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Guided electromagnetic waves propagating in a plane dielectric waveguide
with nonlinear permittivity
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Propagation of transverse-electric waves along a homogeneous plane dielectric waveguide is considered. The
waveguide is placed between two half spaces with constant permittivities. The permittivity inside the waveguide
is described by the Kerr law. The problem is to determine propagation constants of eigenmodes. It is theoretically
predicted that there exists a novel type of propagation modes that does not reduce to linear modes in the limit
in which the nonlinear coefficient reduces to zero. It is proved that in the presence of the Kerr effect, infinitely
many new propagation constants arise. An analysis of this intriguing case is given.
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I. INTRODUCTION

The paper focuses on studying propagation of monochro-
matic transverse-electric (TE) electromagnetic waves along a
plane dielectric waveguide � with the permittivity described
by the Kerr law. The waveguide is placed between two half
spaces with constant permittivities. We look for guided waves
that decay when they move off from the boundaries of the
waveguide.

Mathematical analysis of this problem, called PE(α), im-
plies the existence of guided waves of a novel type. These
waves can be called purely nonlinear TE guided waves. To be
more precise, let the permittivity inside � be ε = ε2 + α|E|2,
where ε2,α > 0 are constants and E is the complex amplitude
of an electric field. In this case, the waveguide supports two
types of waves: nonlinear waves of the first type become waves
of the linear problem as α → 0 (this case is quite expectable)
and waves of the second type stay away from any linear
solutions as α → 0. The latter case is under investigation.

The complete set of eigenmodes, which a waveguide sup-
ports, is defined by the complete set of propagation constants
(PCs) of the waveguide. The finding of PCs in the case of
a homogeneous or inhomogeneous waveguide with linear
permittivity is usually reduced to a determination of the roots
of a transcendental equation called the dispersion equation
(DE). We use the integral dispersion equation method [1–3]
in order to study an analog of the DE for the nonlinear case.

If α = 0, we obtain the linear problem PE(0), which has
been well studied for years [4,5]. This paper reports that the
problem PE(α) has an infinite number of PCs. As long as there
is always no more than a finite number of PCs in the problem
PE(0), the aforementioned fact implies the existence of novel
guided modes—purely nonlinear TE guided waves. These
waves cannot be determined with the help of a perturbation
theory.

New PCs also arise for other types of nonlinear permittivi-
ties that take into account saturation effects [6], e.g., ε = ε2 +

α|E|2
1+β|E|2 ; however, in this case, no more than a finite number of
new PCs arise. It should also be noted that the Kerr nonlinearity
is actively studied theoretically (see, e.g., [2,7–12] and the
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bibliography therein; in cited papers, some generalizations are
also considered) and experimentally [13]. However, a clear
theoretical explanation of the influence of the Kerr effect on
the process of wave propagation has been lacking.

The result given in the paper clearly shows that in nonlinear
problems, solutions can occur which cannot be considered
as perturbations of solutions of corresponding linearized
problems. So it is necessary to be careful when one linearizes
a nonlinear problem and considers the linearized problem
without proving that there are no other solutions.

If these purely nonlinear guided modes are confirmed by
experiment, it will probably advance the theory of nonlinear
guided wave propagation; in the case that they are not observed
in experiments, then well-known and widespread formulas
for nonlinear permittivities must be changed in order that
mathematical analysis of these models can give results which
better satisfy reality.

Up to now, researchers have not obtained similar rigorous
theoretical results for the case of transverse-magnetic (TM)
waves.

We also should add that problems of coupled nonlinear
electromagnetic wave propagation are closely connected to
the problem we consider in this paper; see [14–16] and the
bibliography therein.

