to α) and the M and C on
the right-hand side of Eq. (14) are given by Eqs. (2) and (3),
respectively, for the Faraday block. Keeping the indices and
length the same, and changing only the optical activity, we can
determine the location of the CPR state [see Fig. 9(a)]. We see
that, as in the decrease in the CPA threshold with increasing
real part of the refractive index n0, the Faraday rotation
needed to achieve CPR resonance decreases monotonically
as the optical rotation in the adjoining slabs is increased.
We note that this reduction continues with increasing optical
activity beyond the value at which the optical rotary part
of the assembly by itself would rotate a single input ray to
its orthogonal polarization (rotation by π/2) upon exiting in
transmission. This result is true for both positive and negative
Verdet values, irrespective of the handedness of the optical
activity; the trace in Fig. 9(a) is symmetric about zero optical
activity. Both of these (CPR and CPA) curves asymptote to
zero threshold.

This shows that increasing the time-even part of an optical
process reduces the time-odd threshold for achieving CPR
or CPA and is expected to be useful for reducing the size,
complexity, and cost of devices based on CPR or CPA, for
example, by reducing the required magnetic field.

IV. CONCLUSIONS

CPR and CPA are phenomenologically congruent in how
their thresholds depend on the system’s symmetry, compo-
sition, and geometry. As both are coherent perfect processes,
this congruence follows from the underlying commonality they
share through wave interference and time reversal symmetry.
Furthermore, this study reveals potential design routes to
decrease the size and/or magnetic field requirements for
achieving CPR. For example, as detailed above, multilayering
the rotating species can yield a 30-fold reduction in the
naive length-field product. Similarly, even a poor optical
cavity with just 60% reflective mirrors reduces the CPR
threshold length-field product by nearly 80%. By layering
with suitable optically active materials, high-index materials,
tertiary layered systems, and layered systems with small layer
thickness variations in the stack, we have shown that further
reduction in the naive length-field product is achievable in
CPR-based devices.
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