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We develop a method for transmission stabilization and robust dynamic switching for colliding optical soliton
sequences in broadband waveguide systems with nonlinear gain and loss. The method is based on employing
hybrid waveguides, consisting of spans with linear gain and cubic loss, and spans with linear loss, cubic gain, and
quintic loss. We show that the amplitude dynamics is described by a hybrid Lotka-Volterra (LV) model, and use the
model to determine the physical parameter values required for enhanced transmission stabilization and switching.
Numerical simulations with coupled nonlinear Schrödinger equations confirm the predictions of the LV model,
and show complete suppression of radiative instability and pulse distortion. This enables stable transmission
over distances larger by an order of magnitude compared with uniform waveguides with linear gain and cubic
loss. Moreover, multiple on-off and off-on dynamic switching events are demonstrated over a wide range of
soliton amplitudes, showing the superiority of hybrid waveguides compared with static switching in uniform
waveguides.
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I. INTRODUCTION

Recent years have seen a dramatic increase in research on
broadband optical waveguide systems [1–4]. This increase in
research efforts is driven by a wide range of applications,
which include increasing transmission rates in fiber-optics
communication systems [2–4], enhancing data processing
and transfer on computer chips [5–8], and enabling multi-
wavelength optical waveguide lasers [9–14]. Transmission in
broadband systems is often based on wavelength-division-
multiplexing (WDM), where many pulse sequences propagate
through the same waveguide. The pulses in each sequence
(each “frequency channel”) propagate with the same group
velocity, but the group velocity differs for pulses from different
sequences. As a result, intersequence pulse collisions are very
frequent, and can lead to severe transmission degradation
[1,2,4,15,16]. On the other hand, the significant collision-
induced effects can be used for controlling the propagation, for
tuning of optical pulse parameters, such as energy, frequency,
and phase, and for transmission switching, i.e., the turning on
or off of transmission of one or more of the pulse sequences
[17–19].

One of the most important processes affecting pulse
propagation in nonlinear waveguide systems is nonlinear loss
or gain. Nonlinear loss (gain) can arise in optical waveguides
due to multiphoton absorption (emission) or due to gain (loss)
saturation [20,21]. For example, cubic loss due to two-photon
absorption (TPA) plays a key role in pulse dynamics in a variety
of waveguides, including silicon waveguides [5–8,22–32].
Furthermore, cubic gain and quintic loss are essential parts
of the widely used Ginzburg-Landau (GL) model for pulse
dynamics in mode-locked lasers [33–38]. The main effect
of nonlinear loss (gain) on single-pulse propagation is a
continuous decrease (increase) of the pulse amplitude, which
is qualitatively similar to the one due to linear loss (gain) [22].
Nonlinear loss (gain) also strongly affects optical pulse col-
lisions, by causing an additional decrease (increase) of pulse

amplitudes [17–19,39]. This collision-induced amplitude shift,
which is commonly known as interchannel crosstalk, can be a
major impairment in broadband nonlinear waveguide systems.
For example, recent experiments have shown that crosstalk
induced by cubic loss (due to TPA) plays a key role in silicon
nanowaveguide WDM systems [32]. More specifically, the
experiments demonstrated that TPA-induced crosstalk can lead
to relatively high values of the bit error rate even in a WDM
system with two channels [32]. Thus, it is important to find
ways to suppress the detrimental effects of nonlinear gain-loss
crosstalk.

In several recent studies [17–19], we provided a partial solu-
tion to this key problem and to an equally important challenge
concerning the possibility of using the nonlinear crosstalk for
broadband transmission switching. Our approach was based
on showing that the amplitude dynamics of N sequences of
colliding optical solitons can be described by Lotka-Volterra
(LV) models for N species, where the exact form of the LV
model depends on the nature of the waveguide’s gain-loss
profile [17,18]. Stability analysis of the steady states of the LV
models was used to guide a clever choice of linear amplifier
gain, which in turn leads to transmission stabilization, i.e.,
the amplitudes of the propagating pulses approach desired
predetermined values [17–19]. Furthermore, in Ref. [19], we
showed that static on-off and off-on transmission switching can
be realized by an abrupt change in the waveguide’s nonlinear
gain or loss coefficients. The design of the switching setups
reported in Ref. [19] was also guided by linear stability analysis
of the steady states of the LV model.

