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Partial indistinguishability theory for multiphoton experiments in multiport devices
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We generalize an approach for description of multiphoton experiments with multiport unitary linear optical
devices, started in Phys. Rev. A 89, 022333 (2014) with single photons in mixed spectral states, to arbitrary
(multiphoton) input and arbitrary photon detectors. We show that output probabilities are always given in terms
of the matrix permanents of the Hadamard product of a matrix built from the network matrix and matrices
built from the spectral state of photons and spectral sensitivities of detectors. Moreover, in the case of input
with up to one photon per mode, the output probabilities are given by a sum (or integral) with each term being
the absolute value squared of such a matrix permanent. We conjecture that, for an arbitrary multiphoton input,
zero output probability of an output configuration is always the result of an exact cancellation of quantum
transition amplitudes of completely indistinguishable photons (a subset of all input photons) and, moreover,
is independent of coherence between only partially indistinguishable photons. The conjecture is supported
by examples. Furthermore, we propose a measure of partial indistinguishability of photons which generalizes
Mandel’s observation, and find the law of degradation of quantum coherence in a realistic boson-sampling device
with increase of the total number of photons and/or their “classicality parameter.”
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I. INTRODUCTION

It is well known [1] that the quantum coherence of an
electromagnetic field and indistinguishability of photons are
intimately related to each other. The most famous quantum
coherence effect of this type is the Hong-Ou-Mandel (HOM)
dip [2,3], where the “dip” in the output coincidence probability
of a balanced beam splitter corresponds to complete indistin-
guishability of single photons at its input. Many important
developments in the area of multiphoton experiments with
multiport optical devices have been achieved since then. A
generalization of the HOM effect and a difference in behavior
of bosons and fermions was analyzed for Bell multiport beam
splitters [4–6]. An approach describing partial distinguisha-
bility of photons obtained from parametric down-conversion
sources was developed in Refs. [7–9]. Recently, a zero-
transmission law due to a symmetry of the network matrix [10]
and a quantum suppression law in many-particle interferences
beyond the boson and fermion statistics were found [11].
Recent advances in quantum interference experiments in
linear multiport devices include characterizing temporal distin-
guishability of four- and six-photon states [12], experimental
control over eight individual single photons [13], observation
of the two-photon HOM effect on integrated three- and four-
port devices [14], verification of the three-photon HOM effect
and the zero-transmission law on a tritter [15], a three-photon
quantum interference experiment on an integrated eight-mode
optical device [16], and observation of detection-dependent
multiphoton coherence times [17]. The multiphoton quantum
interference is central in the boson-sampling computer [18]
with indistinguishable single photons and linear optics, the
output of which is hard to simulate on a classical computer.
Recently the experimental realization of the boson-sampling
computer was tested on a small scale [19–23]. One must
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also mention the well-known proposal for universal quantum
computation with linear optics [24].

The advances described above with multiphoton experi-
ments of increasing complexity (see also the review [25])
and also the recent achievements in fabrication of photon
sources [26] necessitate a theoretical approach which enables
one to account for the effect of partial indistinguishability
of photons in a realistic general setup of a multiport device
with an arbitrary multiphoton input and with account for
imperfect detectors. Here such a general approach is developed
by generalization of that of Ref. [27]. As in Refs. [7,9,27–29]
we employ the permutation symmetry of the spectral state of
photons to characterize their partial indistinguishability and
further advance this relation: we derive the general output
probabilities for multiphoton experiments with multiport
devices for an arbitrary number of network modes and an
arbitrary multiphoton input, study the physical meaning of
the partial indistinguishability matrix, introduced in Ref. [27],
and introduce an auxiliary Hilbert space representation of
spectral states of photons, which allows one to rewrite output
probabilities in a clear compact form. In view of the application
to the boson-sampling experiments, we discuss in detail
the case of input with at most one photon per mode, give
the output probability in a simplified form, and study the
effect of degradation of quantum interference on a classicality
parameter and the total number of photons. Note that a different
approach based on the orthonormalization of photon spectral
states, used in Refs. [17,30,31], which is helpful in few-photon
cases, does not have a clear physical interpretation and will not
be of much help for larger N or mixed spectral states [32].

Since the symmetric (i.e., permutation) group is the key
object in our approach, one might expect that usage of
advanced features of the symmetric group (i.e., the group
characters and the corresponding Young diagrams) is essential
for understanding multiphoton experiments in multiport de-
vices. Indeed, recently three-photon interference in a tritter was
analyzed using some advanced symmetric group structures
called the matrix immanants (related to the nontrivial group
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characters) [28,29]. However, such an approach is not scal-
able, since Young diagrams associated with nontrivial group
characters can be analyzed only case by case with no formula
for the general solution. Our approach, on the other hand,
does not depend on any such advanced group structures. Only
some elementary facts about the permutation group, such as
the cycle decomposition, are used. We show, for instance, that
the zero-coincidence condition for partially indistinguishable
photons of Refs. [28,29], involving the matrix immanants,
can be restated as a zero-permanent condition of a Hadamard
product of a network matrix and a matrix built from spectral
states of photons and detector sensitivities. We also conjecture
that zero output probability of an output configuration is
always the result of exact cancellation of quantum transition
amplitudes of completely indistinguishable photons (a subset
of all input photons) when a network allows for such an
exact cancellation. Moreover, in all cases, zero probability
is independent of the degree of coherence of only partially
indistinguishable photons.

Finally, it should be mentioned that the effect of partial
indistinguishability of photons on probabilities at a network
output has a deep relation with the duality (complementarity)
between the fringe visibility and the which-way information.
This duality is well understood for two-path interference
experiments [33–35]. Indeed, although the output probability
is related to a Glauber higher-order coherence function [36],
whereas the duality pertains to the first-order coherence of a
single quantum object, when all photons are detected for an
input with a certain number of photons, one can reinterpret
the multiphoton interference as a multipath interference
experiment, where there are N ! paths for N photons. Such
a relation was studied by Mandel [1] for N = 2 (see also
Ref. [37]). However, following this point of view in discussion
of N -photon multiport experiments for N > 2 meets with
several obstacles and is not pursued here. One of them is
that generalization of the duality to multipath coherence is not
unique [38]. However, the duality supplies a clear physical
interpretation of the formulas derived below. Moreover, an
argument referring to the duality is used for formulation of the
zero-probability conjecture.

In Sec. II we derive the general formula for the output
probability in a multimode network for arbitrary multiphoton
input. Some details of the derivation are placed in Appendix A.
In Secs. II D and II E we compare the case of ideal (i.e.,
maximally efficient) detectors with that of realistic detectors
for two extreme cases of input: completely indistinguishable
photons and maximally distinguishable photons. In Sec. II F
we express the output probability via matrix permanents of
the Hadamard product of matrices, one built from the network
matrix and the other from spectral states of photons and
sensitivities of detectors. In Sec. II G we propose a measure for
partial indistinguishability of photons generalizing Mandel’s
parameter for N > 2 photons. We focus on the input with a
single photon or vacuum per input mode in Sec. III, where
we give a simplified formula for the output probability and
analyze its structure for single photons in pure spectral states
(Sec. III A), and generalize the result to the case of single
photons in mixed spectral states (Sec. III B). In Sec. III C
we formulate the zero-probability conjecture and study a few
examples supporting it. Some mathematical calculations of

Sec. III are relegated to Appendices B and C. Finally, in
Sec. III D we discuss a model of the boson-sampling computer
and compute the purity of the partial indistinguishability
matrix as a measure of the closeness of a realistic device
with only partially indistinguishable photons to the ideal
boson-sampling computer. Some final remarks are placed in
the concluding Sec. IV.

II. OUTPUT PROBABILITY FORMULA FOR A FIXED
NUMBER OF PHOTONS IN EACH INPUT MODE

A. Input state

Consider a linear unitary optical network of M different
inputs (we consider each input to be single mode) where an
nk-photon state is injected into the kth input mode. Below
we set n1 + · · · + nM = N (in general, the number of modes
with a nonvacuum input is less than M). We are interested
in the expression for the output probabilities for such an
input. In view of the problem formulation, it is convenient
to use a basis for photon states consisting of spatial mode k,
polarization state s (where, say, s = 0 and s = 1 correspond
to two orthogonal basis states of photon polarization), and
frequency ω. We denote photon creation and annihilation
operators in this basis by a subscript (k,s) and consider
them to be functions of ω. A spatial unitary network can
be defined by a unitary transformation between input a

†
k,s(ω)

and output b
†
k,s(ω) photon creation operators, we set a

†
k,s(ω) =∑M

l=1 Uklb
†
l,s(ω), where Ukl is the unitary matrix describing

such an optical network. Below we will employ vector notation
for greater convenience, e.g., �n = (n1, . . . ,nM ) for numbers of
photons in spatial modes, �ω = (ω1, . . . ,ωN ) for frequencies,
and �s = (s1, . . . ,sN ) for polarizations. We define also |�n| ≡
n1 + · · · + nM and μ(�n) ≡∏M

k=1 nk!. The general N -photon
input (a mixed state) with a certain number of photons in each
input mode is given by the following expression:

ρ(�n) = 1

μ(�n)

∑
�s ′

∑
�s

∫
d �ω′

∫
d �ωG(�s ′, �ω′|�s, �ω)

×
[

N∏
α=1

a
†
kα,s ′

α
(ω′

α)

]
|0〉〈0|

[
N∏

α=1

akα,sα
(ωα)

]
, (1)

where k1, . . . ,kN are input modes (generally repeated where
the repetition numbers are given by �n) and G is a function
describing the spectral and polarization state (mixed, in
general) of N input photons.1 An immediate consequence of
the bosonic commutation relations is that any permutation π

of frequencies and polarizations associated with either
creation or annihilation operators in Eq. (1), i.e.,
(sα,ωα) → (sσ (α),ωσ (α)), which permutes photons from
the same input mode k, leaves the function G of Eq. (1)

1To use the index k instead of the double index kα would not be
simpler because we have multiple k indices for nk > 1. To leave
just the subscript by definition Ûα,β ≡ Ukα,lβ is also not convenient,
since some formulas have an essential dependence on the output
configuration of the spatial modes due to the different detectors
attached to them.
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invariant. The group of such permutations, a subgroup of
all permutations SN , is equivalent to the tensor product of
groups Sn1 ⊗ · · · ⊗ SnM

(some Snα
may be empty because

nα = 0). Given this permutation symmetry of G, the following
normalization condition can be derived from the fact that ρ of
Eq. (1) is a density matrix with trace equal to 1:∑

�s

∫
d �ω G(�s, �ω|�s, �ω) = 1. (2)

The function G is also constrained by positivity of the
associated density matrix ρ. Below we will frequently use
two other representations of the density matrix in Eq. (1). The
diagonalized form

ρ(�n) =
∑

i

pi |�̃i〉〈�̃i |, 〈�̃i |�̃j 〉 = δij ,

(3)

|�̃i〉 = 1√
μ(�n)

∑
�s

∫
d �ω �i(�s, �ω)

[
N∏

α=1

a
†
kα,sα

(ωα)

]
|0〉,

obtained by decomposing the function G of Eq. (1)
as G(�s ′, �ω′|�s, �ω) =∑i pi�i(�s ′, �ω′)�∗

i (�s, �ω), where∑
�s
∫

d �ω|�i(�s, �ω)|2 = 1 and
∑

i pi = 1 (pi > 0), and
another very important representation, which applies to
sources with some fluctuating parameter(s), say x. In the latter
case, the density matrix has a form similar to that of Eq. (3)
but with some nonorthogonal states |�̃(x)〉,

ρ(�n) =
∫

dx p(x)|�̃(x)〉〈�̃(x)|, (4)

where we assume that the state vector |�̃(x)〉 is given similarly
as in the second line of Eq. (3).

