
PHYSICAL REVIEW A 91, 013843 (2015)

Quantum-network generation based on four-wave mixing
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We present a scheme to realize versatile quantum networks by cascading several four-wave mixing (FWM)
processes in warm rubidium vapors. FWM is an efficient χ (3) nonlinear process, already used as a resource for
multimode quantum state generation and which has been proved to be a promising candidate for applications
to quantum information processing. We analyze theoretically the multimode output of cascaded FWM systems,
derive its independent squeezed modes, and show how, with phase controlled homodyne detection and digital
postprocessing, they can be turned into a versatile source of continuous variable cluster states.
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I. INTRODUCTION

Generation of versatile quantum networks is one of the key
features towards efficient and scalable quantum information
processing. Recently, their continuous variable implementa-
tion has raised a lot of interests [1], in particular in optics where
practical preparation and measurement protocols do exist, both
at the theoretical and experimental level. The most promising
achievements have been demonstrated using independent
squeezed resources and a linear optical network [2,3]. More
recently, proposals have emerged where different degrees
of freedom of a single beam are used as the nodes of the
network, such as spatial modes [4,5], frequency modes [6,7],
or even temporal modes [8]. In all these realizations, a
given experimental setup corresponds to one quantum optical
network. However, the specific structure of a quantum network
depends on the mode basis on which it is interrogated; thus
changing the detection system allows for on-demand network
architecture. This has been applied in particular to ultrafast
optics [9] where a pulse shaped homodyne detection is used to
reveal any quantum network. In order to combine the flexibility
of this mode dependent property with the simultaneous
detection of all the modes, multipixel homodyne detection
was introduced [4], and it was shown that combined with
phase control and signal postprocessing it could be turned into
a versatile source for quantum information processing [10].

Here we propose a scheme based on four-wave mixing
(FWM) in warm rubidium vapors to generate efficiently flex-
ible quantum networks. A single FWM process can generate
strong intensity-correlated twin beams [11–13], which has
been proved to be a promising candidate in quantum informa-
tion processing and has many applications such as quantum
entangled imaging [14], realization of stopped light [15], and
high purity narrow-bandwidth single-photons generation [16].
Recently, it has been reported that by cascading two FWM
processes, tunable delay of EPR entangled states [17], low-
noise amplification of an entangled state [18], realization
of phase sensitive nonlinear interferometer [19,20], quantum
mutual information [21], and three quantum correlated beams
with stronger quantum correlations [22] can be realized
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experimentally. Cascaded FWM presents several advantages
toward standard multimode technics. Indeed, it is phase
insensitive and single pass (i.e., no cavity); hence it does not
require any locking either in an individual step, nor between
successive steps, making it easily scalable. Inspired by these
previous works we propose in the present work to cascade
several FWM processes in which way we can turn this system
into a controllable quantum network. We elaborate the theory
of the optical quantum networks generated via cascading two
and three FWM processes, calculating the covariance matrix
and the eigenmodes of the processes from Bloch-Messiah
decomposition [23]. We then study how cluster states can
be measured using phase controlled homodyne detection and
digital postprocessing.

II. SINGLE FWM PROCESS

A single FWM process in Rb vapor is shown in Fig. 1,
where an intense pump beam and a much weaker signal beam
are crossed in the center of the Rb vapor cell with a slight angle.
During the process, the signal beam is amplified and a beam
called idler beam is generated simultaneously. It propagates
at the same pump-signal angle on the other side of the pump
beam due to the phase-matching condition, having a frequency
slightly shifted as compared to the signal beam. The input-
output relation of the single FWM process is given by

âs1 = Gâs0 + gâ
†
v0, âi1 = gâ

†
s0 + Gâv0, (1)

where G is the amplitude gain in the FWM process and
G2 − g2 = 1, âs0 is the coherent input, and âv0 is the vacuum
input. âs1 is the generated signal beam and âi1 is the generated
idler beam; see [24] for details. Defining the amplitude and
phase quadrature operators X̂ = â + â† and P̂ = i(â† − â),
the input-output relation can be re-written as(

X̂s1

X̂i1

)
=

(
G g

g G

)(
X̂s0

X̂v0

)
, (2)