The results of Refs. [17–19] demonstrate the potential for
employing crosstalk induced by nonlinear loss or gain for
transmission control, stabilization, and switching. However,
these results are still quite limited for the following reasons.
First, despite the progress made in Refs. [17–19], the problem
of robust transmission stabilization is still unresolved. In
particular, for uniform waveguides with linear gain and cubic
loss, such as silicon waveguides, radiative instability due to
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the growth of small-amplitude waves is observed already at a
distance z � 200 even for cubic loss coefficient values as small
as 0.01 [17]. The radiative instability can be partially mitigated
by employing uniform waveguides with linear loss, cubic
gain, and quintic loss, i.e., waveguides with a GL gain-loss
profile [18,19]. However, this uniform GL gain-loss setup
is also limited, since suppression of radiative instability is
incomplete, and since the initial soliton amplitudes need to be
close to the steady-state values for transmission stabilization to
be achieved. Second, the switching setup studied in Ref. [19]
is also quite limited, since it is based on a static change in
the waveguide’s nonlinear gain-loss coefficients. Moreover,
only one switching event was demonstrated in this study, and
off-on transmission was restricted to amplitudes larger than
0.65. The latter value is very unsatisfactory, since the threshold
for distinguishing between on and off transmission states is
typically 0.5. In view of the limitations of these uniform
waveguide setups, it is important to look for more robust ways
for realizing stable long-distance propagation and broadband
transmission switching.

In the current paper we take on this important task, by devel-
oping a method for transmission stabilization and switching in
broadband waveguide systems, which is based on employing
hybrid waveguides with a clever choice of the physical
parameters. The hybrid waveguides consist of odd-numbered
spans with linear gain and cubic loss, and even-numbered
spans with a GL gain-loss profile. Transmission switching is
dynamically realized by fast changes in linear amplifier gain,
which can be achieved, for example, by distributed Raman
amplification [1,40,41]. The robustness of the approach is
demonstrated for two sequences of colliding optical solitons.
We show that the dynamics of soliton amplitudes is described
by a hybrid LV model. We then use stability analysis for
the steady states of the LV model to determine the values
of the physical parameters that lead to suppression of radiative
instability and, as a result, to a drastic enhancement in
transmission stability and switching robustness. The hybrid
nature of the waveguides and the corresponding LV model
plays a key role in the improvement. More specifically, the
global asymptotic stability of the steady state (1,1) of the LV
model in odd-numbered spans helps bring amplitude values
close to their desired steady-state values, while the local
asymptotic stability of the LV model in even-numbered
spans stabilizes the transmission against growth of small-
amplitude waves. The predictions of the hybrid LV model are
confirmed by numerical simulations with the full system of
coupled nonlinear Schrödinger (NLS) equations, which fully
incorporates intrasequence and intersequence interaction as
well as radiation emission effects. The results of the latter
simulations show complete suppression of radiative instability
and pulse shape distortion, which enables stable propagation
over distances larger by an order of magnitude compared
with the results reported in Ref. [17] for uniform waveguides
with linear gain and cubic loss. Moreover, multiple dynamic
on-off and off-on switching events are demonstrated over
a significantly wider range of soliton amplitudes compared
with that reported in Ref. [19] for a single static switching
event in uniform waveguides with a GL gain-loss profile. The
increased robustness of off-on switching in hybrid waveguides
can be used for transmission recovery, that is, for the stable

amplification of optical pulse sequences that experienced
significant energy decay.

We choose optical solitons as an example for the prop-
agating pulses for the following reasons. First, in many
broadband optical systems the waveguides are nonlinear and
pulse propagation is accurately described by a perturbed
NLS equation [6–8,24,25,27]. Furthermore, optical soliton
generation and propagation in the presence of two-photon and
three-photon absorption were experimentally demonstrated in
a variety of waveguide setups [29,30,42–45]. Second, since
the unperturbed NLS equation is an integrable model [46],
derivation of analytic results for the effects of nonlinear gain or
loss on interpulse collisions can be done in a rigorous manner.
Third, due to the soliton properties, soliton-based information
transmission and processing in nonlinear broadband waveg-
uide links is considered to be highly advantageous compared
with other transmission methods [1,2,16].