Typical input states encountered in experiments are covered
by the input of Eq. (3) or (4). For instance, if we have N

independent sources of single photons attached to modes
kα , α = 1, . . . ,N , with source α emitting single photons
in a polarized (say sα = 1) Gaussian state with the central
frequency 
α , spectral width �α , and arrival time tα , then the
corresponding input state is pure, ρ = |�̃〉〈�̃|, where

|�̃〉 =
∫

d �ω
[

N∏
α=1

φα(ωα)a†
kα,1(ωα)

]
|0〉, (5)

with

φα(ω) = (2π�2
α

)−1/4
exp

{
iωtα − (ω − 
α)2

4�2
α

}
(6)

[note that we write φα(ω) and not φα(ω,tα) since it is a
function of ω, whereas tα is a fixed parameter, different for
different indices α; we will use this rule below for the sake of
simplicity]. One frequent example of this kind is of N photons
in the same Gaussian state, i.e., 
α = 
 and �α = �, but
with different arrival times. This example is, of course, only
illustrative and sometimes used to model a realistic situation
due to manageability of the Gaussian function and because
in experiments only a few parameters, such as the central
frequency and spectral width of the photon sources are known
with some precision. One can contemplate a more general
model of this kind: when polarized single photons have spectral
states of the same shape, differing only by the delay time, the

appropriate representation is φα(ω) = ∫ dteiωtf (t − tα) for an
arbitrary function f (t) with the norm equal to 1.

When spectral states of photons have fluctuating parame-
ters, e.g., the arrival time, polarization, etc., the most appro-
priate representation is Eq. (4). For example, such an input
gives a model of a realistic boson-sampling computer [18]
(see Sec. III D for more details).

B. Output probabilities and interference of “paths”

Consider M , generally different, number-resolving de-
tectors attached to network output modes. The probabil-
ity of detecting m1, . . . ,mM photons in network output
modes 1, . . . ,M can be derived using photon-counting theory
[36,39–41]. The result is that the probability for all photons to
be detected at the network output in a configuration �m is given
by the expectation value of the following operator (see also
Appendix A in Ref. [27]):

( �m) = 1

μ( �m)

∑
�s

∫
d �ω

N∏
α=1

�lα (sα,ωα)

×
[

N∏
α=1

b
†
lα ,sα

(ωα)

]
|0〉〈0|

[
N∏

α=1

blα,sα
(ωα)

]
, (7)

where the indices l1, . . . ,lN comprise the sequence
1, . . . ,1,2, . . . ,2, . . . ,M, . . . ,M , with each index j appearing
mj times, and 0 � �l(s,ω) � 1 is the sensitivity function of the
detector attached to the lth output mode. The output probability
of a configuration �m reads

P ( �m|�n) = Tr{ρ(�n)( �m)}. (8)

The operator ( �m) in Eq. (8) is Hermitian and positive, but
such operators generally do not sum up to the identity operator
(more precisely, to the projector on the symmetric subspace
corresponding to N bosons). However, for efficient detectors,
when all output photons are detected, each ( �m) becomes
an element of the positive-operator valued measure realizing
the detection described above. In this case the probabilities in
Eq. (8) sum to 1 under the constraint | �m| = N .

The essence of our approach below is based on the fact
that the basis variables (k,s,ω) are divided into two parts:
(i) the spatial mode k, affected by a unitary network, and
(ii) the spectral part (functions of polarization and frequency),
not changed by the network and thus serving as a label for the
partial indistinguishability of photons (by the distinguisha-
bility here and below we mean distinguishability detectable
in an experiment in the setting described above). The Fock
space, natural for identical particles, is not the most appropriate
Hilbert space for treating partial indistinguishability, since it
involves the boson creation and annihilation operators indexed
by (k,s,ω), whereas only the spectral part defines the partial
indistinguishability of photons. Another problem with the
Fock space is that to treat partial indistinguishability it is better
to employ a basis used for distinguishable particles. Below
we employ such an auxiliary Hilbert space of N fictitious
distinguishable particles to use for description of the spectral
state of N photons. In this way a connection to the duality of
the which-path information vs the interference visibility can be
established: one can visualize the transitions through a unitary
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network as “paths” (there are N ! paths which can be labeled
by elements of the symmetric group SN ) whereas the spectral
states serve as some internal degrees of freedom which can, in
principle, be observed by the environment. Summation over
the path amplitudes is affected by the indistinguishability of the
spectral states of photons and also by the spectral sensitivities
of detectors. For identical detectors, two permutations of the
fictitious particles, one at input (σ1) and one at output (σ2),
represent a different set of paths with respect to σ1 = σ2 = I

(identity permutation) only if they are not equal (spectral
data are not changed by the network). But for different
detectors even if σ2 = σ1 the output probability is generally
different for different σ1. Hence, an (N ! × N !)-dimensional
partial indistinguishability matrix, indexed by elements of SN ,
describes all possible path interferences for general detectors,
whereas at most N ! parameters of such a matrix are different
for identical detectors.

Now let us give the output probability for an arbitrary input
Eq. (1). Due to the relation a

†
k,s(ω) =∑M

l=1 Uklb
†
l,s(ω) between

input and output modes, Eq. (8) is a nonnegative quadratic
form with complex arguments equal to products of N matrix
elements of a network matrix U , where the spectral part defines
the matrix of this quadratic form. We have from Eqs. (1), (7),
and (8) (the details can be found in Appendix A)

P ( �m|�n) = 1

μ( �m)μ(�n)

∑
σ1

∑
σ2

J (σ1,σ2)

×
N∏

α=1

U ∗
kσ1(α),lα

Ukσ2(α),lα , (9)

where the matrix J , the partial indistinguishability matrix,
indexed by two permutations σ1 and σ2 of N elements, reads

J (σ1,σ2) =
∑

�s

∫
d �ω

N∏
α=1

�lα (sα,ωα)

×G
({

sσ−1
1 (α),ωσ−1

1 (α)

}∣∣{sσ−1
2 (α),ωσ−1

2 (α)

})
. (10)

Here we note that for different detector sensitivities
�l1 , . . . ,�lN , the matrix elements J (σ1,σ2) also depend on the
chosen output modes, and thus a subscript �m must be attached
to them. However, for simplicity of notation we omit it. The
matrix J is Hermitian, J ∗(σ1,σ2) = J (σ2,σ1), and nonnegative
definite.

The J -matrix expansion of the output probability was first
introduced in Ref. [27] for N single photons in mixed spectral
states to study a model of a boson-sampling computer with
realistic sources. It is also equivalent to the rate matrix used
in the more recent Ref. [29]. Our J matrix generalizes an
old observation [1] that there is a deep relation between
indistinguishability of photons and fringe visibility at the
output of a beam splitter (see the details in Sec. II G 1). For
two photons in mixed spectral states, a similar approach based
on identifying a partial indistinguishability parameter was also
used in Ref. [37].

There is a continuous family of spectral states of photons
which correspond to the same J matrix (see also Sec. II D
below) and, therefore, to the same probability distribution
at the output of a given unitary network. Let us unite all
possible output probability distributions for all possible unitary

networks U (for all M) with the same J matrix in a single
class. The question is whether a unique J matrix corresponds
to each such class of output probability distributions. In other
words, are two different setups corresponding to two different
J matrices distinguishable by experiments with unitary linear
networks? On first sight, there seem to be more parameters
in a J matrix than one can recover from such a class of
output probability distributions. Indeed, the quadratic form of
Eq. (9) depends on N ! complex variables, but is evaluated at
Xσ ≡∏N

α=1 Ukσ (α),lα , i.e., involving at most N2 independent
elements of a network matrix U . Thus it seems that for
sufficiently large N the information contained in the J matrix
cannot be deduced from a given class of output probabilities
(which would require independently varying Xσ for different
σ ∈ SN ). However, note also that not every positive definite
Hermitian matrix can be a J matrix of a photonic input,
since it must be given according to Eq. (10) which imposes
some conditions, making the above reasoning not conclusive.
We will not discuss this question any further in this work,
relegating it to a future investigation.

The output probability of Eq. (9) can be also thought of as a
multinomial, of total power N2, in 2N2 matrix elements Ukα,lβ

and U ∗
kα,lβ

. But this approach, although reducing the number of
variables used, loses the attractive simplicity of our approach
with the J matrix with a clear physical interpretation, given
above, where Xσ serves as a “path amplitude” of fictitious
particles (this interpretation is employed in Sec. III C below
for formulation of the zero-probability conjecture).