II. STATEMENT OF THE PROBLEM

Consider a monochromatic TE wave Ee−iωt , He−iωt , where
ω is a circular frequency and

E = (0,Ey,0)T , H = (Hx,0,Hz)
T (1)

are the complex amplitudes [2,17]. The TE wave propagates
along the surface of the plane dielectric waveguide,

� := {(x,y,z) ∈ R3 : 0 ≤ x ≤ h}.
The half spaces x < 0 and x > h are filled with homogeneous
isotropic nonmagnetic media with constant permittivities ε1 ≥
ε0 and ε3 ≥ ε0, respectively; ε0 > 0 is the permittivity of free
space. The waveguide � is located in Cartesian coordinate
Oxyz and filled with a homogeneous isotropic nonmagnetic
medium. The permittivity ε inside the layer � is described by
the Kerr law,

ε = ε2 + α|E|2,
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FIG. 1. Geometry of the problem.

where ε2 > max(ε1,ε3) and α > 0 are real constants [18–20].
Without loss of generality we assume that ε1 � ε3. All of the
media contain no sources. Everywhere, μ = μ0 > 0 is the
permeability of free space (see Fig. 1).

Complex amplitudes (1) must satisfy Maxwell’s equations
in the harmonic mode,

rot H = −iωεE,
(2)

rot E = iωμH;

the continuity condition for the tangential components of the
field on the boundaries x = 0 and x = h; and the radiation
condition at infinity: the electromagnetic field decays as
O(|x|−1) when |x| → ∞.

It is assumed that sought-for waves depend harmonically
on z. By substituting (1) into (2), one finds that the components
of (1) do not depend on y. So the components have the form

Ey = Ey(x)eiγ z, Hx = Hx(x)eiγ z, Hz = Hz(x)eiγ z, (3)

where γ is an unknown (real) PC of a guided wave; Ey is a
real function.

In the following, the explicit dependence on x or γ is
omitted if it does not lead to misunderstanding.

By substituting complex amplitudes (1) with components
(3) into (2), normalizing the obtained system in accordance
with the formulas x̃ = k0x, γ̃ = γ k−1

0 , ε̃j = εj ε
−1
0 (j =

1,2,3), and α̃ = αε−1
0 , where k2

0 = ω2μ0ε0, denoting Y (x̃) :=
Ey(x̃), and omitting the tilde symbol, one obtains the equation

Y ′′(x) = (γ 2 − ε)Y (x), (4)

where

ε =

⎧⎪⎨
⎪⎩

ε1, x < 0,

ε2 + αY 2, 0 � x � h,

ε3, x > h.

Transmission conditions for the tangential components Ey ,
Hz imply transmission conditions for Y and Y ′:

Y (0 − 0) = Y (0 + 0), Y ′(0 − 0) = Y ′(0 + 0),
(5)

Y (h − 0) = Y (h + 0), Y ′(h − 0) = Y ′(h + 0).

Problem PE(α) is to determine PCs γ̂ for which nontrivial
eigenmodes Y (x; γ̂ ) exist; these eigenmodes must satisfy (4)
and (5) and decay as O(|x|−1) when |x| → ∞.

III. LINEAR CASE

Let k2
1 = γ 2 − ε1, k2

2 = ε2 − γ 2, and k2
3 = γ 2 − ε3. If α =

0, one gets the well-known linear case. The dispersion equation

for the linear case has the form [2,4,5]

tan k2h = k2(k1 + k3)

k2
2 − k1k3

. (6)

The following result is easily derived from Eq. (6) and in
similar forms can be found in the literature.

Statement 1. If α = 0, then for any

h > h∗ = 1√
ε2 − ε1

arctan

√
ε1 − ε3√
ε2 − ε1

� 0

the problem PE(0) has a finite number (not less than one) of
PCs γ̃1,γ̃2, . . . ,γ̃p, which are roots of (6). For any i = 1,p, it
is true that γ̃ 2

i ∈ (ε1,ε2).
If ε1 = ε3, then h∗ = 0.

IV. NONLINEAR CASE

From the mathematical standpoint, the problem PE(α) is
equivalent to a nonlinear eigenvalue problem of the Sturm-
Liouville type for the equation

Y ′′ = −(
k2

2 + αY 2)Y, x ∈ [0,h], (7)

with the third type boundary conditions

k1Y (0) − Y ′(0) = 0,
(8)

k3Y (h) + Y ′(h) = 0.