(
P̂s1

P̂i1

)
=

(
G −g

−g G

)(
P̂s0

P̂v0

)
. (3)

We immediately see from this set of equations that the system
does not couple X and P quadratures of the fields, which can
thus be treated independently. Furthermore, input beams are
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FIG. 1. (Color online) (a) Energy-level diagram for the FWM
process. For experimental implementation the pump beam is tuned
about 0.8 GHz to the blue of the D1 line of rubidium (5S1/2,F =
2 → 5P1/2, 795 nm) and the signal beam is red tuned about 3 GHz
to the pump beam. The two-photon detuning is about 4 MHz. (b) A
single FWM process. âs0 is the coherent input and âv0 is the vacuum
input. âs1 is the amplified signal beam and âi1 is the generated idler
beam.

vacuum or coherent states, and as the global transformation
is symplectic the system retains Gaussian statistic and can
thus be fully characterized by its covariance matrix [1]. In our
specific case, the covariance matrix is block diagonal:

C =
(

CXX 0

0 CPP

)
, (4)

where, by definition, CXX = 〈(X̂s1

X̂i1
)(X̂s1

X̂i1
)T 〉, and the equivalent

definition holds for CPP . For coherent and vacuum input,
the variances of input modes are normalized to one, and one
obtains

CXX =
(−1 + 2G2 2Gg

2Gg −1 + 2G2

)
(5)

and

CPP =
(−1 + 2G2 −2Gg

−2Gg −1 + 2G2

)
. (6)

CXX and CPP are respectively the amplitude and phase
quadrature parts of the covariance matrix of a single FWM
process. The covariance matrix contains all the correlations
between any two parties in the outputs. As the quantum
state is pure, it is possible to diagonalize the covariance
matrix to find the eigenmodes of the system, which are
two uncorrelated squeezed modes, each one being a given
linear combination of the output modes of the FWM process.
In this pure case CPP is simply the inverse of CXX, so
they share the same eigenmodes with inverse eigenvalues.
We find that the eigenvalues of the CXX matrix are ηa1 =
(G − g)2, ηb1 = (G + g)2 and the corresponding eigenmodes
are X̂a1 = 1√

2
(X̂s1 − X̂i1) and X̂b1 = 1√

2
(X̂s1 + X̂i1). The first

eigenmode is amplitude squeezed, while the second one is
phase squeezed, which is the well-known signature that, in a
single stage FWM process, signal and idler beams are EPR
correlated [17].

It is important to stress here that each eigenmode of the co-
variance matrix is squeezed independently and diagonalization
of the covariance matrix corresponds to a basis change from
the output basis of FWM to squeezing basis. Even if this basis
change can be difficult to be implemented experimentally, as
output beams have different optical frequencies, it nevertheless

remains a linear operation that reveals the underlying structure
of the output state of the FWM process.

III. CASCADED FWM PROCESSES

The above procedure can be readily applied to the more
interesting multimode case, when one considers the multiple
FWM processes, generating more than two output beams.
We study here three-mode asymmetrical and four-mode
symmetrical structures, whose input-output relation is derived
by successively applying the matrix corresponding to the
single FWM process of Eqs. (2) and (3).

A. Asymmetrical structure: Double FWM case

We first consider the case where two FWM processes are
cascaded. Without loss of generality, we take the idler beam
from the first FWM process as the seed for the second FWM
process, as described in Fig. 2. The corresponding unitary
transformation can be directly derived and written:⎛

⎝X̂s1

X̂i2

X̂s2

⎞
⎠ = UX3mode

⎛
⎝X̂s0

X̂v0

X̂v1

⎞
⎠ ,

⎛
⎝P̂s1

P̂i2

P̂s2

⎞
⎠ = UP3mode

⎛
⎝P̂s0

P̂v0

P̂v1

⎞
⎠ ,

(7)

where

UX3mode =
⎛
⎝ G1 g1 0

g1G2 G1G2 g2

g1g2 g2G1 G2

⎞
⎠ ,

UP3mode =
⎛
⎝ G1 −g1 0

−g1G2 G1G2 −g2

g1g2 −g2G1 G2

⎞
⎠ .