C. Auxiliary Hilbert space for spectral states

To clarify the mathematical structure of the expressions in
Eqs. (9) and (10) let us introduce an auxiliary Hilbert space
H for description of the spectral state of photons (a similar
method was employed in Ref. [27]). Let us denote by |s,ω〉
a basis vector for expansion of the spectral state of a single
particle; then ∑

s

∫
dω|s,ω〉〈s,ω| = I. (11)

A spectral state of N particles belongs to the tensor product
space H⊗N

(the auxiliary particles are distinguishable ob-
jects). A basis vector in H⊗N

will be denoted by |�s, �ω〉 ≡
|s1,ω1〉 ⊗ · · · ⊗ |sN ,ωN 〉. With these definitions, a density
matrix describing the spectral state of photons is obtained by
simply replacing the Fock basis states in the expansion of the
input density matrix ρ(�n) of Eq. (1) by the respective tensor
product states, i.e.,

ρ̂ ≡
∑
�s ′

∑
�s

∫
d �ω′
∫

d �ωG(�s ′, �ω′|�s, �ω)|�s ′, �ω′〉〈�s, �ω|, (12)

the normalization condition of Eq. (2) ensures that ρ̂ has
trace equal to 1 [positivity of ρ̂ also follows from that of
ρ in Eq. (1)]. Permutation operations in the auxiliary space
H⊗N

play an essential role below. A permutation operator Pσ ,
corresponding to a permutation σ of N elements, acts in H⊗N

as follows:

Pσ |j1〉 ⊗ · · · ⊗ |jN 〉 ≡ |jσ−1(1)〉 ⊗ · · · ⊗ |jσ−1(N)〉 (13)

013844-4



PARTIAL INDISTINGUISHABILITY THEORY FOR . . . PHYSICAL REVIEW A 91, 013844 (2015)

[by this definition the vector from the kth Hilbert spaceH in the
tensor product goes to the σ (k)th space]. The set of operators
Pσ is a representation of the symmetric (permutation) group
SN , i.e., we have Pσ1Pσ2 = Pσ1σ2 (note that P †

σ = Pσ−1 ). Below
we will frequently refer to permutations π exchanging spectral
states of photons in each input mode between themselves; thus
we associate with the Hilbert space in position α in the tensor
product H⊗N an input mode index kα of naturally ordered set
(k1, . . . ,kN ), and therefore we can identify such permutations
with subgroup Sn1 ⊗ · · · ⊗ SnM

acting on H⊗N .
Due to the symmetry property of the G function of Eq. (1),

we have for any permutation π ∈ Sn1 ⊗ · · · ⊗ SnM

Pπ ρ̂ = ρ̂Pπ = ρ̂. (14)

For instance, in the case of diagonal representation, Eq. (3),
and in the fluctuating parameter case, Eq. (4) with respective
basis states |�̃(x)〉 being linearly independent (e.g., photons
in spectral states of a Gaussian shape with fluctuating arrival
times), the property (14) implies that the respective basis
functions �(x; �s, �ω) are invariant under permutations π ∈
Sn1 ⊗ · · · ⊗ SnM

of (sα,ωα).
Let us also introduce a detector operator which has a

diagonal representation in the above-defined auxiliary Hilbert
space, i.e.,

�̂l ≡
∑

�s

∫
d �ω �l(s,ω)|s,ω〉〈s,ω|. (15)

Then the matrix J defined in Eq. (10) assumes the following
compact form:

J (σ1,σ2) =
∑

�s

∫
d �ω 〈�s, �ω|�̂l1 ⊗ · · · ⊗ �̂lN P †

σ2
ρ̂Pσ1 |�s, �ω〉

= Tr
{
�̂l1 ⊗ · · · ⊗ �̂lN P †

σ2
ρ̂Pσ1

}
, (16)

where the trace is taken in H⊗N

. In its turn, the output
probability of Eq. (9) becomes

P ( �m|�n) = 1

μ( �m)μ(�n)
Tr
{
�̂l1 ⊗ · · · ⊗ �̂lNUN ρ̂ U†

N

}
, (17)

where we have introduced an operator UN acting in H⊗N

and
given by

UN ≡
∑

σ

[
N∏

α=1

Ukσ (α),lα

]
P †

σ . (18)

Although Eqs. (16)–(18) are an equivalent representation of
Eqs. (9) and (10), the former set of equations makes it clearer
how to analyze the results by application of the methods of
linear algebra in the Hilbert space.

By definition, in the case of a general (e.g., entangled) input,
the J matrix involves a trace in the tensor product space H⊗N .
However, one can easily show that in the case of a factorized
input (e.g., for independent photon sources),

ρ̂ =
N∏

α=1

⊗ρ̂α, (19)

or for an input that is a convex combination of such factorized
states the corresponding J matrix is expressed through some

traces only in H. Indeed, for an arbitrary permutation σ , by
using Eq. (13), we obtain the following identity between a
trace in H⊗N and that in H:

Tr

{
P †

σ

N∏
α=1

⊗Aα

}
=

q∏
j=1

Tr
{
Aαj1 · · ·Aαj�j

}
, (20)

where c1, . . . ,cq is the set of disjoint cycles in the decompo-
sition σ = c1 · · · cq , the cycle ci is assumed to be given by
αj1 → αj2 → · · · → αj�j

→ αj1, and �j is the cycle length.
Therefore, assuming the above cycle structure of σR ≡ σ2σ

−1
1 ,

for an input of Eq. (19) we obtain from Eq. (16)

J (σ1,σ2) =
q∏

j=1

Tr
{
�̂l

σ
−1
2 (αj1)

ρ̂αj1 · · · �̂l
σ
−1
2 (αj�j

)
ρ̂αj�j

}
. (21)

From Eq. (21) it is seen that for identical detectors and
input (19) J (σ1,σ2) depends only on the cycle decomposition
of the relative permutation σ2σ

−1
1 .

D. Completely indistinguishable and maximally distinguishable
photons with ideal detectors: J matrices

and corresponding inputs

First of all, one can easily verify that for maximally efficient
detectors, �l(s,ω) = 1, the output probabilities sum to 1, as
they should. Indeed, in this case Eqs. (16)–(18) give∑

| �m|=N

P ( �m|�n) =
∑

�l

μ( �m)

N !

1

μ( �m)μ(�n)
Tr{UNρ̂ U†

N }

= 1

N !μ(�n)

∑
σ1

∑
π

Tr
{
P †

σ1
P †

π ρ̂Pσ1

}
= Tr{ρ̂} = 1, (22)

where we have used an identity due to unitarity of the network
matrix U ,

N∏
α=1

M∑
lα=1

Ukσ2(α),lαU
∗
kσ1(α),lα

=
N∏

α=1

δkσ1(α),kσ2(α) =
∑
π

δσ2σ
−1
1 ,π ,

with π ∈ Sn1 ⊗ · · · ⊗ SnM
[thus

∑
π 1 = μ(�n)].

Equations (17) and (18) generalize the well-known
fact [42,43] that in the ideal case of completely indistin-
guishable photons and ideal detectors the bosonic output
probability in a unitary linear network is expressed through the
absolute value squared of the matrix permanent of an (N × N )-
dimensional matrix U [�n| �m], built from the network matrix by
selecting, with repetitions, rows (columns) corresponding to
the input �n (the output �m) of a considered transition, i.e.,

P (ind)( �m|�n) =
∣∣∑

σ

∏N
α=1 Ukσ (α),lα

∣∣2
μ( �m)μ(�n)

= |per(U [�n| �m])|2
μ( �m)μ(�n)

,

(23)

where the permanent of an(N × N )-dimensional matrix A is
defined as per(A) =∑σ

∏N
α=1 Aσ (α),α (for a discussion of

properties of the matrix permanents, see Ref. [44]). In this
case

J (ind)(σ1,σ2) = 1 (24)

013844-5



V. S. SHCHESNOVICH PHYSICAL REVIEW A 91, 013844 (2015)

for all permutations σ1 and σ2, i.e., the matrix J (ind) (24) is
pure (has rank 1)

J (ind) = v†v, v ≡ (1, . . . ,1), |�v| = N !, (25)

where |v| ≡∑j |vj |. It has only one nonzero eigenvalue equal
to N !. Now let us see what input states give the J matrix of
Eq. (24). Using that Tr{P †

σ2
ρ̂(ind)Pσ1} = Tr{Pσ1σ

−1
2

ρ̂(ind)} = 1
one can establish that in the diagonal representation following
from Eq. (3), i.e.,

ρ̂ =
∑

i

pi |�i〉〈�i |, |�i〉 =
∑

�s

∫
d �ω �i(�s, �ω)|�s, �ω〉,

(26)
applied to ρ̂(ind), the basis states are symmetric: Pσ |�i〉 = |�i〉
for any σ ∈ SN . A similar conclusion applies to an expansion
over a basis of nonorthogonal linearly independent states,
following from Eq. (4). The corresponding functions �i(�s, �ω)
and, hence, G(ind)(�s ′, �ω′|�s, �ω) are symmetric with respect to
any permutation of their arguments. We note that a similar
condition was first established in Ref. [7]. For completely
indistinguishable single photons each basis state |�i〉 in the
expansion of ρ̂(ind) is of the form

|�i〉 = ci

N !

∑
σ

N∏
α=1

⊗∣∣φ(i)
σ (α)

〉
, (27)

where the normalization coefficient is given by c2
i =

N !/per(G(i)) with G(i)
αβ = 〈φ(i)

α |φ(i)
β 〉. A similar observation

was first employed in Ref. [45] for engineering complete
indistinguishability by coherently overlapping two processes
for creation of a pair of photons.

Guided by the above, we will say that the photons
are maximally distinguishable if the respective matrix J is
maximally mixed as allowed by Eq. (14). From Eqs. (14)
and (16) we have for π1,2 ∈ Sn1 ⊗ · · · ⊗ SnM

J (π1σ1,π2σ2) = J (σ1,σ2); (28)

hence, the most mixed J reads

J (cl)(σ1,σ2) =
∑
π

δσ2,πσ1 = 1

μ(�n)

∑
π

∑
π ′

δπ ′σ2,πσ1 , (29)

where the second form manifests compliance with the required
symmetry of Eq. (28). Note that the matrix J (cl) has a block-
diagonal form

J (cl) =
∑

q

⊕
v†

qvq, vq ≡ (1, . . . ,1), |vq | = μ(�n), (30)

where there are N!
μ(�n) blocks (terms in the direct sum). The states

in the diagonal representation (26) of ρ̂(cl) satisfy the property

〈�i |Pσ |�i〉 = 0 (31)

for all permutations σ /∈ Sn1 ⊗ · · · ⊗ SnM
. The same property

applies to expansion as in Eq. (26) over a basis of nonorthogo-
nal but linearly independent states. In an equivalent form, this
condition can be formulated for the corresponding function
G(cl) as the following orthogonality condition:∑

�s

∫
d �ω G(cl)({sσ (α),ωσ (α)}|{sα,ωα}) = 0 (32)

for σ /∈ Sn1 ⊗ · · · ⊗ SnM
. A similar condition was first dis-

cussed in Ref. [7]. The output probability corresponding to the
J (cl) of Eq. (29) reads

P (cl)( �m|�n) =
∑

σ

∑
π

∏N
α=1 U ∗

kσ (α),lα
Ukπσ (α),lα

μ( �m)μ(�n)

=
∑

σ

∏N
α=1

∣∣Ukσ (α),lα

∣∣2
μ( �m)

, (33)

since for π ∈ Sn1 ⊗ · · · ⊗ SnM
we have Ukπ(α),lα = Ukα,lα .