It is well known that in eigenvalue problems for an equation
of the second order, which depends nonlinearly on the sought-
for function, one of the quantities in Eq. (8) must be prescribed.
For this reason, we suppose that the value Y (0) = A is known
and, without loss of generality, A > 0.

There is a mathematical tool that allows one to study the
problem given by (7) and (8) (and much more complicated
ones) completely [3]. See the Appendix for all necessary
mathematical details, strict mathematical formulation, and
complete proofs of Statements 2 and 3.

The problem PE(α) [or problem given by (7) and (8)] is re-
duced to some sort of dispersion equation obtained in the form

�(γ ; n) ≡
∫ k1

−k3

wdη + n

∫ +∞

−∞
wdη = h, (9)

where n = 0,1,2, . . . is an integer, w = 1√
(k2

2+η2)2+2αC
, and

C = (ε2 − ε1)A2 + 0.5αA4.
DE (9) is valid for any finite h > 0. In fact, DE (9) is a

family (but not a system) of equations for different n. In order
to determine the complete set of PCs, it is necessary to solve
Eq. (9) for each n.

Statement 2. The set of all real solutions to Eq. (9) coincides
with the complete set of PCs of PE(α).

By definition, the DE determines all PCs; for this reason,
Statement 2 looks trivial. However, Eq. (9) is derived using
a special procedure and does not involve explicit solutions to
Eq. (7); hence, it is necessary to prove that Eq. (9) is the DE.

It is easy to see from (9) that if γ is a solution to (9), then
−γ is also a solution to (9). In what follows, we consider only
positive solutions to (9). We use two notations for the PCs of
the problem PE(α): the notation γ̂i means that all of the PCs
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are arranged in the order of magnitude, and the notation γ̂ (m)
means that this PC is a solution to Eq. (9) for n = m.

The existence of purely nonlinear guided modes results
from the following statement.

Statement 3. If α > 0 and A �= 0, then for any h > 0 the
problem PE(α) has an infinite number of PCs γ̂i .

The PCs γ̂i have the following properties:
(1) γ̂ 2

1 ,γ̂ 2
2 , . . . ∈ (ε1,+∞) and limj→∞ γ̂ 2

j → ∞, where
γ̂1,γ̂2, . . . are all the PCs of the problem PE(α).

(2) If there are p PCs γ̃1 < γ̃2 < · · · < γ̃p in the problem
PE(0), then there exists α0 > 0 such that for any α = α′ < α0

it is true that

γ̂ 2
i ∈ (ε1,ε2) and lim

α′→0
γ̂i = γ̃i , i = 1,p,

where γ̂1, . . . ,γ̂p are first p solutions to PE(α′). For the rest of
PCs γ̂q , it is true that

lim
α′→+0

γ̂ 2
q = +∞ for any q > p.

Remark 1. Statement 3 does not depend explicitly on the
frequency ω. For this reason, the statement holds for any
frequency (we do not assert that the Kerr law is valid for
any frequency).

Property 1 means that there are arbitrary big PCs in the
problem PE(α).

Property 2 means that the complete set of PCs of PE(α)
can be split into two nonoverlapping sets σ ′ and σnl, where
σ ′ contains eigenvalues γ̂ ′

i such that limα→0 γ̂ ′
i = γ̃i [here, γ̃i

is a solution to PE(0)] and σnl contains eigenvalues γ̂i such
that limα→0 γ̂i = +∞. Set σ ′ can be empty for fixed α; set σnl

contains an infinite number of eigenvalues for any α > 0.
The existence of the eigenvalues from σ ′ is predictable with-

out deep investigation as these eigenvalues can be considered
as perturbations of solutions to PE(0).

Eigenvalues from σnl are PCs of purely nonlinear guided
waves and have no connections with solutions to PE(0). The
following question should be addressed to experimentalists:
is it possible to observe this new propagating regime in an
experiment?

Remark 2. Numerically, some new PCs in the problem
PE(α) were found before. However, we should stress that
Statement 3 asserts that there are infinitely many new PCs and
infinitely many of them do not reduce to the corresponding
linear solutions. Results of this type cannot be proved (or even
demonstrated) numerically.