(8)

Using the same procedure as for Eqs. (5) and (6) we can get the
covariance matrix of the double stage FWM. It is still block
diagonal, and for coherent or vacuum input states each block
is given by

CX3mode = UX3modeU
T
X3mode

, (9)

CP3mode = UP3modeU
T
P3mode

. (10)

FIG. 2. (Color online) Double stage structure of FWM Rb sys-
tem. âs0 is the coherent input and âv0 is the vacuum input for the
first FWM process. âs1 is the amplified signal beam and âi1 is the
generated idler beam from the first FWM process. âv1 is the vacuum
input for the second FWM process. âs2 is the generated signal beam
and âi2 is the amplified idler beam from the second FWM process.
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FIG. 3. (Color online) Eigenmodes of the asymmetrical FWM
cascade, decomposed in the FWM output mode basis, for three
different gain values. For each graph, the bars represent the relative
weight of modes âs1, âi2, âs2, respectively. Below are given
the noise variances ηa3, ηb3, and ηc3 of the corresponding X̂

quadrature. The state being pure, we see that eigenmode 3 shares
the same squeezing as eigenmode 2 but on the phase quadrature.

We can now evaluate the eigenvalues and eigenmodes of these
matrices. For the X quadrature, the eigenvalues of UX3mode are

ηa3 = 1,

ηb3 = −1 + 2G2
1G

2
2 − 2

√
G2

1G
2
2

(−1 + G2
1G

2
2

)
,

ηc3 = −1 + 2G2
1G

2
2 + 2

√
G2

1G
2
2

(−1 + G2
1G

2
2

)
.

(11)

Remarkably, one sees that one of the eigenvalues is equal
to one, meaning that the system is composed of only two
squeezed modes and one vacuum mode. This property can
be extended if one generalizes this system to the n-cell case
in the similar asymmetrical way; there is always one vacuum
mode. More expected, we also note that squeezing increases
with gain, that eigenmode 2 and eigenmode 3 have the same
squeezing but on different quadratures, and that both gains
play an equivalent role and can be interchanged. The results
for three different values of the gain, in the specific case where
both processes share the same gain (G1 = G2) are shown in
Fig. 3. We also show the shapes of the eigenmodes, i.e., their
decomposition on the FWM output mode basis. The vacuum
eigenmode appears to be composed only of modes 1 and 3 (i.e.,
âs1 and âs2), and tends to mode 1 when gain goes to infinity.
This can be surprising, but it only reflects the fact that the noise
of this mode becomes negligible compared to the two others
when gain increases.

B. Symmetrical structure: Triple FWM case

We consider now the case of three cascaded FWM pro-
cesses, where signal and idler of the first cell are used to seed
each of the two other FWM processes, as shown in Fig. 4. For
simplicity, we assume that all three FWM processes have the
same gain value G. The evolution equations can be directly

FIG. 4. (Color online) Symmetrical structure of FWM Rb sys-
tem. âs0 is the coherent input and âv0 is the vacuum input for the first
FWM process. âs1 is the amplified signal beam and âi1 is the gene-
rated idler beam from the first FWM process. âv1 and âv2 are the
vacuum inputs for the second and third FWM processes. âs2 is the
generated signal beam and âi2 is the amplified idler beam from
the second FWM process. âs3 is the amplified signal beam and âi3 is
the generated idler beam from the third FWM process.

derived and lead to⎛
⎜⎜⎜⎝

X̂s3

X̂i2

X̂s2

X̂i3

⎞
⎟⎟⎟⎠ = UX4mode

⎛
⎜⎜⎜⎝

X̂s0

X̂v0

X̂v1

X̂v2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

P̂s3

P̂i2

P̂s2

P̂i3

⎞
⎟⎟⎟⎠ = UP4mode

⎛
⎜⎜⎜⎝

P̂s0

P̂v0

P̂v1

P̂v2

⎞
⎟⎟⎟⎠ ,

(12)

where

UX4mode =

⎛
⎜⎜⎜⎝

G2 gG 0 g

gG G2 g 0

g2 gG G 0

gG g2 0 G

⎞
⎟⎟⎟⎠ ,

UP4mode =

⎛
⎜⎜⎜⎝

G2 −gG 0 −g

−gG G2 −g 0

g2 −gG G 0

−gG g2 0 G

⎞
⎟⎟⎟⎠ .