Let us note the following feature. The trace of matrix J , i.e.,
Tr{J } =∑σ J (σ,σ ), for ideal detectors, coincides with the
number N ! of different paths. For completely indistinguishable
photons, Eq. (25), all paths interfere with equal weights
[see Eq. (23)], whereas when photons in different input
modes are maximally distinguishable, Eq. (30), there is no
path interference contribution to the output probability. The
output probability in the latter case has a natural classical
interpretation, if one assumes that classical particles are
classically indistinguishable, i.e., if their paths through the
network are not traced. In this case, Eq. (33) describes the
transition probability of N indistinguishable classical particles
through a Markovian network whose transition matrix element
Akl is defined by Akl = |Ukl|2.

E. Completely indistinguishable and maximally distinguishable
photons with realistic detectors

Let us see what changes occur in the above two extreme
cases when realistic detectors with generally different efficien-
cies �l(s,ω) are used. In this case the probability formula (17)
applies to a postselected case, when all input photons are
detected. The trace of the J matrix in this case is less than
N !. We have

J (σ,σ ) = Tr
{
�̂l1 ⊗ · · · ⊗ �̂lN P †

σ ρ̂Pσ

}
=
∑

�s

∫
d �ω G(�s, �ω|�s, �ω)

N∏
α=1

�lα (sσ (α),ωσ (α)). (34)

For completely indistinguishable photons J (σ,σ ) is inde-
pendent of σ since G is completely symmetric under SN .
Therefore, to reduce this case with realistic detectors to that
of ideal detectors, a single additional parameter, the detection
probability D,

D(ind) =
∑

�s

∫
d �ω G(ind)(�s, �ω|�s, �ω)

N∏
α=1

�lα (sα,ωα), (35)

independent of the considered network, must be defined. We
obtain a J matrix of the form [compare with Eq. (25)]

J (ind) = D(ind)v†v, v ≡ (1, . . . ,1), |v| = N !. (36)

The output probability is thus multiplied by D(ind).
For maximally distinguishable photons one can use the

diagonal form (26) and note that by definition in the maximally
distinguishable case J (σ1,σ2) �= 0 only for σ2σ

−1
1 ∈ Sn1 ⊗

· · · ⊗ SnM
. This occurs under a condition involving detector
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sensitivities [replacing Eq. (31)]

〈�i |
[

N∏
α=1

⊗�̂l
σ
−1
1 (α)

]
P

†
σ2σ

−1
1

|�i〉 = 0 (37)

for all permutations satisfying σ2σ
−1
1 /∈ Sn1 ⊗ · · · ⊗ SnM

and
lα of the considered transition. Equation (37), thanks to the
dependence also on σ1, places more conditions on the spectral
states of photons than Eq. (31) for ideal detectors. Moreover,
for general dissimilar detectors, the corresponding J (σ,σ )
depends on σ . In matrix form [compare with Eq. (30)]

J (cl) =
∑

τ

⊕
D(cl)(τ )v†

τ vτ , vτ ≡ (1, . . . ,1),

(38)
|vτ | = μ(�n),

where τ is the permutation of indices α belonging to different
input modes in the decomposition σ2σ

−1
1 = τπ with π ∈

Sn1 ⊗ · · · ⊗ SnM
and

D(cl)(τ ) =
∑

�s

∫
d �ω G(cl)(�s, �ω|�s, �ω)

N∏
α=1

�lα (sτ (α),ωτ (α)). (39)

The above two examples imply that one has to be careful
in attributing a nearly zero output probability to quantum
interference (for nonzero probability of a single-particle
transition), since it may well happen that the zero probability
is due to some generalization of the above-defined detection
factors J (σ,σ )  1, present in the maximally distinguishable
(classical) case as well. A specific case of Gaussian-shaped
single photons with different arrival times is considered in
Appendix C. For arbitrary detectors and arbitrary input Eq. (1)
we introduce a reduced J matrix in Sec. II G below.

F. Output probability in terms of the matrix permanents

Let us establish the form of output probability in the general
case of arbitrary input of Eq. (1). We employ the diagonal
representation (26). The output probability Eq. (17) can also
be cast as

P ( �m|�n) = 1

μ( �m)μ(�n)

∑
i

pi〈�(i)|�(i)〉, (40)

where we have introduced |�(i)〉 ∈ H⊗N as follows:

|�(i)〉 ≡
∑

σ

[
N∏

α=1

⊗Ukσ (α),lα

√
�̂lα

]
P †

σ |�i〉. (41)

Let us use an orthogonal basis |j 〉 in the Hilbert space H and
expand

|�i〉 =
∑

�j
C

(i)
�j | �j〉, (42)

where | �j〉 = |j1〉 ⊗ · · · ⊗ |jN 〉 ∈ H⊗N . From Eqs. (41)
and (42) we obtain

〈 �j |�(i)〉 =
∑

�j ′

C
(i)
�j ′

∑
σ

N∏
α=1

Ukσ (α),lα 〈jα|
√

�̂lα |j ′
σ (α)〉

=
∑

�j ′

C
(i)
�j ′ per[U [�n| �m] · B( �j, �j ′)], (43)

Here (and throughout the text) the central dot in a product
of two matrices denotes the Hadamard (entrywise) product,
in this case of the matrix U [�n| �m] (built, as described above,
from the network matrix U ) and the matrix B( �j, �j ′) defined as
follows:

Bβ,α( �j, �j ′) ≡ 〈jα|
√

�̂lα |j ′
β〉. (44)

Using Eq. (43) in Eq. (40) we obtain the result

P ( �m|�n) = 1

μ( �m)μ(�n)

∑
i

pi

∑
�j

∣∣∣∣∣∣
∑

�j ′

C
(i)
�j ′ per[V ( �j, �j ′)]

∣∣∣∣∣∣
2

(45)

with V ( �j, �j ′) ≡ U [�n| �m] · B( �j, �j ′).
One can use any basis of tensor product states for expansion

in Eq. (42); for instance, in the standard spectral basis |�s, �ω〉
we have

P ( �m|�n) = 1

μ( �m)μ(�n)

∑
i

pi

∑
�s

∫
d �ω

×
∣∣∣∣∣
∑
�s ′

∫
d �ω′�i(�s ′, �ω′)per[V (�s, �ω,�s ′, �ω′)]

∣∣∣∣∣
2

, (46)

where V (�s, �ω,�s ′, �ω′) = U [�n| �m] · B(�s, �ω,�s ′, �ω′) with

Bβ,α(�s, �ω,�s ′, �ω′) ≡ δs ′
β ,sα

δ(ω′
β − ωα)

[
�lα (sα,ωα)

]1/2
. (47)

For example, Eq. (46) simplifies to Eq. (33) for ideal detectors
if, using the definition of the B matrix (47), one first integrates
(sums) over �ω (�s) in Eq. (46) by using the orthogonality con-
dition (31), i.e.,

∑
�s
∫

d �ω�i
∗(�s , �ω)�i({sσ (α),ωσ (α)}) = δσ,π

where π ∈ Sn1 ⊗ · · · ⊗ SnM
. The result is nothing but the

J -matrix representation (9) with J of Eq. (29) which can be
evaluated further according to the calculation of Sec. II D; see
Eqs. (29) and (33).

One final observation is in order. In Eq. (45) or (46) the
squared absolute value is taken of a coherent sum of the matrix
permanents. In the case of single photons from independent
sources, i.e., when the input density matrix is given by Eq. (19)
with each ρ̂α being a density matrix in H, one can also express
the output probability as a sum (or integral) over the absolute
values squared of the matrix permanents by using a different
matrix for the spectral data in the Hadamard product (see
Secs. III A and III B below).

G. J-matrix-based measure of the quantum
coherence of photons

We have found above the form of the J matrix in the
extreme cases of completely indistinguishable and maximally
distinguishable photons for arbitrary detectors. Taking into
account these results, it is suggestive to look for a J -matrix-
based measure of quantum coherence of a multiphoton input
for a given set of detectors. Note that quantum coherence of
photon paths is reflected in the J matrix in a way very similar
as in the usual density matrix of a quantum system (with the
exception of the normalization). Using this observation, below
we propose to use the purity as a measure of coherence for
photons, which generalizes Mandel’s parameter [1] for N > 2.
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This measure is also a measure of partial indistinguishability,
as it is in Mandel’s case of two photons. We consider an
arbitrary M-mode network given by some unitary matrix U .

1. Mandel’s degree of indistinguishability for two photons

To begin with, let us first consider the two-photon case
studied in Ref. [1] (and after that also in Ref. [37]) where
it was found that a single parameter is both a degree of
indistinguishability and a degree of quantum coherence (how
the degree of indistinguishability depends on different pa-
rameters in spectral states of photons was recently studied in
Ref. [46]). For two single photons in spectral states ρ̂1 and ρ̂2

at input modes k1 �= k2 we have only two permutations σ = I

(trivial) and σ = T (transposition of two photons). From
Eq. (16), by using the properties Pt �̂l1 ⊗ �̂l2Pt = �̂l2 ⊗ �̂l1

and Tr(A ⊗ BPt ) = Tr(AB) (where the latter trace is in H,
whereas the former is in H ⊗ H), we obtain

J (I,I ) = Tr
(
�̂l1 ρ̂1

)
Tr
(
�̂l2 ρ̂2

)
,

J (T ,T ) = Tr
(
�̂l2 ρ̂1

)
Tr
(
�̂l1 ρ̂2

)
, (48)

J (T ,I ) = Tr
(
�̂l1 ρ̂1�̂l2 ρ̂2

) = J ∗(I,T ).