Figures 2 and 3 clarify Statement 3. For the dispersion
curves (DCs) and eigenmodes shown below, the following
parameters are used: ε1 = 1, ε2 = 9, ε3 = 4, and A = 1; other
parameters are specified in the captions.

In the case shown in Fig. 2, there are four solutions (γ̂1,
γ̂2, γ̂3, and γ̂4) to PE(α) which tend to the aforementioned
linear solutions as α → 0. The solutions γ̂5, γ̂6, and γ̂7 (which
are additionally labeled in Fig. 2) are the first of those which
tend to +∞ as α → 0. Three spikes marked with S go to
the point (h,γ ) = (+∞,3) as α → 0. In other words, the
parts of the nonlinear DCs, which lie below S, tend to the
corresponding linear DCs as α → 0. Any point (h,γ ) that
belongs to a nonlinear DC and lies above the spikes tends to
the point with coordinates (h,γ ) = (h,+∞) as α → 0, where
h is a particular thickness corresponding to the chosen PC.

FIG. 2. (Color online) First four DCs for both nonlinear (α =
0.01) and linear (α = 0) cases are shown. DCs for the nonlinear case
[solutions to (9)] are depicted with blue rhombuses (for the fourth
curve, only the part which lies below the line γ = 3 is shown). DCs
for the linear case [solutions to (6)] are depicted with solid (red) lines;
all of them lie below the line γ = 3, which is their asymptote. Because
of the smallness of α, solid red lines are hardly distinguishable from
the curves shown with rhombuses. For h = 5.08, there exist four
solutions to (6): γ̃1 ≈ 2.17, γ̃2 ≈ 2.55, γ̃3 ≈ 2.80, γ̃4 ≈ 2.95 (they
are points of intersections of the line h = 5.08 with solid red lines);
and there exists an infinite number of solutions (seven of them are
shown and marked with filled rhombuses) to (9): γ̂1 ≈ 2.17, γ̂2 ≈
2.55, γ̂3 ≈ 2.82, γ̂4 ≈ 3.00, γ̂5 ≈ 3.17, γ̂6 ≈ 5.06, γ̂7 ≈ 8.15 (they
are points of intersections of the line h = 5.08 with blue rhombuses).

Figure 3 illustrates what happens with a DC (and its spike) of
the problem PE(α) as α → 0. Due to the smallness of α, the
DC of the linear problem can hardly be seen in Fig. 3.

It can be proved that maxx∈(0,h) |Y (x; γ̂i)| → ∞ as a PC
γ̂i → ∞. Indeed, by multiplying Eq. (7) by Y and integrating
from x = 0 to x = h, one obtains

k3B
2 + k1A

2 +
∫ h

0
Y ′2dx = k2

2

∫ h

0
Y 2dx + α

∫ h

0
Y 4dx.

The left-hand side of this formula is positive for all pos-
sible γ̂i and so is the right-hand side. As the left-hand
side tends to infinity as γ̂i → ∞, then one finds that
limγ̂i→+∞

∫ h

0 Y 4dx = +∞; the previous formula results in
limγ̂i→∞ maxx∈(0,h) |Y (x; γ̂i)| → ∞.

FIG. 3. (Color online) The first dispersion curve of the problem
PE(α) for different α (shown with blue rhombuses and blue circles)
and the first DC of the problem PE(0) (shown in red) are plotted.
All other parameters are specified above. The curves 1, 2, 3, and
4 correspond to α = 0.1, α = 0.01, α = 0.001, and α = 0.0001,
respectively.
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FIG. 4. (Color online) Electric components for the first three
purely nonlinear guided waves are shown. The same parameters as
for Fig. 2 are used. Thickness h of � is 5.08. The curves 1, 2, and
3 correspond to the eigenfunctions Y (x; γ̂5), Y (x; γ̂6), and Y (x; γ̂7),
respectively.

Figure 4 demonstrates that the amplitude of novel eigen-
modes increases when their PCs increase.

It is hardly reasonable to expect the existence of purely non-
linear waves for each PC from σnl. However, it is possible that
purely nonlinear waves can be observed in an experiment for
some first PCs from the set σnl. For the rest of the PCs, the value
maxx∈(0,h) |Y (x; γ̂i)| is so high that the Kerr law is not valid.

