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We theoretically investigate the propagation of bright spatial solitary waves in highly nonlocal media possessing
radial symmetry in a three-dimensional cylindrical geometry. Focusing on a thermal nonlinearity, modeled by
a Poisson equation, we show how the profile of the light-induced waveguide strongly depends on the extension
of the nonlinear medium in the propagation direction as compared to the beamwidth. We demonstrate that
self-trapped beams undergo oscillations in size, either periodically or aperiodically, depending on the input waist
and power. The—usually neglected—role of the longitudinal nonlocality as well as the detrimental effect of
absorptive losses are addressed.
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I. INTRODUCTION

Light-beam self-localization in nonlinear nonlocal materi-
als, that is, in the presence of a nonlinearly induced refractive
index well extending beyond the beam profile, has been widely
investigated in the last few years, both experimentally and
theoretically. A nonlocal response allows for the stabilization
of bright (2 + 1)D spatial solitons, at variance with the collapse
observed in local Kerr media (Townes soliton) [1–3]. In
fact, self-localization of light and, specifically, the soliton
profile and its stability, all strongly depend on the degree
of nonlocality [4]. Nonlocality also entails the observation
of phase-insensitive long-range interactions between solitons
[5,6], stable propagation of higher-order solitons [7–11],
thresholdless surface solitons [12], power-dependent steering
due to interaction with boundaries [13–15], and so on.
Moreover, modeling spatial solitons in the highly nonlocal
limit leads to the concept of accessible solitons [16], a useful
approximation in various instances [17–19]. Nonlocality in
optics also plays an important role in photon condensation
[20], dispersive shock waves [21–23], distributed coupling to
guided waves [24,25], gradient catastrophe [26], and Anderson
localization [27].

Several optical materials exhibit a highly nonlocal nonlin-
earity, often related to diffusive processes. Accessible solitons
were first reported in nematic liquid crystals [17], with
self-focusing provided by molecular reorientation [28] and
nonlocality stemming from intermolecular forces [29]. High
nonlocality in soliton propagation has also been exploited
in thermo-optic media (heat diffusion ruled by a Poisson
equation) [7,30,31], atomic vapors (molecular diffusion) [32],
photorefractive crystals [33], semiconductors [34] (carrier dif-
fusion), nanoparticle suspensions (thermophoresis) [35], silica
nanowebs (optomechanics) [36], and colloidal suspensions
(optical gradient forces) [37].

From a theoretical viewpoint, most highly nonlocal mate-
rials can be modeled by a diffusionlike equation describing
the light-induced refractive index distribution. With a few
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exceptions in reorientational liquid crystals [38–40], however,
longitudinal nonlocal effects are usually neglected, that is,
the Laplacian operator lacks the partial derivative along the
propagation direction. This is appropriate only for shape-
preserving beams and/or in the absence of power dissipation;
even without losses, in fact, the family of self-confined
waves includes breathing solitons subject to bounded periodic
oscillations of their width and peak intensity [16,17,41–43]. In
such cases, the refractive index gradient along the direction of
propagation affects the self-trapped wave packet. Additionally,
when losses are included, a longitudinal gradient arises even
when a shape-preserving soliton is launched at the input
[21,44]: appreciable effects are expected when the attenuation
distance is comparable with the Rayleigh length of the input
beam.

In this paper, we study light propagation in a highly
nonlocal, nonlinear medium in a three-dimensional (3D)
cylindrical geometry with circular symmetry. The nonlinear,
nonlocal refractive index well is accounted for by a Poisson
equation, which applies to actual highly nonlocal materials
and systems [19,45]. We first show that the nonlinear lens
induced by a light beam strongly depends on the ratio between
the input radius and the available propagation length. We then
discuss how the light-induced refractive index well affects
light propagation, with particular attention to the beamwidth.
We also address the roles of the longitudinal nonlocality and of
the unavoidable absorptive losses, two important aspects which
are usually ignored in the literature. The paper is organized
as follows. In Sec. II, we introduce the mathematical model
and its range of applicability. In Sec. III, we compute the
nonlinear perturbation, keeping fixed the optical excitation
and using a Green’s function formalism. In Sec. IV, we employ
beam propagation method (BPM) simulations to account for
the effect of the nonlinear refractive index well on beam
propagation. Finally, in Sec. V, we summarize the results and
pinpoint further developments.