Our coupled-NLS-equation model is based on the assump-
tion that the relaxation time of the gain or loss is shorter
than the pulse width. Under this assumption, we can neglect
the effects of gain relaxation dynamics (see Refs. [47–49],
for example), and take the gain-loss coefficients as constants.
This assumption imposes a lower bound on the values of the
pulse widths for which our model can be applied. Since the
value of this lower bound is determined by the characteristic
times of the physical processes affecting the gain-loss in the
system, we provide a discussion of these processes here. We
assume that the linear gain is provided by fast-distributed
Raman amplification. Additionally, we assume that Raman
amplification is used to control the net linear gain-loss in both
types of waveguide spans, and to realize dynamic transmission
switching. The typical response time of Raman amplifiers
is well below 1 ps [1,40,41]. Hence, relaxation dynamics
of the waveguide’s linear gain-loss is unimportant for pulse
widths of 1 ps or longer. It is therefore left to address the
relaxation times for processes affecting the nonlinear gain-loss.
We first note that the relaxation times for saturable absorbers
employed in Kerr-lens solid-state devices are relatively long,
with typical values between milliseconds and microseconds;
see Ref. [50], for example. However, much shorter gain
relaxation times are observed in semiconductor saturable
absorber devices. Indeed, in this case the relaxation times are
typically between 100 ps and 1 ps, but relaxation times as
low as 100 fs were also measured [51–53]. Furthermore, such
devices can operate in modelocked lasers with repetition rates
as high as 77 GHz in the soliton regime with pulse widths of
2.7 ps [53]. An alternative approach for realizing nonlinear
gain-loss with fast relaxation is by employing graphene-based
or carbon-nanotube-based saturable absorber devices. In this
case the typical gain relaxation times are a few picoseconds
[54–56], although relaxation times shorter than 1 ps were
also demonstrated [57]. The latter study also achieved soliton
operation with pulse width of 2 ps. Additionally, mode-locked
laser operation with repetition rates as high as 20 GHz was
realized with carbon nanotube devices [58]. A third approach
for realizing nonlinear gain-loss with fast recovery times is
via semiconductor optical amplifiers. Here, relaxation times
as low as 10 ps were experimentally demonstrated [59,60],
and theoretical considerations predict that reduction of the
recovery time to a few picoseconds is achievable [61]. Based
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on the values of these relaxation times, we conclude that the
coupled-NLS-equation model employed in our paper is valid
for pulse widths of 1 ps or larger if semiconductor saturable
absorber devices or graphene-based devices are used to provide
the nonlinear gain-loss. If semiconductor optical amplifiers are
employed, our treatment is valid for pulse widths of 10 ps or
larger.

The rest of the paper is organized as follows. In Sec. II,
we present the coupled-NLS-equation model for pulse propa-
gation in hybrid waveguides, along with the corresponding
hybrid LV model for amplitude dynamics. We then use
stability analysis of the equilibrium states of the hybrid LV
model to obtain the physical parameter values required for
robust transmission stabilization and broadband switching.
In Sec. III, we present the results of numerical simulations
with the coupled-NLS-equation model for stable long-distance
propagation and multiple transmission switching events. We
also analyze these results in comparison with the predictions
of the LV model. Section IV is reserved for conclusions.

II. COUPLED-NLS-EQUATION AND LOTKA-VOLTERRA
MODELS FOR PULSE PROPAGATION

We consider two sequences of optical solitons propagating
with different group velocities in a hybrid waveguide system,
in which the gain-loss profile is different for different waveg-
uide spans. We take into account second-order dispersion and
Kerr nonlinearity, as well as linear and nonlinear gain and loss.
We denote by z the distance along the waveguide, and assume
that the gain-loss profile consists of linear gain and cubic
loss in odd-numbered spans z2m � z < z2m+1, and of linear
loss, cubic gain, and quintic loss in even-numbered spans
z2m+1 � z < z2m+2, where 0 � m � M, M � 0, and z0 = 0.
Thus, the propagation is described by the following system of
coupled NLS equations:

i∂zψj + ∂2
t ψj + 2|ψj |2ψj + 4|ψk|2ψj

= ig
(l)
j ψj/2 + Ll(ψj ,ψk), (1)

where t is time, ψj is the electric field’s envelope for the j th
sequence, g(l)

j is the linear gain-loss coefficient, and Ll(ψj ,ψk)
describes nonlinear gain-loss effects. The indices j and k run
over pulse sequences, i.e., j = 1,2, k = 1,2, while l runs over
the two gain-loss profiles. The second term on the left-hand
side of Eq. (1) corresponds to second-order dispersion, while
the third and fourth terms describe the effects of intrasequence
and intersequence interaction due to Kerr nonlinearity.