ACKNOWLEDGMENTS

The authors are supported by the Ministry of Education and
Science of the Russian Federation (Goszadanie, Project No.
2.1102.2014K) and the Russian Federation President Grant
(Project No. MK-90.2014.1). We also thank the referee for the
helpful critique.

APPENDIX

From the mathematical standpoint, the propagation con-
stants are eigenvalues of a nonlinear transmission eigenvalue
problem for Maxwell’s equations. In this Appendix, we use
the term “eigenvalue” instead of “propagation constant.”

Statements 2′ and 3′ given below are full versions of
Statements 2 and 3 and contain more facts than the statements
given in the main body of the paper, where we present only
the results, which are important for physical consideration.

By taking into account conditions at infinity, one obtains
solutions of (4) in the half spaces in the form

Y (x) =
{
Aek1x, x < 0,

Be−k3(x−h), x > h,
(A1)

where the constant A �= 0 is supposed to be fixed (without
loss of generality A > 0); the constant B is unknown and is
determined using (5). Using solutions (A1) and conditions (5),
one can easily derive conditions (8).

Equation (7) has a first integral,

Y ′2 + k2
2Y

2 + 0.5αY 4 ≡ C, (A2)

where C is a constant of integration. Using (5), (A1), and (A2)
at the point x = 0, one calculates

C = (ε2 − ε1)A2 + 0.5αA4.

Here, C does not depend on γ ; and C > 0 if α ≥ 0.
Using (5), (A1), and (A2) at the point x = h, and

calculated C, one gets the equation with respect to

unknown B,

αB4 + 2(ε2 − ε3)B2 − [2(ε2 − ε1)A2 + αA4] = 0. (A3)

Equation (A3) always has a positive solution B2.
As said before, Eq. (9) is a family of equations for different

n. In other words, let σ be a set of all eigenvalues of the
problem PE(α); then the set σ can be represented in the form
σ = ⋃∞

i=0 σi , where σj contains all real solutions (and only
real solutions) to the equation �(γ ; j ) − h = 0. (It is also true
that σi ∩ σj = ∅ for any possible i �= j .) To be more precise,
the following result takes place.

Statement 2′. The value γ̂ is an eigenvalue of PE(α)
if and only if there is an integer n = n̂ ≥ 0 such that γ̂

is a solution to �(γ ; n̂) − h = 0. In addition, let γ̂ be a
solution to �(γ ; n̂) − h = 0 and Y (x; γ̂ ) be the corresponding
eigenfunction, then Y (x; γ̂ ) has exactly n̂ zeros for x ∈ (0,h);
if xi is the ith zero, then

xi =
∫ k1

−∞
wdη + (i − 1)

∫ +∞

−∞
wdη.

Proof. Introduce new variables

τ (x) = Y 2(x), η(x) = Y ′(x)/Y (x). (A4)

Equation (7) can be rewritten as a normal system,

τ ′ = 2τη, η′ = −(
k2

2 + ατ + η2
)
. (A5)

A first integral of this system can be determined directly
from (A5) [or from (A2)] and has the form

0.5ατ 2 + (
η2 + k2

2

)
τ ≡ C. (A6)

Solving (A6) with respect to τ , taking into account that
τ ≥ 0, and substituting the result into the right-hand side of
the second equation (A5), one obtains

η′ = −
√(

k2
2 + η2

)2 + 2αC, (A7)

where the radicand must be positive for all η ∈ [0,+∞).
Obviously, if αC > 0, then the radicand is positive for all
real γ . In other words, in contrast to the linear case where
γ 2 ∈ (ε1,ε2) in the nonlinear case, it is possible to consider
γ 2 ∈ (ε1,+∞).

Using (8), one finds

η(0) = k1 > 0, η(h) = −k3 < 0. (A8)

Since η′ < 0, then η(x) monotonically decreases for x ∈
[0,h].