II. MODEL

Let us consider a thermo-optic medium with heat transfer
dominated by conduction. We take a homogeneous cylinder
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of circular cross section, diameter 2a and length l in z, with a
radially symmetric input beam launched in z = 0 and centered
in r = 0 (r is the radial coordinate). Light propagation in the
paraxial, slowly varying envelope approximation and for small
nonlinear index changes is governed by
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where A is the beam envelope (normalized so that I = |A|2
is the intensity), k0 is the vacuum wave number, n0 is the
linear refractive index, α > 0 is the absorption coefficient, and
φ = n(r,z,P ) − n0 is the nonlinear (i.e., power-dependent)
refractive index well, with P (z) = 2π

∫ |A|2rdr the beam
power at each section z. The constant γ “turns on (off)” the
longitudinal nonlocality when set equal to 1 (0). Equation (2)
is solved together with the boundary conditions φ(r = a,z) =
φ(r,z = 0) = φ(r,z = l) = 0, valid irrespective of the power
P . Without loss of generality, in writing Eq. (2) we assumed
that the thermal conductivity and capacity are both equal to
1; moreover, we assumed that the thermo-optic coefficient is
unitary as well, i.e., φ = �T = T − T0, with T the local tem-
perature and T0 the environment (background) temperature.
In the general case, the thermal conductivity of the medium,
providing the proportionality factor between heat flux and
temperature gradient, would multiply the whole left-hand side
of Eq. (2); in a similar way, the right-hand side of Eq. (2)
should be multiplied by the thermal capacity of the material.
We note that the model consisting of Eqs. (1) and (2) is quite
general, as it can also describe, e.g., particle diffusion and weak
all-optical reorientation in liquid crystals [39]. Finally, this set
of equations can be normalized by scaling all of the spatial
dimensions (including the wavelength λ and the absorption
distance 1/α) with the medium extension l along z, provided
the beam power P is multiplied by l.

III. NONLINEAR WELL FOR A GIVEN INTENSITY
PROFILE

We first discuss how the nonlinear refractive index well
�n (corresponding to φ in our formalism) changes for a fixed
excitation I . For the sake of simplicity, in the following we
assume an infinitely extended cylinder, that is, a → ∞.

A. Green’s function

Writing φ in terms of its own Hankel transform, Eq. (2) for
γ = 1 becomes the ordinary differential equation

∂2φ̃

∂z2
− k2

r φ̃ + αĨ = 0, (3)

with φ̃(kr ,z) = ∫ ∞
0 rφ(r,z)J0(krr)dr the Hankel transform

of φ. A general description (magnitude, longitudinal and
transverse width) of the solutions of Eq. (2), in particular
their dependence on the boundary conditions across z, can be
obtained using a Green’s function. Setting I = δ(r − r ′)δ(z −
z′)/(2πr) [(r ′,z′) is the location of the impulsive ringlike
excitation], the corresponding distribution of the index of
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FIG. 1. (Color online) (a) Function φring vs z/l and in r = 0 for
excitations placed on the symmetry axis (i.e., r ′ = 0); the curves from
left to right correspond to z′ = 0.01l, 0.05l, 0.1l,0.2l, 0.5l, and 0.99l,
respectively. (b) Same as in (a), but for an infinite propagation length
l. In the plot, we set l = 1 for a direct comparison with (a).

refraction reads

φring(r,r ′,z,z′) = −α[Gring(r,r ′,z,z′) + Gring(r ′,r,z′,z)], (4)

having defined the auxiliary function

Gring(r,r ′,z,z′) = u0(z′ − z)u0(l − z′)
∫ ∞

0

J0(krr)J0(krr
′)

sinh (kr l)

× sinh [kr (z′ − l)] sinh(krz)dkr, (5)

with u0 the Heaviside step function. For l → ∞, Eq. (5) gives
Gring = −u0(z′ − z)

∫ ∞
0 J0(krr)J0(krr

′)e−kr z
′
sinh (krz) dkr .

The overall nonlinear perturbation of the refractive index
is given by the convolution of the intensity profile I with the
Green’s function (4): profile and size (that is, nonlocal response
[39]) can be determined from the spatial behavior of φring. The
function φring is plotted in Fig. 1 for the case r ′ = 0, i.e., a
ringlike excitation degenerating to a point source. At r = r ′,
the azimuthally averaged impulsive response φring is singular,
in agreement with the general properties of the Poisson’s
equation. Clearly, φring has a finite extent related to the nonlocal
response along z, with size approximately equal to 0.1l. Due
to this finite size along z, the system response depends on z′
and gets smaller and strongly asymmetric near the boundaries
[Fig. 1(a)]. The spatial size of the response along r is com-
parable to the nonlocality along z: the longitudinal boundary
conditions fix the transverse nonlocality as well, as l � a in
this case (see Ref. [46] for a similar case in a rectangular 2D
geometry). Finally, Fig. 1(b) graphs the system response in the
limit l → ∞: φring tends to the free space solution for z′ > 1/2
due to the absence of the output interface.