The optical pulses in the j th sequence are fundamental
solitons of the unperturbed NLS equation i∂zψj + ∂2

t ψj +
2|ψj |2ψj = 0. The envelopes of these solitons are given
by ψsj (t,z) = ηj exp(iχj )sech(xj ), where xj = ηj (t − yj −
2βjz), χj = αj + βj (t − yj ) + (η2

j − β2
j )z, and ηj , βj , yj ,

and αj are related to the soliton amplitude, group velocity
(and frequency), position, and phase, respectively. We assume
a large group-velocity difference |β1 − β2| � 1, so that
the solitons undergo a large number of fast intersequence
collisions. Due to the presence of nonlinear gain or loss the
solitons experience additional changes in their amplitudes
during the collisions, and this can be used for achieving robust
transmission stabilization and switching.

The nonlinear gain-loss term L1(ψj ,ψk) in odd-numbered
spans is

L1(ψj ,ψk) = −iε
(1)
3 |ψj |2ψj − 2iε

(1)
3 |ψk|2 ψj , (2)

where ε
(1)
3 is the cubic loss coefficient. The first and second

terms on the right-hand side of Eq. (2) describe intrasequence
and intersequence interaction due to cubic loss. The nonlinear
gain-loss term L2(ψj ,ψk) in even-numbered spans is

L2(ψj ,ψk) = iε
(2)
3 |ψj |2ψj + 2iε

(2)
3 |ψk|2ψj

− iε5|ψj |4ψj − 3iε5|ψk|4ψj

− 6iε5|ψk|2|ψj |2ψj , (3)

where ε
(2)
3 and ε5 are the cubic gain and quintic loss coeffi-

cients, respectively. The first and second terms on the right-
hand side of Eq. (3) describe intrasequence and intersequence
interaction due to cubic gain, while the third, fourth, and fifth
terms are due to quintic loss effects. Note that Eqs. (1) and
(2) were used in Ref. [17] to study pulse propagation in a
uniform waveguide with linear gain and cubic loss, while
Eqs. (1) and (3) were employed in Refs. [18,19] to investigate
pulse propagation in a uniform waveguide with linear loss,
cubic gain, and quintic loss. Also note that Eqs. (1) and (2)
represent a coupled system of complex cubic GL equations
without a filtering term, while Eqs. (1) and (3) correspond to
a coupled system of complex cubic-quintic GL equations. In
addition, the gain-loss coefficients in Eqs. (1)–(3) are constant,
in accordance with the assumption that the gain relaxation
time is shorter than the pulse width (see Refs. [47–49] and
the discussion in the Introduction). The dimensional and
dimensionless physical quantities are related by the standard
scaling laws for fundamental NLS solitons [1]. Exactly the
same scaling laws were used in our previous works [17–19].
More specifically, the dimensionless distance z in Eq. (1) is z =
(|β̃2|X)/(2τ 2

0 ), where X is the dimensional distance, τ0 is the
soliton width, and β̃2 is the second-order dispersion coefficient.
The dimensionless retarded time is t = τ/τ0, where τ is
the retarded time. The spectral width is ν0 = 1/(π2τ0) and
the frequency difference is �ν = (π�βν0)/2. ψ = E/

√
P0,

where E is proportional to the electric field and P0 is the peak
power. The dimensionless second-order dispersion coefficient
is d = −1 = β̃2/(γP0τ

2
0 ), where γ is the Kerr nonlinearity

coefficient. The dimensional linear gain-loss coefficient for the
j th sequence ρ

(l)
1j is related to the dimensionless coefficient via

g
(l)
j = 2ρ

(l)
1j /(γP0). The coefficients ε

(1)
3 ,ε

(2)
3 , and ε5 are related

to the dimensional cubic loss ρ
(1)
3 , cubic gain ρ

(2)
3 , and quintic

loss ρ5, by ε
(1)
3 = 2ρ

(1)
3 /γ, ε

(2)
3 = 2ρ

(2)
3 /γ , and ε5 = 2ρ5P0/γ ,

respectively.
In several earlier works, we showed that the amplitude

dynamics of N colliding sequences of optical solitons in the
presence of linear and nonlinear gain or loss can be described
by LV models for N species, where the exact form of the model
depends on the nature of the waveguide’s gain-loss profile
[17,18,62]. The derivation of the LV models was based on the
following assumptions. (1) The temporal separation T between
adjacent solitons in each sequence is a constant satisfying T �
1. In addition, the amplitudes are equal for all solitons from the
same sequence, but are not necessarily equal for solitons from
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different sequences. This setup corresponds, for example, to
return-to-zero phase-shift-keyed soliton transmission. (2) The
pulses circulate in a closed optical waveguide loop. (3) As T �
1, the pulses in each sequence are temporally well separated.
As a result, intrasequence interaction is exponentially small
and is neglected.