Detectors reduce the total probability of detection. Let us first
try to distinguish this effect of detectors from their influence on
the quantum coherence of photons. By introducing a diagonal
matrix D(σ1,σ2) = δσ1,σ2J (σ1,σ1) let us define a reduced Ĵ

matrix as follows:

Ĵ ≡ D−1/2JD−1/2 =
(

1 V∗
V 1

)
, (49)

where

V ≡ J (T ,I )√
J (I,I )J (T ,T )

. (50)

Now, it is easy to see that V is exactly Mandel’s indis-
tinguishability parameter [1], whose absolute value gives
the strength of coherence for two photons. Indeed, if both
photons are detected, then the defined Ĵ matrix describes
their indistinguishability. It has the correct trace and, since the
original matrix J is Hermitian and positive definite, |V| � 1.
Following [1] we expand (setting V = |V|eiθ )

Ĵ = PIDJID + PDdiag(1,1), JID =
(

1 e−iθ

eiθ 1

)
, (51)

where JID is a J matrix corresponding to completely indistin-
guishable photons and arbitrary detectors (if the detectors are
identical V is real) with probability PID = |V| and the identity
matrix corresponds to maximally distinguishable photons.
Moreover, from Eqs. (48) and (50) we obviously get V = 1
for ρ̂1 = ρ̂2 = |φ〉〈φ|, for arbitrary |φ〉.

2. Degree of indistinguishability for N � 2

Guided by the examples of Secs. II D, II E, and II G 1, we
propose to use a normalized purity 0 � P � 1 of the reduced Ĵ

matrix as a measure of partial indistinguishability of photons.
We define the normalized purity as

P ≡ N !

N ! − 1

[
Tr

{(
Ĵ

N !

)2}
− 1

N !

]
, (52)

since Tr{Ĵ } = N ! and the matrix Ĵ is (N ! × N !) dimensional.
In Mandel’s case Eq. (49) we obtain P = |V|2.

As in the two-photon case, for N photons we define a Ĵ

matrix by rescaling the J matrix by its diagonal part

Ĵ (σ1,σ2) = J (σ1,σ2)√
J (σ1,σ1)

√
J (σ2,σ2)

. (53)

The necessary property |Ĵ (σ1,σ2)| � 1 follows from positivity
of the J matrix by using the Sylvester criterion. The output
probability becomes

P ( �m|�n) = 1

μ( �m)μ(�n)
X†ĴX, (54)

where the column vector X has elements, indexed by σ ∈ SN ,
equal to the path amplitudes reduced by the detectors

Xσ =
√

J (σ,σ )
N∏

α=1

Ukσ (α),lα . (55)

This transformation can be easily understood by referring to
the classical case, where |Xσ |2 is the probability of a transition
of distinguishable classical particles in a Markovian network
with losses of particles due to imperfect detections.

Although, in general, there is no density matrix resulting in
the Ĵ matrix (53) by Eq. (16) with ideal detectors, it is possible
to sometimes consider the effect of general detectors in a way
mathematically equivalent to the case of ideal detectors by
adopting a generalized inner product in the auxiliary Hilbert
space H⊗N in the trace definition of the J matrix Eq. (16) with
the detector-dependent kernel

K̂�l ≡
N∏

α=1

⊗�̂lα , (56)

specific to a considered output configuration. For instance, this
approach is employed in discussion of the zero-probability
conjecture in Sec. III C below.

In Sec. III D we analytically compute the purity (52) for a
model of a realistic boson-sampling computer with partially
distinguishable single photons.

III. INPUT CONSISTING OF ONE PHOTON
OR VACUUM PER INPUT MODE

The case of input consisting of a photon or vacuum per
input mode can be analyzed in considerable detail in the
most general form, i.e., for arbitrary detector efficiencies and
photonic spectral states. Moreover, in this case a considerable
simplification of the resulting formulas is possible, which
elucidates the effect of partial indistinguishability of photons
on output probabilities. This case is also of much importance
in view of the recent proposal of the boson-sampling com-
puter [18].

A. Single photons in pure spectral states

Consider an input (12) corresponding to single photons in
pure spectral states. In this case the density matrix factorizes

ρ̂ = ρ̂1 ⊗ · · · ⊗ ρ̂N , ρ̂α = |φα〉〈φα|, (57)

013844-8



PARTIAL INDISTINGUISHABILITY THEORY FOR . . . PHYSICAL REVIEW A 91, 013844 (2015)

where

|φα〉 =
∑

s

∫
dω φα(s,ω)|s,ω〉. (58)

The partial indistinguishability matrix J (16) becomes

J (σ1,σ2) =
N∏

α=1

〈
φσ1(α)

∣∣�̂lα

∣∣φσ2(α)
〉

(59)

where we have used Eq. (13). One feature of Eq. (59) should
be noted: Since the detector operator �̂l enters between two
spectral states in Eq. (59), one can simply project it on the
subspace spanned by the spectral states of photons, i.e., use
instead the operator �̂′

l ≡ Pr�̂lPr, where a minimum rank
projector Pr is such that Pr|φα〉 = |φα〉 for each spectral state
|φα〉 at the network input. Below this is implicitly assumed.
This observation simply restates our physical intuition that
detectors do not increase the dimension of the linear subspace
required to describe spectral states of photons.

For identical detectors �̂l = �̂, from Sec. II [see Eq. (21)]
we know that a J matrix corresponding to the input of Eq. (57)
actually depends only on the cycle decomposition of the
relative permutation σR ≡ σ2σ

−1
1 . We get

J (σ1,σ2) =
q∏

j=1

�j∏
i=1

〈
φαj,i

∣∣�̂∣∣φαj,i+1

〉
, (60)

where the relative permutation is decomposed into disjoint
cycles, σR = c1 · · · cq , and it is assumed that cycle cj is αj,1 →
αj,2 → · · · → αj,�j

→ αj,1 (i.e., �j + 1 ≡ 1).
Let us give a reduced form of the output probability. From

Eqs. (41) and (45) we obtain (we omit the input argument �n,
nk � 1, for simplicity)

P ( �m) = 〈�|�〉
μ( �m)

, (61)

where

|�〉 ≡
∑

σ

N∏
α=1

⊗Ukσ (α),lα

√
�̂lα |φσ (α)〉. (62)

The components of |�〉 in the basis |�s, �ω〉 are given as the
matrix permanents of an (N × N )-dimensional matrix V (�s, �ω)
with elements

Vβ,α(�s, �ω) = Ukβ,lαφβ(sα,ωα)
[
�lα (sα,ωα)

]1/2
. (63)

Indeed, we have

〈�s, �ω|�〉 =
∑

σ

N∏
α=1

Ukσ (α),lα

[
�lα (sα,ωα)

]1/2〈sα,ωα|φσ (α)〉

= per[V (�s, �ω)]. (64)

The matrix V is a Hadamard product V (�s, �ω) = U [�n| �m] ·
S(�s, �ω) [instead of using the above B matrix (47), in the case
of input with at most one photon per mode we can incorporate
spectral states of photons into a new matrix S], where the
matrix S reads

Sβ,α(�s, �ω) ≡ φβ(sα,ωα)
[
�lα (sα,ωα)

]1/2
(65)

[column α of S depends on the spectral data (sα,ωα), where
each entry is equal to the spectral state of a photon multiplied
by the square root of the spectral sensitivity of a detector taken
at (sα,ωα)]. In terms of the matrix function V (�s, �ω) Eq. (61)
becomes

P ( �m) = 1

μ( �m)

∑
�s

∫
d �ω |per[V (�s, �ω)]|2. (66)

Instead of using the natural spectral basis (s,ω) for expan-
sion of the spectral state of a photon, one can employ any other
basis, which is judged more suitable for some reason. Indeed,
given N spectral states of photons (for arbitrary detectors)
one needs at most N basis states (but different basis states for
different setups). Let |1〉, . . . ,|r〉, with r � N , be the required
basis set. Denoting | �j 〉 = |j1〉 ⊗ · · · ⊗ |jN 〉 we get

〈 �j |� �m〉 =
∑

σ

N∏
α=1

Ukσ (α),lα 〈jα|
√

�̂lα |φσ (α)〉

= per{U [�n| �m] · S( �j )} ≡ per[V ( �j )], (67)

where V ( �j ) = U [�n| �m] · S( �j ) with the following matrix S( �j ):

Sβ,α( �j ) ≡ 〈jα|
√

�̂lα |φβ〉. (68)

In this case, the integral of Eq. (66) becomes a finite sum of at
most (N+r−1)!

N!(r−1)! terms (recall that r is the rank of a given set of
spectral states of N bosons),

P ( �m) = 1

μ( �m)

∑
�j

|per[V ( �j )]|2. (69)

One observation is in order. The matrix form to represent
spectral data Sβ,α , α,β = 1, . . . ,N , is visually attractive;
however, one should keep in mind that the probability is
given by a matrix permanent which does not change under
permutation of rows or columns of Ukβ,lα and Sβ,α , i.e., when
such a permutation is applied simultaneously to both matrices.
For instance, the permutation σ , applied to input states of S

and U (row indices), can be transferred to basis states of S and
output states in U (column indices). This is used below for
physical interpretation of the results.

From Eq. (66) or (69) it follows that the zero-output-
probability condition of Refs. [28,29], given as a linear
combination of the matrix permanent, the determinant, and a
generalization to nontrivial group characters, called the matrix
immanants, can be replaced by a condition involving only
permanents: per[V (�s, �ω)] = 0 or per[V ( �j )] = 0 (in the latter
case the basis is arbitrary).

When photons are completely indistinguishable, the detec-
tors being identical, the matrix S of Eq. (65) has all elements
equal to some function f (�s, �ω) and S( �j ) of Eq. (68) has all its
elements equal to 1 (we have r = 1 and set |1〉 = |φ〉). In this
case Eq. (66) or (69) reduce to a single matrix permanent of
Ukα,lβ . Single photons with slightly different spectral states or
slightly dissimilar detectors destroy this trivial factorization.
However, it turns out that zero output probability can occur
in some cases when the input contains, besides a subset
of completely indistinguishable, also only partially indistin-
guishable photons. One possibility is when N − 1 photons
are completely indistinguishable in some spectral state |ϕ1〉
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and the N th photon is in any other spectral state |ϕ2〉. The
output probability is zero for some configurations of input
and output when the network matrix is a Fourier matrix [32].
Understanding such cases is important for generalization of
the HOM effect [2] to multiphoton interference, which could
serve also for a conditional verification of the boson-sampling
computer [47]. We will study such cases in detail in Sec. III C,
where we formulate a conjecture about zero output probability.