B. Gaussian excitation

The influence of nonlocality on light propagation is max-
imum in the highly nonlocal case: solitons acquire nearly
Gaussian profiles [16,19], with a varying width w along z

due to breathing and/or power losses. Thus we write

I = 2P0

πw2(z)
e
− 2r2

w2(z) e−αz = I0(z)e−αze
− 2r2

w2(z) , (6)

with P0 the initial power at z = 0. Then we substitute the ansatz
(6) into (2) in order to find the perturbation φ corresponding
to a given intensity distribution I . Using the Green’s function
φring, we find that

φ(r,z) =
∫ ∞

0
r ′dr ′

∫ l

0
I (r ′,z′)φring(r,r ′,z,z′)dz′. (7)
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FIG. 2. (Color online) Plot of φ computed from Eq. (8) normal-
ized to the absorption α vs r/ l and z/l for (a)–(c) w/l = 0.1 and
(d)–(f) w/l = 0.01; normalized absorption coefficients αl are (a),(d)
1 × 10−15; (b),(e) 1; and (c),(f) 10. Input power P0 is the same
regardless of the beam spot.

In Eq. (7), φ is computed [with Eq. (5)] by evaluating
a triple integral. The integration along r ′, expressed as
F (kr,w) = ∫ ∞

0 r ′I (r ′,z′)J0(krr
′)dr ′, can be performed first:

F is the Hankel transform of I and contains information
on the spatial extension of the beam [in fact, all terms
depending on the beam size w(z) are included in it]. When
I is radially Gaussian as in Eq. (6), we obtain F (kr ,z,w) =
(w2/4)I0(z) exp (−αz) exp

(−k2
r w

2/8
)
.

1. Constant width

The simplest case is when the beam size w(z) is constant
along z. The solution of Eq. (2) is

φ(r,z) = −α

∫ ∞

0

J0(krr)

sinh (kr l)
H (kr ,z)F (kr,z,w)dkr, (8)

where

H =
[
e−kr l

e(kr−α)l − e(kr−α)z

2(kr − α)
− ekr l

e−(kr+α)z − e−(kr+α)l

2(kr + α)

]

× sinh (krz) +
[
e(kr−α)z − 1

2(kr − α)
− 1 − e−(kr+α)z

2(kr + α)

]
× sinh [kr (z − l)]. (9)

The correctness of Eqs. (8) and (9) was verified by a direct
comparison with the numerical solutions of Eq. (2) obtained
via standard relaxation algorithms. We note that for large
kr , it is H/ sinh(kr l) ≈ − exp (−αz)/kr , thus ensuring the
convergence of the integral (8) for finite w.

Figure 2 shows a few examples of the nonlinear refractive
index well φ computed from Eq. (8). The most striking
difference from the local case γ = 0 is the role of input and
output interfaces on φ, with the formation of a transition
region between the boundary and the bulk; in fact, in the
approximation γ = 0, it is implicitly assumed that light
propagates in bulk, that is, without effects from the end faces
along the propagation direction z. For small absorption α, the
light-induced perturbation is almost symmetric with respect to
the transformation z → z − l, whereas increased losses lead to
a marked asymmetry between input and output, as is physically
apparent. As expected, φ also depends on the beamwidth w.

FIG. 3. (Color online) Haux in the plane (kr ,z/ l) for (a) αl =
1 × 10−15, (b) 1, and (c) 10. Sections of |Haux| vs kr for (d) αl = 1
and (e) αl = 10; the z coordinates are 0.11 (black solid lines,
corresponding to the widest curves) and 0.5 (magenta solid lines,
corresponding to the narrowest curves). Dashed lines in (d) and (e) are
the Hankel transform F (kr ,w) of I for w/l = 0.01 (blue dashes), 0.1
(green dashes), and 1 (red dashes), from the widest to the narrowest,
respectively.

For narrow beams, the transition between the interfaces and
the bulk region is much steeper than for wide beams: in fact,
for small w, the derivative along r is dominant with respect to
z, thus the longitudinal effects can be neglected over a wider
region.

The role of the transverse I profile on φ (i.e., on the
beamwidth w if we consider a Gaussian input) can be ad-
dressed by looking at Eq. (8) or at Fig. 3, where H/ sinh(klr) is
graphed. The auxiliary function Haux = H (kr ,z/ l)/ sinh(kr l)
vanishes on line kr = 0, reaching a peak for a finite kr , and then
monotonically decreases (Fig. 3). In z, the function Haux has a
sinelike behavior for small absorption, but shows a strong peak
close to the input interface for large losses [Figs. 3(a)–3(c)], in
full analogy with the behavior of φ in Fig. 2. It is noteworthy
that the width of Haux on the kr axis becomes larger as α

increases. The net effect on φ can be understood by examining
Figs. 3(d) and 3(e). For wide beams, the Hankel transform F

tends to a Dirac δ, so that the integral is sampled in kr = 0:
this implies a smaller perturbation φ (compare the two rows in
Fig. 2) and an effective cutoff for high spatial frequencies kr ,
thus inhibiting rapid variations of φ. Conversely, for narrow
beams, the Hankel transform F acts as a weight function with
a width inversely proportional to w. Thus, the narrower the
excitation I , the larger the cutoff frequency in kr is: φ can vary
on short spatial lengths, in agreement with Fig. 2.