(13)

FIG. 5. (Color online) Eigenmodes of the symmetrical four-
mode FWM cascade, decomposed in the FWM output modes basis,
for three different gain values. For each graph, the bars represent the
relative weight of modes âs3, âi2, âs2, âi3, respectively. Below are
given the noise variances of the corresponding X̂ quadrature.
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No analytic expression of the eigenvalues can be sim-
ply given here, but for instance when G = 1.2, we find
for the X quadrature the following levels of squeezing:
{−9 dB,−3.6 dB,3.6 dB,9 dB} (and opposite signs in the
P quadrature). This system is indeed composed of four
independent squeezed modes, with two different squeezing
values. Figure 5 represents, similar as in the previous case,
the mode shapes for three different values of the gain. As
gain goes to infinity, we see that they tend to a perfectly
symmetric decomposition, meaning that the output basis of
FWM becomes mostly entangled then.

IV. CLUSTER STATES

We have shown in the previous section that the output states
of different FWM processes were entangled states, whose
underlying mode structure could be exactly calculated. We
study here whether these outputs can be manipulated in order to
generate cluster states, which are states of interest for quantum
information processing.

A cluster state is a specific multimode entangled state,
defined through an adjacency matrix V [25]. Let us call X̂C

i and
P̂ C

i the quadrature operators for the mode i of a given cluster
state. The nullifier operators of the N -mode cluster states are
defined by

δ̂i =
⎛
⎝P̂ C

i −
∑

j

Vij · X̂C
j

⎞
⎠ . (14)

Theoretically, a state is considered a cluster state of the
adjacency matrix V if and only if the variance of each
nullifier approaches zero as the squeezing of the input modes
approaches infinity, assuming that the cluster is built from
a set of independently squeezed modes. Experimentally, one
compares the variance of each nullifier to the corresponding
standard quantum limit.

It turns out that the output states of the FWM processes,
as we have calculated in the previous sections, do not directly
satisfy the cluster state criteria. However, it is still possible
to derive cluster states when one can control the quadratures
detected on each output mode (i.e., setting the phase of the
homodyne detection local oscillator) and digitally postprocess
the data, as explained in [10]. To apply this theory to the present
case, we model the entangled states that one can produce with
FWM, homodyne detection, and postprocessing, following the
scheme of Fig. 6. We first introduce the annihilation operators
â

sqz
i corresponding to the eigenmodes of the modeled FWM

process (i.e., as displayed in Figs. 3 and 5, for instance). For
consistency with the usual cluster states definition, we choose
them to be squeezed on the P quadrature and thus introduce
the diagonal matrix Psqz to rotate the squeezing quadrature.

We now define the unitary matrix UFWM so that UFWM �̂asqz

corresponds to the annihilation operators of the output modes,
with the convention �̂asqz = (âsqz

1 ,â
sqz
2 , . . .)T . For a given FWM

process it can be written as

UFWM = U0Psqz, (15)

where U0 is the basis change matrix corresponding to the
eigendecomposition performed in previous sections. Indeed,

FIG. 6. (Color online) Quantum networks can be constructed by
applying phase controlled homodyne detections and postprocessing
the signals of the FWM outputs.

if for a given FWM process we call D = diag(η1,η2, . . .)
the diagonal matrix composed of the eigenvalues of the
unitary evolution, then by definition the covariance matrix
can be decomposed as CXnmodes = U0DUT

0 . Finally, the total
transformation can be written as

Utotal = OpostPhomoUFWM, (16)

where Phomo is a diagonal matrix that sets the quadrature
measured by each homodyne detection, and Opost is an
orthogonal matrix describing postprocessing by computer on
the photocurrents measured by the homodyne detections.