B. Single photons in mixed spectral states

We have considered single photons with pure spectral
states; however, this is an unrealistic idealization. Let us
therefore generalize the above results to single photons in
arbitrary mixed spectral states. In this case the input state ρ̂ of
Eq. (19) consists of

ρ̂α =
∫

dx pα(x)|φα(x)〉〈φα(x)|, pα(x) � 0, (70)

where 〈s,ω|φα(x)〉 = φα(s,ω; x) and
∫

dx pα(x) = 1. One can
interpret the state (70) as given by a source with parameter
x fluctuating according to the probability pk(x) (in general,
no orthogonality condition on vectors is imposed). It is
trivial to extend Eq. (70) to several fluctuating parameters.
The corresponding partial indistinguishability matrix J is a
generalization of that in Eq. (59):

J (σ1,σ2) =
∫

dx1p1(x1) · · ·
∫

dxNpN (xN )

×
N∏

α=1

〈
φσ1(α)

(
xσ1(α)

)∣∣�̂lα

∣∣φσ2(α)
(
xσ2(α)

)〉
. (71)

Therefore, the corresponding output probability is an obvious
generalization of that in Eq. (61),

P ( �m) = 1

μ( �m)

∫
dx1p1(x1) · · ·

∫
dxNpN (xN )〈�(�x)|�(�x)〉,

(72)

with �x ≡ (x1, . . . ,xN ) and

|�(�x)〉 ≡
∑

σ

N∏
α=1

⊗Ukσ (α),lα

√
�̂lα |φσ (α)(xσ (α))〉. (73)

In this case the corresponding matrix V , the Hadamard product
of spectral data and network matrix, also depends on the
fluctuating parameters x1, . . . ,xN and an expression for the
output probability similar to that of Eq. (66) or (69), depending
on the chosen basis, involves also an averaging over these
fluctuating parameters. We note here that the above formulas
can be generalized in a similar way to account for detectors
with fluctuating spectral sensitivities.

C. Zero output probability

Now let us analyze the zero output probability which occurs
in some cases of only partially indistinguishable photons, when
the network matrix is a Fourier matrix [32]. The physical
meaning of a zero output probability with only partially
indistinguishable photons can be established by answering
the following question: Is there an exact cancellation of path
amplitudes of not completely indistinguishable photons? In
view of the connection with the duality of the which-way

information and the interference visibility, noted in Sec. II, one
would rule out such a possibility (recall that the exact HOM
dip [2] with two photons is used for asserting their complete
indistinguishability). Let us consider a few examples below.

1. N photons with each photon pair in linearly independent or
coinciding spectral states

With the aim of answering the above question, let us analyze
the examples of Ref. [32] in more detail using our approach
(we consider photons in pure spectral states and ideal detectors,
�l = 1, for a while). Let us first consider N − 1 photons in a
spectral state |ϕ1〉 and a photon in a different spectral state |ϕ2〉
(not necessarily orthogonal to |ϕ1〉). It is convenient to employ
the dual basis of nonorthogonal states 〈1|,〈2|, i.e., 〈j |ϕi〉 = δij .
One can easily verify that in the linear span of spectral states
of photons, the subspace of H,∑

j,l=1,2

|j 〉〈ϕj |ϕl〉〈l| = I ; (74)

thus an expansion similar to that of Eq. (69) will contain a
nondiagonal quadratic form with the Gram matrix 〈ϕj |ϕl〉.

We first employ the approach based on the S matrix (68)
and then show that the same result rather naturally follows
from the form of the J matrix (59). Setting the row order
for the S matrix of Eq. (68) by arranging the basis vectors as
(〈1|, . . . ,〈1|,〈2|) we get the result that S( �j ) matrices which
result in a nonzero contribution to the probability in Eq. (69)
correspond to �j being a permutation of (1, . . . ,1,2). Such an
S matrix reads

S( �j ) = M( �j )

⎛
⎜⎜⎝

1 . . . 1 0
...

...
...

1 . . . 1 0
0 . . . 0 1

⎞
⎟⎟⎠ = M( �j )(v†v ⊕ 1), (75)

where v = (1, . . . ,1), |v| = N − 1, whereas M( �j ) is the
matrix representation of a permutation τ induced by a choice
of basis vector 〈 �j | = [〈1| ⊗ · · · ⊗ 〈1| ⊗ 〈2|]Pτ , i.e., Mkl =
δl,τ (k). Note that permutations between indistinguishable pho-
tons do not induce any change in the matrix S; thus distinct
matrices Sα correspond to N − 1 transpositions τα = (α,N ),
α = 1, . . . ,N − 1, between each pair of photons in states
|ϕ1〉 and |ϕ2〉 and one for the identity permutation. Due to
the block-matrix structure of (v†v ⊕ 1), for each such matrix
Sα the matrix permanent per (U [�n| �m] · Sα) factorizes into a
product of two amplitudes, one corresponding to the N − 1
indistinguishable photons and an amplitude corresponding to
the N th photon. To get a clear physical interpretation of the
result, we will transfer permutations to column indices, i.e.,
to lα in U and to jα in S. Due to the nonorthogonality of the
dual basis the output probability is given as a quadratic form
of such matrix permanents. With these observations, setting
also | �ϕ〉 = [|ϕ1〉]⊗(N−1) ⊗ |ϕ2〉, we obtain [see Eq. (74)]

P ( �m) = 1

μ( �m)

N∑
α,β=1

〈 �ϕ|P †
(α,N)P(β,N)| �ϕ〉Y ∗

α Yβ, (76)

where Yα = UkN,lα per(U [�n − �1N | �m − �1lα ). Here we have de-
fined a vector �1j with only one nonzero entry, equal to 1,
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in a row (column) with index j [we subtract one particle in
a mode with index j from the corresponding input (output)
configuration]. Now, due to linear independence of the vectors
P(α,N)| �ϕ〉, for α = 1, . . . ,N , a zero output probability in
Eq. (76) occurs only if Yα = 0 for all α = 1, . . . ,N . This
condition (besides the trivial case of some Ukl = 0) obviously
does not involve interference of paths of distinguishable
photons (i.e., it does not depend on such interference). We
summarize: A zero output probability in the case described
by (76) is formulated as an exact cancellation of paths of only
completely indistinguishable photons. We note here that, in the
considered example, zero probability requires that N different
quantum amplitudes of indistinguishable photons are equal to
zero, which occurs with the Fourier matrices and special input
modes [11,32].

One can generalize the above result (on which path
interference is responsible for an exactly zero probability) to
Q � 2 groups of photons, where group q consists of photons in
the spectral state |ϕq〉, the spectral states |ϕ1〉, . . . ,|ϕQ〉 being
linearly independent. In this case the corresponding matrix
S( �j ), resulting in a nonzero output probability (see more details
in Appendix B), is a product of a permutation matrix M( �j )
and a matrix equal to a direct sum of matrices with each entry
being equal to 1:

S( �j ) = M( �j )

⎛
⎝ Q∑

q=1

⊕v†
qvq

⎞
⎠ , vq ≡ (1, . . . ,1), |vq | = cq,

(77)

where cq is the number of photons in spectral state |ϕq〉. A
notable feature of this case is that path interference of photons
within each group is maximally possible. Note that photons
in linear independent nonorthogonal pure spectral states can
be discriminated, but only with a nonzero probability of an
inconclusive result [48]. This agrees with path interference
in our case also between different groups. Only when the
spectral states of different groups become orthogonal does the
cross-group coherence disappear.

The above conclusions on path interference can be seen
directly from the J matrix (which is also unique for a given set
of spectral states in contrast to the basis-dependent S matrix).
Indeed, let us take the Q � 2 groups of photons as in the above
example. Since permutations of photons in each group between
themselves do not change the spectral states, the corresponding
J matrix (59) factorizes into a tensor product. Indeed, let
us decompose a permutation σ = τπ , where τ exchanges
photons between different groups (without exchanging the
order within each group) and π exchanges photons within
each group. We then have a property J (σ1,σ2) = JR(τ1,τ2),
which in matrix form reads [compare with Eqs. (28) and (30)]

J = JR ⊗
⎛
⎝ Q∑

q=1

⊕v†
qvq

⎞
⎠ , JR(τ1,τ2) = 〈�ϕ|Pτ1P

†
τ2
| �ϕ〉, (78)

where vq is defined in Eq. (77), | �ϕ〉 =∏Q
q=1

⊗(|ϕq〉⊗cq ), and the
reduced JR matrix accounts for interference between photons
from different groups [J (σ1,σ2) with the above property is
indeed a matrix tensor product: if C = A ⊗ B the double
index notation reads Cij,kl = AikBjl ; in our case σi = τiπi ,

i = 1,2, with τ1,2 being the indices of JR and π1,2 the
indices of

∑
q
⊕v

†
qvq]. Observing that summation over in-group

permutations π in the product
∏N

α=1 Ukπ(α),lα of Eq. (9) gives
the product of Q quantum amplitudes, one from each group of
photons, we can pass directly to the argument below Eq. (76)
now generalized to Q groups of photons.

2. General case: Zero-probability conjecture

Now let us consider a general (single photon per mode)
input and nonideal (generally dissimilar) detectors. It is
clear that nonideal detectors can result in effective linear
dependence of the spectral states of photons that are otherwise
linearly independent. Consider the above example of Q

groups of photons, with cq photons in the qth group having
a spectral state |ϕq〉. For nonideal detectors, if permuted
vectors Pτ [

∏Q
q=1

⊗(|ϕq〉⊗cq )] for different τ (permuting vectors
between the groups without changing the order within each
group) are still linearly independent now under the generalized
inner product in H⊗N with the kernel K̂�l ≡∏N

α=1
⊗�̂lα , the

above consideration still applies, with the same conclusion
about the zero output probability. The above condition is
equivalent to det(G(α)) �= 0 for all α = 1, . . . ,N , where G(α)

ij =
〈ϕi |�̂lα |ϕj 〉.

From the above consideration it is clear that although
general detectors modify the linear dependence of spectral
states, they still can be effectively accounted for (after scaling
out their effect on the detection probability, as in Sec. II G)
by considering another input case with different linear depen-
dence properties of the spectral states of photons. Can an output
probability for only partially indistinguishable photons vanish
exactly for more general linearly dependent spectral states?
In Ref. [28], where a three-photon coincidence probability
was analyzed, it was found that dissimilar detectors strongly
influence the coincidence probability for single photons: it
can be numerically close to zero for a nonzero difference of
photon arrival times, if the sensitivities of detectors are strongly
different. However, this cannot be an exact zero probability.
Indeed, in the example considered in Sec. III C 1 an exact
cancellation is possible (for a special network) and, by the
above change of kernel in an inner product, now is extended
to detector sensitivities resulting in a nonsingular kernel,
but the relevant condition is still formulated for completely
indistinguishable photons (e.g., does not depend on nonzero
time delays). In a more general case, when detectors result in
a singular kernel, this is still true. Let us analyze the example
of three photons with only two linearly independent spectral
states. Indeed, in this case we have |ϕ3〉 = c1|ϕ1〉 + c2|ϕ2〉 for
some c1,2 and linearly independent |ϕ1,2〉. We will employ the
S-matrix approach with the dual basis 〈j |, j = 1,2. In this
case there are two sets of S matrices contributing to output
probabilities. They correspond to two choices of three indices
(j1,j2,j3): (i) (1,2,1) and permutations τ ∈ {I,(1,2),(2,3)} of
this set; or (ii) (1,2,2) and permutations {I,(1,2),(1,3)} of this
set. The respective S matrices read [compare with Eq. (75)]

S(i) = M(τ )

⎛
⎝1 0 c1

0 1 c2

1 0 c1

⎞
⎠ , S(ii) = M(τ )

⎛
⎝1 0 c1

0 1 c2

0 1 c2

⎞
⎠.