The advantage of an integral solution such as Eq. (8)
with respect to a direct numerical solution of Eq. (2) is the
possibility of computing the perturbation φ and its derivative
in a given portion of space (in our case, the line r = 0) without
the need for a complete knowledge of φ. In fact, in the limit of
high nonlocality, the two quantities required to compute soliton
propagation are the perturbation peak φ0(z) = φ(r = 0,z) and
the Taylor-series coefficient φ2(z) = ∂2φ/∂r2(r = 0,z), with
the latter giving the strength of the nonlinear refractive index
well [16].

Having calculated the longitudinally nonlocal case γ = 1,
the next step is to obtain the nonlinear perturbation φ when
γ = 0, i.e., for a longitudinally local nonlinearity. In this
case, we need to fix a finite a to ensure a finite φ; we take
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FIG. 4. (Color online) (a) Normalized nonlinear perturbation φ

vs r/w in the local case γ = 0 and z = 0; each curve corresponds
to a different N , uniquely identified by the point where φ vanishes.
Plots of the normalized (b) φ0 and (c) φ2 vs z/l for γ = 1 when
w/l = 0.01 (blue solid lines) and when w/l = 0.1 (green dashed
lines); absorption coefficient αl is 1 × 10−15 (circles), 1 (triangles),
and 10 (diamonds). Black lines with squares refer to the local case for
the same set of αl. (d) Maximum normalized φ0 vs αl for w/l = 0.01,
0.1, 0.3, and 1 for γ = 1, from top to bottom curves, respectively.

a = Nw. Integrating Eq. (2) twice yields φ0 = αP0
2π

T (N )e−αz,

with T (N ) = ∫ N

0 dt(1 − e−2t2
)/t : the peak of the perturbation

depends on the boundary condition via the parameter N ,
tending to infinity for N that is arbitrarily large. Furthermore,
using the Taylor expansion around r = 0, we find [18]

φ2 = − αP0

2πw2
e−αz. (10)

Figure 4(a) shows the numerically computed φ along z = 0
for γ = 0: as anticipated, the peak of the nonlinear perturbation
φ0 is roughly proportional to log N . The inset compares the
full profile and the approximation with a parabolic nonlinear
index well: the accuracy worsens for r ≈ w, in agreement
with Ref. [45]. We then compare the approximate solution
for γ = 0 with the exact profile for γ = 1 above. The
effect of the longitudinal nonlocality on φ reduces as the
width w/l becomes smaller: in this regime, in fact, the
transverse derivative along r is dominant [Figs. 4(b) and 4(c)].
Importantly, the differences between the local and the nonlocal
cases are bigger for the amplitude perturbation φ0 than for φ2.
In agreement with the Green’s function in Fig. 1, the case
γ = 0 cannot describe the effects of input and output facets on
the overall distribution of φ, whereas it faithfully reproduces
the decay in z due to a nonzero α. Finally, Fig. 4(d) shows the
behavior of the normalized maximum nonlinear perturbation φ

versus normalized absorption: the smaller w, the stronger the
normalized nonlinear perturbation is, unlike the original model
proposed by Snyder and Mitchell which assumes a nonlinear
refractive index well depending on the beam power only [16].

2. Sinusoidal breathing

Next we consider the case of a breathing soliton, that is,
with width w varying along z. We assume for the width a
sinusoidal behavior of the form

w = wm + �w sin

(
2π
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FIG. 5. (Color online) �φ0 vs z/l for an averaged waist (a)–
(d) wm/l = 0.01 and (e),(f) wm/l = 0.1; the breathing period is
(a),(b),(e),(f) 
/l = 0.05 and (c),(d) 
/l = 0.1. On the left and
right columns, the normalized losses αl are (a),(c),(e) 1 × 10−15

and (b),(f),(d) 1, respectively. The normalized oscillation amplitude
�w/wm is 0.1 (blue solid lines), 0.2 (green dashed lines), and 0.5
(red dash-dotted lines), respectively.

where wm is the mean beamwidth, and �w and 
 are the
breathing oscillation amplitude and period, respectively. The
peak of the perturbation φ0 versus z characterizes the nonlinear
refractive index well written by a breathing soliton obeying
Eq. (11). In order to quantify the effects due to width
modulation, we define �φ0 as the relative change in φ0 with
respect to the case �w = 0 (lack of breathing):

�φ0(z,wm,�w,
) = φ0(z,wm,�w,
)

maxz [φ0(z,wm,�w = 0,
)]
, (12)

where maxz indicates the maximum computed along the z axis.
In the local case γ = 0, both φ0 and φ2 retain the same

form as in the case of a z-independent beam, as the nonlinear
perturbations φ computed in different sections are independent
from each other: in other words, the nonlinear perturbation
follows the beamwidth oscillation, despite how large the
amplitude �w or how short the period 
 are.