Under the above assumptions, the soliton sequences are
periodic, and as a result, the amplitudes of all pulses in a
given sequence undergo the same dynamics. Consider first
odd-numbered waveguide spans, where the gain-loss profile
consists of linear gain and cubic loss. Taking into account
collision-induced amplitude shifts due to cubic loss and single-
pulse amplitude changes due to linear gain and cubic loss,
we obtain the following equation for amplitude dynamics of
j th-sequence solitons [17]:

dηj

dz
= ηj

(
g

(1)
j − 4ε

(1)
3 η2

j

/
3 − 8ε

(1)
3 ηk/T

)
, (4)

where j = 1,2 and k = 1,2. In WDM transmission systems,
it is often required to achieve a transmission steady state, in
which pulse amplitudes in all sequences are nonzero constants.
We therefore look for a steady state of Eq. (4) in the form
η

(eq)
1 = a > 0, η

(eq)
2 = b > 0, where a and b are the desired

equilibrium amplitude values. This requirement yields g
(1)
1 =

4ε
(1)
3 (a2/3 + 2b/T ) and g

(1)
2 = 4ε

(1)
3 (b2/3 + 2a/T ). Note that

in transmission stabilization and off-on switching we use
a = b = η, corresponding to the desired situation of equal
amplitudes in both sequences. In contrast, in on-off switching,
we use a �= b, since turning off of the transmission of only
one sequence is difficult to realize with a = b. Also note
that switching is obtained by fast changes in the values of
the g

(1)
j coefficients, such that (a,b) becomes asymptotically

stable in off-on switching and unstable in on-off switching.
The switching is realized dynamically, via appropriate fast
changes in amplifier gain that can be achieved by distributed
Raman amplification [1,40,41], and is thus very different from
the static switching that was studied in Ref. [19].

The LV model for amplitude dynamics in even-numbered
spans is obtained by taking into account collision-induced
amplitude shifts due to cubic gain and quintic loss, as well as
single-pulse amplitude changes due to linear loss, cubic gain,
and quintic loss. The derivation yields the following equation
for amplitude dynamics of the j th-sequence solitons [18]:

dηj

dz
= ηj

[
g

(2)
j + 4ε

(2)
3 η2

j

/
3 − 16ε5η

4
j

/
15 + 8ε

(2)
3 ηk

/
T

− 8ε5ηk

(
2η2

j + η2
k

)/
T

]
. (5)

Requiring that (η,η) is a steady state of Eq. (5), we obtain
g

(2)
j = 4ε5η(−κη/3 + 4η3/15 − 2κ/T + 6η2/T ), where κ =

ε
(2)
3 /ε5 and ε5 �= 0. Note that in even-numbered spans, the

value of κ is used for further stabilization of transmission and
switching.

Transmission stabilization and switching are guided by
stability analysis of the steady states of Eqs. (4) and (5). We
therefore turn to describe the results of this analysis, starting
with the LV model (4). We consider the equilibrium amplitude
values a = 1 and b = η, for which the linear gain coefficients
are g

(1)
1 = 4ε

(1)
3 (1/3 + 2η/T ) and g

(1)
2 = 4ε

(1)
3 (η2/3 + 2/T ).

We first note that (1,η) is asymptotically stable if η >

9/T 2, and is unstable otherwise. That is, (1,η) undergoes a
bifurcation at ηbif = 9/T 2. The off-on and on-off switching
are based on this bifurcation, and are realized dynamically by
appropriate changes in linear amplifier gain. To explain this,
we denote by ηth the value of the decision level, distinguishing
between on and off transmission states. The off-on switching
is achieved by a fast increase in η from ηi < ηbif to ηf >

ηbif , such that the steady state (1,η) turns from unstable to
asymptotically stable. Consequently, before switching, η1 and
η2 tend to ηs1 > ηth and ηs2 < ηth, while after switching, η1

and η2 tend to 1 and η > ηth. Thus, transmission of sequence
2 is turned on in this case. On-off switching is realized in
a similar manner by a fast decrease in η from ηi > ηbif to
ηf < ηbif . In this case η1 and η2 tend to 1 and η > ηth before
the switching, and to ηs1 > ηth and ηs2 < ηth after switching.
As a result, transmission of sequence 2 is turned off by the
change in η.