(79)
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In these two cases an exactly zero output probability cor-
responds to a set of equations for the respective quantum
amplitudes. Dividing the amplitudes of case (i) of Eq. (79)
by ci , i = 1,2 (thus we assume ci �= 0 otherwise we are in the
already considered case) and setting Ûα,β ≡ Ukα,lβ we obtain
the two sets as follows. For τ = I,(1,2),(2,3) in Eq. (79) set
(i) reads

Û11Û22Û33 + Û13Û22Û31 = 0,

Û21Û12Û33 + Û23Û12Û31 = 0, (80)

Û11Û32Û23 + Û13Û32Û21 = 0,

whereas set (ii) for τ = I,(1,2),(1,3) in Eq. (79) reads

Û11Û22Û33 + Û11Û23Û32 = 0,

Û21Û12Û33 + Û21Û13Û32 = 0, (81)

Û31Û22Û13 + Û31Û23Û12 = 0.

(In each set the second and third equations are obtained
by transposition of row indices, as dictated by τ , of the
first equation.) There are six different terms in Eqs. (80)
and (81), each being a product of three different single-particle
amplitudes. Moreover Ûii �= 0 for i = 1,2,3; otherwise Û =
0. We simplify Eqs. (80) and (81) by introducing γij ≡ Ûij /Ûii

and dividing all equations by Û11Û22Û33. From the first
equation in each system we get

γ12γ23γ31 = 1, γ13γ21γ32 = 1, (82)

but the second and third equations in each system result in

γ12γ21 = −1, γ23γ32 = −1, γ13γ31 = −1. (83)

Equations (83) and (82) are obviously incompatible (as seen
by multiplying them in each case).

The above analysis reveals that in the examples involving
dissimilar detectors in Ref. [28] there is only a nearly zero
output probability, since it occurs for a certain set of nonzero
time delays, and thus cannot be a generalization of the HOM
effect [2]. What happens is that strongly dissimilar detectors
significantly decrease the probability of detection, as discussed
in Sec. II E. For reference, in Appendix C we also consider the
output probability for Gaussian spectral states of photons in
the (s,ω) basis. Generalizing, let us formulate the following
zero-probability conjecture for an arbitrary multiphoton input
�n with mixed spectral states of photons.

Zero probability. The condition for exactly zero output
probability of some output configuration is an exact can-
cellation of path amplitudes of completely indistinguishable
photons (generally, a subset of all input photons). Moreover, in
such cases the output probability remains equal to zero when
the degree of distinguishability (for instance, difference in the
arrival times) between partially indistinguishable photons is
changed.

By the above, zero output probability generally corresponds
to various continuously varying degrees of indistinguishability
for N > 2, as was first established in Ref. [32] and generalized
above to groups of completely indistinguishable photons.
In the case of two photons there is no possibility of exact
cancellation of the output amplitude if the photons are
not completely indistinguishable, which is a restatement of
the HOM effect [1,2]. In the case of three photons with

linearly dependent spectral states, with the photons being
only partially indistinguishable pairwise, an exactly zero
probability is not possible at all as shown above. We conjecture
the zero-probability result to hold for any input of the type
given in Eq. (1), general detectors, and an arbitrary unitary
network.

D. A model of a realistic boson-sampling device

Consider identical photon sources and identical detectors
(this case was first considered in Ref. [27]). This is a basic
model of input for an optical realization of the boson-
sampling computer [18] which requires single photons to be
as indistinguishable as possible. Single photons from realistic
sources [26], as well as realistic detectors, have fluctuating
parameters which cannot be compensated for (a postselection
is the only way to deal with such fluctuations at the expense of
increasing the number of runs of the boson-sampling device,
which decreases its advantage over classical computers). Note
that, in contrast, any bias between sources or between detectors
can be detected and thus corrected for, without resorting to
postselection in a boson-sampling experiment. Hence, we
assume that the main error of a realistic boson-sampling
device comes from fluctuations due to mixed spectral states
of photons and unstable detector sensitivities, neglecting any
bias error. We focus on the original proposal of Ref. [18],
although it is easy to generalize the results to boson sampling
with variable input [49] or to another proposal with time-bin
modes replacing spatial modes [50] (in this case spatial indices
are replaced with time-bin indices).

One can incorporate fluctuating sensitivities of unstable
detectors into spectral states of photons (see below) or,
alternatively, use the generalizer kernel for the inner product in
H⊗N and reduced Ĵ matrix as discussed in Sec. II G. Consider
the corresponding partial indistinguishability matrix J . From
Eq. (71) we obtain

J (σ1,σ2) =
∫

dx1p(x1) · · ·
∫

dxNp(xN )

×
N∏

α=1

〈
φ
(
xσ1(α)

)∣∣�̂∣∣φ(xσ2(α)
)〉
. (84)

The crucial point (see also Ref. [27]) is that the matrix
element J (σ1,σ2) of Eq. (84) actually depends only on the
cycle structure of the relative permutation σR ≡ σ2σ

−1
1 , where

the cycle structure is (C1, . . . ,CN ) with Ck being the number
of occurrences in the cycle decomposition of a cycle of
length k [51]. Indeed, due to identical detectors, J (σ1,σ2)
of Eq. (84) depends only on the cycle decomposition of
the relative permutation σR , as is shown in Sec. II [see
Eq. (21)]. The cycle decomposition factorizes the product∏N

α=1〈φ(xα)|�̂|φ(xσR(α))〉 into similar products for each cycle.
Thanks to the same probability function p(x) for all single
photons the indices of the integration variables xα are not
important; thus two cycles of the same length (number of ele-
ments) contribute the same factor. Each factor corresponding to
a k cycle of the relative permutation (equivalent to xj → xj+1,
for j = 1, . . . ,k with k + 1 = 1, by some relabeling of the
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integration variables) can be cast as follows:

∫
dx1p(x1) · · ·

∫
dxkp(xk)

k∏
j=1

〈φ(xj )|�̂|φ(xj+1)〉

= Tr

{(√
�̂ρ̂
√

�̂
)k
}

.

Therefore, we get the following formula for the partial
indistinguishability matrix:

J (σ1,σ2) =
N∏

k=1

g
Ck(σ2σ

−1
1 )

k , gk ≡ Tr

{(√
�̂ρ̂
√

�̂
)k
}

. (85)

It is easy to see from the definition that the parameters 0 �
gk � 1, describing the partial indistinguishability of single
photons from identical sources, satisfy the constraint gk+m �
gkgm which indicates that generally one will have decrease of
indistinguishability of photons with increase of the number of
sources (see also Fig. 1 below).

Equation (85) implies that detector sensitivities can be dealt
with by introducing an (unnormalized) spectral state of a
photon visible to a detector as follows:

�(s,ω; x,y) ≡ φ(s,ω; x)
√

�(s,ω; y), (86)

where y is some fluctuating parameter(s) of the detector. One
can easily see that in this case the corresponding reduced Ĵ

matrix is given as J matrix (84) with �̂ = I and the spectral
states of Eq. (86).

Let us consider in some detail the case of single photons
with a fixed polarization and random arrival times, when their
spectral function (augmented by detector sensitivities) is a
Gaussian,

�(ω; τ ) = (2π�ω2)−1/4 exp

(
iωτ − ω2

4�ω2

)
, (87)
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FIG. 1. (Color online) Purity P (52) of the partial indistinguisha-
bility matrix J vs the parameter γ . Here, N = 2 (thick solid line),
N = 4 (dashed line), N = 10 (dotted line), N = 20 (dash-dotted
line), and N = 30 (thin solid line).

as well as the distribution of their arrival times,

p(τ ) = 1√
2π�τ

exp

(
− τ 2

2�τ 2

)
. (88)

We have (see also Ref. [27]) gk = (1 − γ )k/2(1 − γ k)−1/2

where γ = 2η2/(1 + 2η2) with η = �ω�τ being the clas-
sicality parameter (the case of completely indistinguishable
photons corresponds to η = 0, whereas for maximally dis-
tinguishable photons η = ∞). The partial indistinguishability
matrix reads [27]

J (σ1,σ2) = (1 − γ )N/2
N∏

k=1

(1 − γ k)−Ck/2, (89)

where (C1, . . . ,CN ) is the cycle structure of σ2σ
−1
1 .

To measure how close is the matrix J of Eq. (89) to the
case of completely indistinguishable photons, let us study its
purity defined in Eq. (52) of Sec. II G 2. We have

Tr

{(
J

N !

)2}
= (1 − γ )N

N !

∑
σ

N∏
k=1

(1 − γ k)−Ck(σ )

= (1 − γ )NZN (1/(1 − γ ), . . . ,1/(1 − γ N )), (90)

where ZN = ZN (a1, . . . ,aN ), the sum of powers
∏

k=1 a
Ck

k

over all permutations divided by N !, is known as the cycle
index for which there is a generating function [51]

F (x) ≡
∑
N�0

ZN (a1, . . . ,aN )xN = exp

( ∞∑
k=1

akx
k

k

)
. (91)

In our case ak = 1/(1 − γ k) and we obtain
∞∑

k=1

xk

k(1 − γ k)
=

∞∑
l=0

∞∑
k=1

(γ lx)k

k
= −

∞∑
l=0

ln(1 − γ lx).

(92)

Using the following identity involving the q-Pochhammer
symbol (x; q)N ≡∏N−1

k=0 (1 − xqk):

∏
k�0

(1 − xγ k) =
∑
N�0

xN

(γ ; γ )N
,

from Eqs. (90)–(92) we obtain

Tr

{(
J

N !