Figure 5 shows φ0 versus z, computed from Eq. (7) after
setting r = 0: generally, �φ0 mimics the sinusoidal behavior
of the beamwidth w, with a nonzero mean value owing to
the nonlinear relationship between w and I . Clearly, the
perturbation of φ depends on how w varies with z: a faster
modulation of w along z yields a slightly smaller perturbation
�φ0 due to the smoothing action of φring (compare first and
second rows in Fig. 5). Moreover, the relative modulation of
�φ0 is proportional to �w/wm with good accuracy (compare
first and third rows in Fig. 5): in fact, the intensity I is
proportional to w−2, thus |�I |/I ∝ |�w|/wm.

The quantity φ0 has a minor role in beam self-confinement:
it produces a power-dependent modulation of the effective
propagation constant of the self-trapped beam, with the latter
having relevance only when the solitary wave interferes with
a reference beam [47]. The parameter ruling the beamwidth
is φ2, quantifying the strength of the self-induced index well.
If the field intensity is given by Eq. (6), then Eqs. (5) and (7)
yield

φ2(z) = αP0

4π

∫ ∞

0

k2
r dkr

sinh (kr l)

∫ l

0
g(z,z′)e−αz′

e− k2
r w2

8 dz′, (13)
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FIG. 6. (Color online) φ2w
2
m/(αP0) vs z/l for (a),(b) �w/wm =

0.1, (c),(d) 0.2, and (e),(f) 0.5; left and right columns correspond to
(a),(c),(e) 
/l = 0.05 and (b),(d),(f) 
/l = 0.2, respectively. The
mean waist wm/l is 0.01 (blue solid lines), 0.1 (green dashed lines),
and 0.5 (red dash-dotted lines). Black curves with asterisks refer to
the local case given by Eq. (10). Here we set αl = 1 × 10−15.

where we set

g(z,z′) = sinh(krz) sinh
[
kr (z′ − l)

]
u0(z′ − z)

+ sinh(krz
′) sinh [kr (z − l)] u0(z − z′). (14)

The results computed from Eq. (13) are presented in
Fig. 6. First, due to the linearity of Eq. (2), the parameter
φ2 is inversely proportional to w2

m. Nonetheless, the shape
of φ along z strongly depends on the ratio wm/l. For small
wm/l, the periodic modulation of the nonlinear well is retained,
approaching the local limit γ = 0 (black curves with asterisks
in Fig. 6) as wm/l reduces; conversely, for large wm/l, the
oscillations in z are smoothed out. The size of φ2 increases
with �w/wm, similar to φ0; moreover, the spatial filtering
of the longitudinal oscillations of φ2 changes slightly with
�w/wm, with an appreciable difference between the local
case [Eq. (10)] and the case wm/l = 0.01, arising only for
�w/wm > 0.2. Finally, a direct comparison between the
first and second columns in Fig. 6 shows that φ2 is nearly
independent of the oscillation period 
.

IV. NONLINEAR LIGHT PROPAGATION

Up to now, we have calculated the nonlinear refractive
index well determining the intensity distribution I : next we
numerically solve Eq. (1) together with the constitutive equa-
tion (2). The numerical algorithm to compute the wave-packet
evolution is based on a finite-difference beam propagation
method. In the longitudinal case γ = 1, we first find the beam
evolution for a given distribution of the refractive index φ,
then we substitute the corresponding intensity I into Eq. (2);
this procedure is iterated until we achieve convergence. For
γ = 0, the algorithm is slightly different: the beam intensity
in a plane z = const is used to find the corresponding nonlinear
refractive index well through Eq. (2). The latter well is then
used to calculate the new field profile in the following section.
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FIG. 7. (Color online) Soliton profile |u|2 normalized to its
own peak vs normalized radial distance rk0 for (a) αP = 3 and
(b) αP = 30, respectively; (c) normalized soliton width wk0 and
(d) peak of the nonlinear perturbation φ0 vs normalized power αP .
In all panels, the red solid lines and black dashed lines correspond
to exact numerical solutions and predictions of the original Snyder-
Mitchell model, respectively (see Ref. [19] for a deeper insight).