We now compare this transformation to a given cluster
state matrix UV . Traditionally, UV is a matrix that moves
from p squeezed modes to cluster state modes, with V the
cluster adjacency matrix [26]. Thus the system is equivalent
to a cluster state if one can find experimental parameters such
that

UV = OpostPhomoU0Psqz. (17)

In practice, it is possible to act on the gains of the different
FWM processes, the local oscillators phases Phomo, and the
postprocessing operations Opost to make the system achieve
the transformation UV of the clusters state. According to [10],
defining U ′

V = UV R† with R = U0Psqz, this problem has
a solution if and only if U

′T
V U

′
V is a diagonal matrix.

Equivalently, if and only if one can write

P 2
homo = U

′T
V U

′
V . (18)

In that case, one finds that Opost is given by

Opost = U ′
V P −1

homo. (19)

Using this formalism, it is thus possible to exploit the
entanglement naturally generated by the cascaded FWM
processes in order to generate cluster states. We will see
in the following how it is possible to optimize the different
experimental parameters to achieve some specific clusters.

This concept of postprocessed states is relevant within the
framework of measurement based quantum computing [27],
where a quantum operation can be performed via the measure-
ment of the nodes of a cluster state. Indeed, while in the current
paper we only demonstrate cluster state generation to assess
the flexibility of the source, it is possible to target a different
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objective matrix UV that also contains the measurement
quadratures of a given quantum operation. More details can be
found in [10] and [28]. In the following, we demonstrate how
the quantum state generated via cascaded FWM can be easily
reconfigured to target a given multimode entangled state UV

without any hardware change, via optimized postprocessing.

V. OPTIMIZATIONS AND SOLUTIONS

For a given cluster state specified by its adjacency ma-
trix V , one can directly check whether using proper phases
for homodyne detection (Phomo) and postprocessing with a
computer (Opost) it is possible to realize the cluster state UV .
Furthermore, one can demonstrate that if UV is a unitary
matrix that leads to a cluster defined by V , then for any
arbitrary orthogonal matrix O, UV O leads to the same cluster
state [28]. Thus it is possible to run a searching algorithm
to find an O matrix that allows us to satisfy our criteria of
a on-demand cluster generation. In practice, and as this is
numerical calculation, we never find the exact equality in
Eq. (18); thus we run a searching algorithm [29] leading to
the matrix which is the closest to a diagonal one, then keep
only the diagonal terms (renormalized to one) to define the
Phomo matrix, and finally calculate the values of the nullifiers.
This is the optimization procedure which is applied to find the
results below.

A. Three-mode cascaded FWM

We first start with the three-mode cascaded FWM process,
which we have demonstrated is composed of only two
squeezed modes and one vacuum mode. There are only two
possible cluster graphs in that case, and as an example we
study here only the possibility to generate a linear cluster
state. The corresponding UV matrix can be found in [3]. We
choose gains values G1 = G2 = 1.2 as they give realistic
experimental squeezing values. Performing the optimization
with an evolutionary algorithm, we find solutions for the
three-mode linear cluster state (matrix values given in the
Appendix). The normalized nullifiers are {0.22,0.16,0.94}, all
below the shot-noise limit, meaning that the three-mode linear
cluster state can be generated by the structure of the FWM. But
there is no feasible solution when G1 = G2 = 2, or for higher
values of the gain. This can be surprising, but is directly linked
to the mode structure at the output of the asymmetrical FWM,
where one eigenmode is vacuum, and is getting closer to the
first mode while gain increases, making it impossible to be
transferred into a cluster state by postprocessing. The nullifier
values are summarized in Table I.

TABLE I. (Color online) Normalized variances of the three-mode
linear cluster state nullifiers, for different values of the gain.

FWM gain Nullifier 1 Nullifier 2 Nullifier 3

G = 1.2 0.16 0.22 0.94
G = 1.5 0.06 0.11 0.93
G = 2 0.18 0.22 1.09

TABLE II. Normalized variances of the four-mode linear cluster
state nullifiers, for different values of the gain.