It follows from formula (A4) that η is continuous if and only
if Y (x) does not become zero for all x ∈ (0,h). In the general
case, Y (x) can have zeros at some points on the interval (0,h).
Suppose that Y (x) has n zeros x1, . . . ,xn ∈ (0,h); if n = 0,
then Y does not become zero for any x ∈ [0,h]. Then η(x) has
n break points x1, . . . ,xn ∈ (0,h); if n = 0, then η(x) is con-
tinuous for x ∈ [0,h]. It is clear that Y ′(xi) �= 0 for all i = 1,n.

Formulas (A7) and (A8) imply that

η(xi − 0) = −∞, η(xi + 0) = +∞, i = 1,n. (A9)
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Thereby, solutions to Eq. (A7) are sought on each of the
intervals [0,x1),(x1,x2), . . . ,(xn,h]:∫ η(x1−0)

η(x)
wdη = x + c0, 0 � x < x1,

−
∫ η(x)

η(xi+0)
wdη = x + ci, xi < x < xi+1, (A10)

−
∫ η(x)

η(xn+0)
wdη = x + cn, xn < x � h,

where i = 1,n − 1.
Substituting x = 0, x = xi+1 − 0, x = h into Eqs. (A10)

(into the first, second, and third, respectively), one determines
the constants c0,c1, . . . ,cn:

c0 =
∫ η(x1−0)

η(0)
wdη,

ci = −
∫ η(xi+1−0)

η(xi+0)
wdη − xi+1, i = 1,n − 1, (A11)

cn = −
∫ η(h)

η(xn+0)
wdη − h.

With a glance at (A11), one can rewrite (A10) in the form∫ η(x1−0)

η(x)
wdη = x +

∫ η(x1−0)

η(0)
wdη, 0 � x < x1,

−
∫ η(x)

η(xi+0)
wdη=x −

∫ η(xi+1−0)

η(xi+0)
wdη−xi+1, xi <x <xi+1,

−
∫ η(x)

η(xn+0)
wdη = x −

∫ η(h)

η(xn+0)
wdη − h, xn < x � h,

(A12)

where i = 1,n − 1.
By substituting x = x1 − 0, x = xi + 0, x = xn + 0 into

Eqs. (A12) (into the first, second, and third, respectively), one
obtains

0 = x1 +
∫ η(x1−0)

η(0)
wdη,

0 = xi −
∫ η(xi+1−0)

η(xi+0)
wdη − xi+1, i = 1,n − 1, (A13)

0 = xn −
∫ η(h)

η(xn+0)
wdη − h.

Taking into account (A8) and (A9), one finds, from (A13),

0 < x1 =
∫ k1

−∞
wdη,

0 < xi+1 − xi =
∫ +∞

−∞
wdη, i = 1,n − 1, (A14)

0 < h − xn =
∫ +∞

−k3

wdη.

Formulas (A14) give explicit expressions for distances
between zeros of Y . Indeed, if xi is the ith zero of Y , then
xi = ∫ k1

−∞ wdη + (i − 1)
∫ +∞
−∞ wdη. Moreover, it follows from

(A14) that the improper integrals on the right-hand sides
converge.

Summing up all the terms in Eq. (A14), one gets

x1 + x2 − x1 + x3 − x2 + · · · + xn − xn−1 + h − xn

=
∫ k1

−∞
wdη + (n − 1)

∫ +∞

−∞
wdη +

∫ +∞

−k3

wdη. (A15)

Formula (A15) can be easily transformed into DE (9).
As DE (9) results from the problem PE(α), then each

eigenvalue of PE(α) is a solution to DE (9). It is easy to prove
that each solution to DE (9) satisfies all the conditions of the
problem PE(α).

The assumption that η has n break points results in the
statement about n zeros of an eigenfunction Y (x; γ̂ ).

Statement 3′. Let min(ε1,ε3) � ε0, max(ε1,ε3) < ε2, α > 0,
and A �= 0. In this case, for any h > 0, the problem PE(α) has
an infinite number of eigenvalues γ̂i (with accumulation point
at infinity).