A. Profile-invariant solitons

The first goal consists of determining the steady solitary-
wave solution which preserves its profile while propagating in
the z direction. Since losses prevent the propagation of truly
invariant wave packets, we initially set α = 0 in Eq. (1) to
calculate the shape-preserving solitary waves and, then, we
include attenuation and compute (numerically) their evolution
in the absorbing sample. Setting φ = v(r) and A = u(r)eiβz

(u can be taken real without loss of generality), Eqs. (1) and
(2) yield

βu = 1

2k0n0

1

r

∂

∂r

(
r
∂u

∂r

)
+ k0vu, (15)

αu2 = −1

r

∂

∂r

(
r
∂v

∂r

)
, (16)

as the equations for a steady solitary wave.
Fundamental (single-humped) solitary-wave solutions of

Eqs. (1) and (2) are plotted in Fig. 7. The solutions can
be normalized by introducing the scaled radial coordinate
R = k0r , the scaled propagation constant Neff = β/k0, and
the scaled power P = αP . The solutions of the system given
by Eqs. (1) and (2) strongly depend on the chosen radius r0

for the integration domain: here we take r0 = 50/k0 and limit
our considerations to normalized soliton widths W = wk0 of
a few units, so that the finite boundaries do not affect the
results [see Fig. 4(a)]. The soliton profiles across r are nearly
Gaussian, but their width is

√
2 larger than that stemming from

the Snyder-Mitchell model [19], with the latter providing the
condition αPw2k2

0 = 8π for the existence of shape-preserving
solitary waves [16]: this discrepancy is due to the singularity
(at the origin) of the response function used here, whereas
the Snyder-Mitchell model assumes it is continuous and
differentiable everywhere in space [19,45]. In summary, the
width ws of the Gaussian best fit to the soliton profile is
expressed by

ws(P ) =
√

16π

k2
0αP

. (17)
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FIG. 8. (Color online) The z evolution of width (top) and ampli-
tude (bottom) of the nonlinear potential φ for absorption coefficients
αl as marked. The solid lines refer to the longitudinally local case
γ = 0, whereas the dotted lines represent the full 3D nonlocal case.
Here, αP0 = 1.5 is kept constant and λ/l = 0.02.

Next we address the effect of absorption losses when
solitary waves are launched at the input z = 0. We expect that
shape variations, linked to the power decay along z, become
more relevant as α increases. Figure 8 shows the width and
amplitude of the nonlinear potential as obtained from BPM
simulations. The beam profile remains almost unaltered for
a longitudinally local nonlinearity (γ = 0) when αl is much
less than unity (negligible losses), with an associated nonlinear
potential which is uniform along the sample (solid lines). As
αl becomes comparable to 1, self-trapping fades out, allowing
light diffraction and exponential decay along z. The results
in the longitudinally nonlocal case γ = 1 (dashed lines) are
more intriguing: due to the boundary condition at the input
facet, the beam amplitude undergoes appreciable oscillations
along z even for small αl. In fact, the boundaries at z = 0 and
z = l break the longitudinal symmetry and inhibit the existence
of shape-preserving solitons, no matter how small the losses
are. The deviation from the longitudinally invariant solution
is more appreciable when the perturbed interface region is
longer than the Rayleigh distance of the input beam with
a solitary-wave profile, so that oscillations are expected to
increase with input power.

B. Breathing solitons

The most general self-localized waves are breathing soli-
tons, that is, spatially localized beams undergoing transverse
shape changes in propagation due to the interplay between
diffractive spreading and self-focusing [16]. In this section,
we will discuss their features.

1. Ehrenfest’s theorem for beamwidth

Using a straightforward generalization of Ehrenfest’s theo-
rem, a simple ordinary differential equation is found to govern
the beamwidth evolution due to the competition between

diffraction and self-focusing. For a parabolic index well, the
beamwidth obeys [48]

n0

2

d4w2

dz4
− 2φ2

d2w2

dz2
− 3

dφ2

dz

dw2

dz
− d2φ2

dz2
w2 = 0, (18)

where φ2 generally depends on z due to losses (α 	= 0) or
breathing.

When the changes in beamwidth are negligible and αl � 1,
according to Eq. (10) the variation of φ2 with z is negligible:
in this limit, Eq. (18) is linear in the unknown variable w2 and
its solution is

w2

w2
0

= 1 + w4
s − w4

0

2w4
0

[
1 − cos

(√
4|φ2(P0)|

n0
z

)]
, (19)

with φ2 computed for the soliton case, thus depending only on
the input power P0. In deriving Eq. (19), we set w(z = 0) = w0

and assumed dw2/dz = 0 at z = 0 (i.e., a flat phase profile at
the input). In this limit, φ2 is fixed by the input power and
takes the form φ2(P ) = −αP/(2πw2

s ) = −k2
0 (αP )2 /(32π2)

[see Eqs. (10) and (17)]. The breathing period is then 
 =
4
√

2n0π
2/(k0αP ).

When φ2 changes slowly with z due to losses, Eq. (19)
predicts adiabatic variations in both breathing amplitude
(determined by the ratio between w0 and ws , thus generally
nonmonotonic with z) and period 
 (monotonically increasing
with z).