)2}
= (1 − γ )N∏N

k=1(1 − γ k)
. (93)

Equation (93) is the law of purity; thus photon indistinguisha-
bility decreases with increase of the number of sources N

and/or the classicality parameter γ of each source. For small
γ  1 (i.e., η2  1) we obtain Tr{( J

N! )
2} ≈ 1 − 2(N − 1)η2.

The behavior of P with γ for various N is illustrated in Fig. 1.
Finally, small bias errors can be considered similarly as in
Ref. [52].

IV. CONCLUSION

We have developed a theory of partial indistinguishability
of photons for multiphoton experiments in multiport devices.
The key object is the partial indistinguishability matrix, a non-
negative definite Hermitian matrix built from spectral states
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of photons and detector sensitivities. Although only a fraction
of information in the partial indistinguishability matrix seems
to be derivable from the corresponding output probabilities,
using an expression for output probability as a quadratic form
and a clear physical interpretation of its arguments as path
amplitudes is quite appealing; moreover, it allows physical
insights. For instance, a connection with the complementarity
of the which-way information vs the interference visibility is
used in formulation of the zero-probability conjecture. The per-
mutation (symmetric) group is the key object of the theory; the
partial indistinguishability matrix is indexed by permutations
of photonic spectral states and has the dimension N ! × N !
for N photons. It is interesting to note that the advanced
features of the group, such as nontrivial group characters
and the matrix immanants related to them, do not play any
role in our approach. For instance, we have shown that the
output probability is always expressed in terms of the matrix
permanents only (the matrix permanent is related to the trivial
character of the permutation group). In special cases the partial
indistinguishability matrix reduces to much simpler forms,
amenable for even an analytical analysis. We have also found
that a possible generalization of Mandel’s indistinguishability
parameter for N > 2 photons is given by the purity of a reduced
partial indistinguishability matrix, where only the effect of
detectors on partial indistinguishability is retained, whereas
their effect on the total probability is scaled out. We have found
an analytical expression giving the purity measure of quantum
coherence for a model of a realistic boson-sampling computer.
Besides experiments with optical multiports, the theory can
be applied also to quantum walks with several photons
[53–55] where indistinguishability of photons is essential
for such multiparticle walks to show quantum correlations
of a many-boson system. The approach developed here was
already used for derivation of very interesting results in
Ref. [32].
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APPENDIX A: DERIVATION OF THE
PROBABILITY FORMULA

We will use the identity

〈0|
[

N∏
α=1

blα,sα
(ωα)

][
N∏

α=1

b
†
l′α,s ′

α
(ω′

α)

]
|0〉

=
∑

σ

N∏
α=1

δl′α,lσ (α)δs ′
α,sσ (α)δ(ω′

α − ωσ (α)), (A1)

where the summation is over all permutations σ of N elements.
Inserting Eqs. (1) and (7) into Eq. (8) we obtain

P ( �m|�n) = 1

μ( �m)μ(�n)

∑
�s

∑
�s ′

∑
�s ′′

∫
d �ω
∫

d �ω′
∫

d �ω′′

×
[

N∏
α=1

�lα (sα,ωα)

]
G(�s ′, �ω′|�s ′′, �ω′′)

×〈0|
[

N∏
α=1

akα,s ′′
α
(ω′′

α)

][
N∏

α=1

b
†
lα,sα

(ωα)

]
|0〉

× 〈0|
[

N∏
α=1

blα,sα
(ωα)

][
N∏

α=1

a
†
kα,s ′

α
(ω′

α)

]
|0〉.

(A2)

By using the network transformation a
†
k,s(ω) =∑M

l=1

Uklb
†
l,s(ω) and Eq. (A1) we get, for instance,

〈0|
[

N∏
α=1

akα,s ′′
α
(ω′′

α)

][
N∏

α=1

b
†
lα ,sα

(ωα)

]
|0〉

=
∑
�l′′

[
N∏

α=1

U ∗
kα,l′′α

]∑
σ

N∏
α=1

δl′′α,lσ (α)δs ′′
α,sσ (α)δ(ω′′

α − ωσ (α))

=
∑

σ

[
N∏

α=1

U ∗
kα,l

σ−1(α)

]
N∏

α=1

δs ′′
α ,sσ (α)δ(ω′′

α − ωσ (α)).

This identity and a similar relation for the second inner product
in Eq. (A2) transform Eq. (A2) to a resulting expression
equivalent to Eq. (9) of Sec. II. The final step is to transfer
permutations from the l indices to the k indices in the two
products of network matrix elements by using the following
general identity for any two permutations σ and τ :

∏
α

Aα,τσ (α) =
∏
α

Aσ−1(α),τ (α), (A3)

which easily follows from the independence of a product of
scalars of their order and the fact that a permutation is just a
bijection between two sets of indices.

APPENDIX B: S MATRICES NOT CONTRIBUTING
TO OUTPUT PROBABILITY

Consider Q � 2 groups of photons, where group q con-
sists of photons in a spectral state |ϕq〉, the spectral states
|ϕ1〉, . . . ,|ϕQ〉 being linearly independent. What choice of �j
in the matrix S( �j ) trivially results in zero output probability
in Eq. (69) (i.e., irrespective of U )? Let cq be the number of
photons in the spectral state |ϕq〉. If | �j〉 is a tensor product of
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vectors which do not represent a permutation of the dual basis
set |1〉 ⊗ · · · ⊗ |1〉 ⊗ |2〉 then the corresponding matrix S( �j )
consists of nonsquare (rectangular) blocks of entries equal
to 1, whereas the complementary blocks have zeros in each
entry. Then, irrespective of the network matrix U , the matrix
permanent of the Hadamard product of matrices S and U [�n| �m]
can be expanded by using the analog of the Laplace formula
for a permanent of an (N × N )-dimensional matrix [44]

per(A) =
∑

1�i1<···<ik�N

per(A[1, . . . ,k|i1, . . . ,ik])

× per(A[k + 1, . . . ,N |ik+1, . . . ,iN ]), (B1)

where (i1, . . . ,iN ) is a permutation of (1, . . . ,N) and we have
divided the matrix A into two square blocks of dimension k

and N − k. Now, by the structure of matrix S( �j ) for �j not
a permutation of the dual basis, the permanent of one of the
blocks of S in each term in a sum similar to that of Eq. (B1) is
always equal to zero, since there are sets of k rows (or columns)
of such a matrix S containing strictly fewer than k columns
(rows) which are nonzero.

APPENDIX C: PHOTONS IN PURE GAUSSIAN STATES

For strongly dissimilar detectors the output probabilities
approach zero (for some or even all output configurations), if
the product of detector sensitivities approaches zero, simply
due to the fact that there are also detection probabilities
in this case, i.e., given by the matrix D �m of Sec. II G.
Following Ref. [28], let us consider single photons of the same
polarization and with Gaussian spectral functions of center
frequencies 
α and arrival times tα . Thus

φα(ω) = (2πε�2
α

)−1/4
exp

{
itαω − (ω − 
α)2

4ε�2
α

}
, (C1)

where we have inserted ε > 0 to study the limit of monochro-
matic photons (see below). We have from Eq. (59) of Sec. III A

J (σ1,σ2) =
∫

d �ω
[

N∏
α=1

(
2πε�2

α

)−1/2
�lα (ωα)

]

× exp

{
−

N∑
α=1

∑
i=1,2

(ωα − 
σi (α))2

4ε�2
σi (α)

+ i

N∑
α=1

ωα(tσ2(α) − tσ1(α))

}
. (C2)

Let us consider the output probability for J (σ1,σ2) of Eq. (C2),
for arbitrary detector sensitivities. Indeed, the output proba-
bility in this case can be easily rewritten as follows (setting
ε = 1):

P ( �m) =
∫

d �ω
∣∣∣∣∣
∑

σ

Zσ ( �ω)

∣∣∣∣∣
2

,

(C3)

Zσ ( �ω) ≡
N∏

α=1

(
2π�2

α

)−1/4√
�lα (ωα)Xσ (α)(ωα),

where Xβ(ωα) = exp{iωαtβ − (ωα−
β )2

4�2
β

}Ukβ,lα . The sum in

Eq. (C3) is nothing but the matrix permanent; we have

P ( �m) =
∫

d �ω |per[V ( �ω)]|2,
(C4)

Vβ,α( �ω) ≡ (2π�2
α

)−1/4√
�lα (ωα)Xβ(ωα).

For P ( �m) of Eq. (C3) to be zero requires that
∑

σ Zσ ( �ω) =
0 at any point �ω. We note that the sum

∑
σ Zσ ( �ω) can

be rather close to zero, when the detectors have strongly
dissimilar sensitivities. Precisely this happens in the examples
of Ref. [28].

In the limit of monochromatic single photons, ε → 0, the
above expressions reduce to those of the two extreme cases
discussed in Sec. II E. In this limit one does not need to specify
detector sensitivities as only some point values will be needed.
Using the following expansion in powers of ε:

1√
2πε

exp

{
− 1

2ε2

∑
i=1,2

(ω − 
i)2

2�2
i

}

= δ
1,
2δ(ω − 
1)

√
2�1�2√

�2
1 + �2

2

+ O(ε), (C5)

we easily obtain from Eq. (C2)

J (σ1,σ2) = F (σ1,σ2)

[
N∏

α=1

δ
σ1(α),
σ2(α)

]

× exp

{
i

N∑
α=1


σ1(α)(tσ2(α) − tσ1(α))

}
+ O(ε),

(C6)

where we have set

F (σ1,σ2) ≡
N∏

α=1

�lα

(

σ1(α)

) [ 2�σ1(α)�σ2(α)

�2
σ1(α) + �2

σ2(α)

]1/2

. (C7)

It immediately follows that if the frequencies 
α of monochro-
matic single photons are pairwise different then the corre-
sponding partial indistinguishability matrix J (C6) is diagonal
(i.e., maximally mixed) J (σ1,σ2) = D(σ1)δσ1,σ2 with

D(σ1) ≡
N∏

α=1

�lα

(

σ1(α)

)
(C8)

[compare with Eq. (38) of Sec. II E]. In this case monochro-
matic photons behave in a way similar to classical particles.

In the opposite extreme case, when single photons have
equal frequencies, 
α = 
, assuming also the same spectral
width, �α = �, we get from Eq. (C6) J (σ1,σ2) = D, where
D comes from Eq. (C8) with 
α = 
 [compare with Eq. (36)
of Sec. II E]. The output probability in this case is the same as
for completely indistinguishable photons, i.e.,

P ( �m) = D

μ( �m)
|per(U [�n| �m])|2. (C9)
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