The eigenvalues γ̂i have the following properties:
(1) If γ̂1,γ̂2, . . . are all the solutions to PE(α), then

γ̂ 2
1 ,γ̂ 2

2 , . . . ∈ (ε1,+∞) and lim
j→∞

γ̂ 2
j → ∞.

(2) If PE(0) has p solutions γ̃1 < γ̃2 < · · · < γ̃p, then there
exists α0 > 0 such that for any α = α′ < α0 it is true that

γ̂ 2
i ∈ (ε1,ε2) and lim

α′→0
γ̂i = γ̃i , i = 1,p,

where γ̂1, . . . ,γ̂p are first p solutions to PE(α′).
(2′) If q > p, then limα′→+0 γ̂ 2

q = +∞.
(3) For big γ and arbitrary small � > 0, the asymptotic

two-sided inequality

(1 − �)γ•(m) � γ̂ (m) �
√

2(1 + �)γ•(m + 1)

is valid, where γ 2
• (m) = ε2 + [f −1(0.25h/m)]2, and f −1 is

the inversion of f (t) = t−1 ln t .
(3′) If

√
2αC < 1, then for big γ simple asymptotic

inequality γ̂ (m) ≥ γ◦(m) is valid, where γ 2
◦ (m) = ε2 +

[mh−1 ln(2αC)]2.
(4) If eigenvalue γ̂i → ∞, then maxx∈(0,h) |Y (x; γ̂i)| → ∞.
Proof. We are going to estimate the integrals that the DE

contains. It is clear that

nT < �(γ ; n) < (n + 1)T , (A16)

where n � 0 and T = ∫ +∞
−∞ wdη. So it is necessary to

estimate T . For further analysis, the easily checked inequalities
1/(a + b) ≤ 1/

√
a2 + b2 ≤ √

2/(a + b), where a ≥ 0, b > 0,
are used. These inequalities imply

T ∗ � T �
√

2T ∗, (A17)

where T ∗ = 2
∫ +∞

0
dη

|k2
2+η2|+√

2αC
. So, it follows from (A16)

and (A17) that

nT ∗ � nT < �(γ ; n) < (n + 1)T �
√

2(n + 1)T ∗.

For the integral T ∗, there are three cases:
(a) If γ 2 < ε2, then

T ∗ = πθ−1.
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(b) If ε2 ≤ γ 2 < ε2 + √
2αC, then

T ∗ = −1

θ
ln

√
2αC

(|k2| + θ )2
+ 2

θ1

(
π

2
− arctan

|k2|
θ1

)
.

(c) If γ 2 ≥ ε2 + √
2αC, then

T ∗ = −1

θ
ln

√
2αC

(|k2| + θ )2
− 1

θ2
ln

√
2αC

(|k2| + θ2)2
,

where θ = (|k2
2 | + √

2αC)1/2, θ1 = (−|k2
2 | + √

2αC)1/2, and
θ2 = (|k2

2 | − √
2αC)1/2.

It can be checked that T ∗ continuously depends on γ 2 for
all γ 2 ∈ (ε1, + ∞).

It follows from (c) that limγ→∞ T ∗ = 0. This formula
implies that for any prescribed h > 0, there exists an infinite

number of positive eigenvalues γ̂i . So, (a)–(c) prove the first
property of Statement 3′.

Property 2 of Statement 3′ results from (a) and (b).
Property 2′ of Statement 3′ results from (c). Property 3 of
Statement 3′ results from (c). Indeed, the asymptotic formula
T ∗ ∼ 4|k2|−1 ln |k2| takes place. This formula easily results in
the third property of Statement 3′.

If
√

2αC < 1, then it follows from (c) that the asymptotic
formula T ∗ ∼ −|k2|−1 ln 2αC takes place. This formula easily
results in property 3′ of Statement 3′.

By multiplying Eq. (4) by Y and integrating from x = 0 to
x = h, one obtains

k3B
2 + k1A

2 +
∫ h

0
Y ′2dx = k2

2

∫ h

0
Y 2dx + α

∫ h

0
Y 4dx.

(A18)

It follows from (A18) that
∫ h

0 Y 4 → ∞ if γ → ∞. This
implies the fourth property of Statement 3′.
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