When the derivatives of φ2 with respect to z cannot
be neglected (w0 appreciably differing from ws), we can
substitute Eq. (10)—valid away from the interfaces for narrow
beams with γ = 1 (see Fig. 6)—into Eq. (18), yielding

n0

2

d4w2

dz4
+ αP0e

−αz

2πw2

d2w2

dz2
− αP0e

−αz

2πw4

(
dw2

dz

)2

= 0. (20)

Equation (20) is highly nonlinear, in general with aperiodic
solutions. To this extent and for the sake of simplicity, we
neglect the last term in Eq. (20), i.e., we leave out very narrow
solitons. Therefore, Eq. (20) becomes harmonic (with respect
to the unknown d2w2/dz2), but with an oscillation period
proportional to the width w. Changes in beamwidth imply
variations in periodicity, in turn leading to a rather aperiodic
breathing.

2. Numerical simulations

Hereby we validate our predictions on breathing by using
the BPM. To verify how width oscillations depend on the
soliton radius, we assume negligibly small losses, i.e., αl � 1.
The input beam shape corresponds to a solitary wave for
a given power P �

0 , numerically computed from Eqs. (15)
and (16) and shown in Fig. 7. In order to study the width
oscillations, the input power P0 is set different from the value
P �

0 corresponding to a shape-preserving solitary wave. Unless
otherwise stated, we set w0 = ws(P �

0 ) and let ws(P0) vary
freely.

The dynamics obtained for γ = 0 and for γ = 1 is
summarized in Fig. 9. For input powers below P �

0 , the beam
radius oscillates quasiperiodically around a mean larger than
w0 as ws > w0. As P0 approaches P �

0 , the breathing is nearly
sinusoidal, in agreement with Eq. (19). If the power is further
increased, the breathing becomes aperiodic, consistent with
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FIG. 9. (Color online) Beamwidth vs z/l for powers P0 differing
from the soliton power P �

0 for (a) the local case [P0/P
�
0 equals 0.56

(blue line), 0.72 (cyan line), 1.21 (red line), 1.69 (yellow line), 4
(green line), and 9 (black line)] and (d) the nonlocal case [P0/P

�
0 is

0.56 (blue line), 0.72 (cyan line), 1.21 (red line), 1.69 (yellow line),
2.25 (green line), and 2.56 (black line)]; beam focusing increases
with P0 (top to bottom). Corresponding (b) oscillation period and
(c) oscillation amplitude for varying P0; symbols correspond to the
excitations in (a)–(d). Solid lines with � refer to the local case and
dashed lines with 
 refer to the nonlocal one. At high powers, in
the local case the sinusoidal behavior is lost, whereas in the nonlocal
case the solutions do not converge (not shown). Here, αl = 1 × 10−15,
P0 = 1.23 × 109, and λ/l = 0.02.

Eq. (20). As expected, the computed breathing period 


decreases with P −1
0 ; similarly, the oscillation amplitude AOSC

(difference between maximum and minimum width values)
tends to zero when the power approaches P �

0 , but increases
above and below P �

0 . Note that the curve is not symmetric
with respect to the soliton state as, for large powers, the beam
cannot shrink indefinitely due to diffraction, with the latter
assuming a dominant role for wavelength or subwavelength
beam sizes.

For input powers above 3P �
0 , the BPM for γ = 0 yields

a strongly aperiodic breathing, in agreement with Eq. (20).
It is noteworthy that the BPM solution is stable when input
noise is added. In the nonlocal case (γ = 1), for large powers
(P0 > 2.56P �

0 ) the code, based on an iterative scheme (and
thus introducing different numerical noise at each step), does
not converge; see Fig. 10. This can be ascribed to the highly
nonlinear character of Eq. (20) for small beamwidths w,
leading to chaotic dynamics. Chaotic dynamics can occur
in periodically modulated waveguides, even in the linear
regime [49], but in our case the longitudinal modulation is
due to nonlinear effects. This interpretation is corroborated
by the appearance of dips in the intensity profiles at r = 0,
pinpointing the simultaneous excitations of several modes of
the self-induced guide.

Next we focus on a more realistic excitation, a fundamental
Gaussian beam launched in z = 0 with a planar phase front,
varying both its initial waist w and power P0. Figure 11 graphs
the beamwidth versus z for various absorption coefficients

FIG. 10. (Color online) Beam evolution at r = 0 vs z/l at various
steps of the iteration for the nonlocal case discussed in Fig. 9.
Relaxation is achieved at low input powers (see results for P0/P

�
0 =

2.25), whereas the code does not converge for high P0 (see results for
P0/P

�
0 = 3.24, 9).