FWM gain Nullifier 1 Nullifier 2 Nullifier 3 Nullifier 4

G = 1.2 0.13 0.44 0.13 0.44
G = 1.5 0.04 0.25 0.04 0.25
G = 2 0.02 0.13 0.02 0.13

B. Four-mode cascaded FWM

In the case of four-mode symmetric cascaded FWM, there
are several possible graphs of cluster states. We first focus
here on the linear one, whose UV matrix can also be found
in [3]. Using our optimization strategy, we calculate the best
possible nullifiers for different values of the gain, as shown
in Table II. We see a completely different situation from the
three-mode case. As the state impinging on the detectors is
already an entangled state, it can be turned into a cluster state
with phase controlled homodyne detection and postprocessing
more efficiently. In particular, we see that the values of the
nullifiers follow roughly those of the squeezing values.

The same procedure can be applied to other cluster shapes,
for instance, we tested square and T shape clusters, which
showed a very different behavior: in these cases, nullifier value
evolution is not monotonous with G values, and there is an
optimal gain for each shape. Other shapes could be tested, or
other types of clusters such as weighted graph [30]. Hence
this system is readily applicable for quantum information
processing. One should stress, however, that in order to exhibit
cluster statistics it is necessary to precisely control the phase
of the local oscillator in each homodyne detection, which can
be accomplished for instance with digital locking electronics.
Otherwise, it is also possible to build in the optimization
routine within a certain range of possible homodyne detection
phase, and obtain solutions under these constraints.

VI. SUMMARY

In summary, we demonstrated that cascaded FWM is a
scalable system for multimode state generation thanks in
particular to its intrinsic phase insensitive character and high
nonlinearity. As an example, we theoretically proposed to
cascade two and three FWM processes to generate three-mode
and four-mode cluster states, respectively, and demonstrated
the versatility and reconfigurability. The three-mode cluster
state generation is sensitive to the gain values of the FWM
processes. We considered the specific situation where the two
FWM processes share the same gain value and found that when
the gain value is below a certain value, we can construct the
three-mode cluster state, but the intrinsic two mode structure
of the system prevents one from generating good clusters.
Contrarily, in the four-mode case, we found that for a wide
range of gain values when the three FWM processes share
the same gain value, different graphs of four-mode cluster
states can be constructed. Thus we expect that by cascading
more FWM processes, multimode cluster states with different
graphs can be constructed and this scheme for realizing
versatile quantum networks promises potential applications
in quantum information processing.
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APPENDIX: CLUSTER MATRICES

Here is the solution for the three-mode linear cluster, with G = 1.2:

Phomo3-lin =
⎛
⎝0.52 − 0.86i 0 0

0 0.61 − 0.79i 0
0 0 0.93 + 0.36i

⎞
⎠ , (A1)

Opost3-lin =
⎛
⎝0.97 −0.12 0.23

0 −0.88 −0.48
0.26 0.46 −0.85

⎞
⎠ . (A2)

The feasible cluster matrix is ⎛
⎝ 0.21 0.67 + 0.30i 0.41 − 0.49i

−0.58i 0.30 + 0.49i −0.49 + 0.30i

−0.79 −0.18 + 0.30i −0.11 − 0.49i

⎞
⎠ . (A3)

For the four-mode linear cluster, we find the line shape. The Phomo4-lin is⎛
⎜⎝

0.34 − 0.94i 0 0 0
0 0.99 + 0.14i 0 0
0 0 0.19 − 0.98i 0
0 0 0 0.78 − 0.62i

⎞
⎟⎠ . (A4)

The Opost4-lin is ⎛
⎜⎝

0.46 0.15 −0.86 0.17
0.20 −0.73 0.11 0.65
0.11 −0.65 −0.20 −0.73
0.86 0.17 0.46 −0.15

⎞
⎟⎠ (A5)

and the cluster matrix is ⎛
⎜⎝

−0.15 − 0.12i −0.72 − 0.12i −0.19 + 0.61i −0.16 − 0.04i

−0.12 + 0.05i −0.12 − 0.64i 0.61 − 0.09i −0.04 + 0.43i

0.20 + 0.60i 0.08 − 0.17i 0.10 + 0.39i 0.59 − 0.25i

0.71 + 0.20i −0.05 + 0.08i −0.22 + 0.10i −0.20 + 0.59i

⎞
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