and a fixed P0. For small losses, the self-trapped beam is
quasiperiodic, in agreement with Refs. [16,18] and Fig. 9.
When the normalized loss reaches αl = 1, the beam widens
in z due to its power dropping. For αl = 10, the beam focuses
near the entrance facet due to the stronger self-focusing
associated with larger absorption. The position of the focus
markedly depends on the input waist, moving away from the
interface as the beams get wider. At the same time, the power
decays rapidly and the nonlinear effects vanish at z/l ≈ 0.2. At
the output facet, the beam is wider than in the linear limit due
to the initial self-focusing. In Fig. 11, the differences between
the local (γ = 0) and nonlocal (γ = 1) cases are negligible
due to the smallness of w/l, in agreement with Sec. III.
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FIG. 11. (Color online) Beamwidth vs z for a Gaussian input;
each panel corresponds to a different input waist, as marked.
The curves correspond to αP0 = 0.01 (αl = 1 × 10−15), αP0 =
0.03 (αl = 1), and αP0 = 0.12 (αl = 10), respectively (higher αP0

correspond to stronger focusing). Blue solid and red dash-dotted lines
refer to nonlocal and local cases, respectively. Gray dashed lines
represent linearly diffracting beams. Here, λ/l = 1 × 10−3.
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FIG. 12. (Color online) Beam evolution and corresponding index of refraction distribution for Gaussian inputs of width w/l = 0.005 in
local (first three columns) and nonlocal (last three columns) regimes, respectively, for various powers P0. Here, αl = 1 × 10−15 and λ/l = 0.02.

We now turn to small losses (αl = 1 × 10−15) in the limit
w/l � 1 where, according to Fig. 6, the solutions for γ = 0
and γ = 1 should be similar. To this extent, we simulate
the evolution of a Gaussian beam of width w/l = 0.005
with or without longitudinal nonlocality. Figure 12 shows the
computed intensity profiles and the corresponding index of
refraction distributions. As predicted by the Green’s function
approach, the longitudinal nonlocality does not appreciably
affect the propagation in the bulk of the sample. Nonetheless,
as predicted in Fig. 4, the longitudinally local case does
not correctly reproduce the nonlinear refractive index well
near the input and output boundaries. Thus, for instance, if
long-range soliton interaction is under investigation, the local
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FIG. 13. (Color online) (a) Width evolution with breathing and
(b) index of refraction distribution at the maximum beam amplitude
for a Gaussian input and αP0 = 0.01, 0.012, 0.023, and 0.036 [from
top to bottom in (a), in the reversed order in (b)], respectively. Solid
lines correspond to the longitudinally nonlocal case and dash-dotted
lines correspond to the local one, respectively. The dashed gray line
in (a) corresponds to linear diffraction. Here, αl = 1 × 10−15 and
λ/l = 1 × 10−3.

model γ = 0 is expected to overestimate the mutual attraction
between solitons [6,50].

The beam evolution is illustrated in Fig. 13. Similar to
the results in Fig. 9, the oscillation period gets smaller as
the power increases, whereas the oscillation amplitude is
proportional to the mismatch between the input width w and
the soliton width ws(P0) for a given power P0. We also note
that the beam initially shrinks when w > ws (self-focusing
overtaking diffraction), whereas the opposite occurs when
w < ws (diffraction dominant on the nonlinear lens) [16,18].

V. CONCLUSIONS

We investigated the full 3D evolution of highly nonlocal
solitons possessing radial symmetry based on a nonlinearity
governed by a Poisson equation. We addressed in detail
the role played by the longitudinally nonlocal response,
usually neglected in the literature, and the dependence of the
nonlinear perturbation on the cell extension in the propagation
direction. We detailed the role of longitudinal (nonlocality
and attenuation) effects on the beam profile and evolution,
including periodic and aperiodic solitary-wave breathing and
power attenuation. At variance with the simple case of acces-
sible solitons [16] which oscillate sinusoidally in width and
amplitude, nonexact solitary beams launched at the input tend
to breathe aperiodically for input parameters away from the
soliton existence curve [18]. Such behavior can be qualitatively
explained using Ehrenfest’s theorem and a quadratic nonlinear
index well.

We showed that when the nonlinearity is of thermal origin,
a trade-off between the magnitude of the refractive index well
and the power decay versus propagation has to be met in
order to maximize beam self-trapping. Moreover, the boundary
conditions break the longitudinal symmetry of the system
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and prevent truly shape-preserving self-trapped waves from
existing, even without losses.

Our model, accounting for losses and 3D nonlocality in
any nonlinear regime, is a promising workbench for studying
nonlinear dynamics and the interplay of self-localization,
losses, and nonlocality. In its numerical implementation, it is
an ideal tool for the assessment of experimental results when
investigating spatial optical solitons in (self-focusing) highly
nonlocal media (including, e.g., thermal, reorientational, and
liquid crystalline materials), including higher-order solitons
[51,52].

Our findings can also find application in the use of Z-scan
techniques [53] applied to thermal media, in the study of

thermal effects in active media [54] and in the design of
light-written waveguides [29], as well as for graded-index
lenses in soft matter and nonlocal dielectrics.
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