Our coupled-NLS-equation simulations show that stable
ultralong-distance transmission requires T values larger than
15. Indeed, for smaller T values, high-order effects that are
neglected by Eqs. (4) and (5), such as intrasequence interaction
and radiation emission, lead to pulse pattern degradation and
to breakdown of the LV model description at large distances.
To enable comparison with results of Ref. [19] we choose
T = 20, but emphasize that similar results are obtained for
other T values satisfying T > 15. For T = 20, bifurcation
occurs at ηbif = 0.0225. In transmission stabilization and off-
on switching we use η = 1 > ηbif , a choice corresponding to
typical amplitude setups in many soliton-based transmission
systems [2,16]. In on-off switching, we use η = 0.02 < ηbif .
Note that the small η value here is dictated by the small value
of ηbif .

Let us describe in some detail the stability and bifurcation
analysis for the equilibrium states of Eq. (4), for parameter
values a = 1, b = η, and T > 15, which are used in both
transmission stabilization and switching [63]. For these pa-
rameter values, the system (4) can have up to five steady
states, located at (1,η), (0,0), (Aη,0), (0,Bη), and (Cη,Dη),
where Aη = (1 + 6η/T )1/2, Bη = (η2 + 6/T )1/2,

Cη =
[

−q (η)

2
+

(
q2 (η)

4
+ p3 (η)

27

)1/2
]1/3

+
[

−q (η)

2
−

(
q2 (η)

4
+ p3 (η)

27

)1/2
]1/3

− 1

3
,

Dη = η + T (1 − C2
η)/6, p(η) = −12η/T − 4/3, and q(η) =

−16/27 − 8η/T + 216/T 3. Note that the first four equilib-
rium states exist for any η > 0 and T > 0. For T > 15,
the equilibrium state (Cη,Dη) exists provided that h1(η) > 0,
where h1(η) = (1 + 6η/T )1/2 − Cη. As mentioned earlier,
the state (1,η) is asymptotically stable if η > 9/T 2 and is
unstable otherwise. In contrast, the state (0,0) is unstable
for any η > 0 and T > 0. The state (Aη,0) is asymptotically
stable if f1(η) = (ηT )3/36 + ηT 2/3 − 6 < 0 and is unstable
otherwise, while (0,Bη) is asymptotically stable for f2(η) =
T 3/36 + ηT 2/3 − 6 < 0 and is unstable otherwise. Finally,
the steady state (Cη,Dη) is asymptotically stable if h2(η) >
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FIG. 1. (Color online) Phase portraits for the LV model (4) with
parameter values a = 1, b = η = 1, and T = 20 in (a), and a =
1, b = η = 0.02, and T = 20 in (b). The blue curves are numerically
calculated trajectories. The four red circles in (a) correspond to
the four equilibrium states. The red circle, black down triangle,
magenta up triangle, blue circle, and orange square in (b) represent
the equilibrium states at (Cη,Dη), (1,η), (Aη,0), (0,0), and (0,Bη),
respectively, where Aη = 1.0030, Bη = 0.5481, Cη = 0.999 25, and
Dη = 0.025 02.

0 and h3(η) < 0, where h2(η) = (1/3 + 2η/T − 2Dη/T −
C2

η)(η2/3 + 2/T − 2Cη/T − D2
η) − 4CηDη/T 2 and h3(η) =

(1 + η2)/3 + 2(1 + η)/T − 2(Cη + Dη)/T − (C2
η + D2

η).
We now describe the phase portraits of Eq. (4), for the

parameter values used in our coupled-NLS-equation simu-
lations. For the set a = 1, b = η = 1, and T = 20, used in
transmission stabilization and off-on switching, Eq. (4) has
four steady states at (1,1), (0,0), (

√
1.3,0), and (0,

√
1.3),

of which only (1,1) is stable. In fact, as seen in the phase
portrait of Eq. (4) in Fig. 1(a), the steady state (1,1) is globally
asymptotically stable, i.e., the soliton amplitudes η1 and η2

both tend to 1 for any nonzero input amplitudes η1(0) and η2(0).
The global stability of the steady state (1,1) is crucial to the
robustness of pulse control in hybrid waveguide setups, since
it allows for transmission stabilization and off-on switching
even for input amplitude values that are significantly smaller
or larger than 1. Furthermore, it can be used in broadband
“transmission recovery,” i.e., in the stable enhancement of

pulse energies for multiple-pulse sequences that experienced
severe energy decay.

For the set a = 1, b = η = 0.02, and T = 20, used
in on-off switching, Eq. (4) has five steady states at
(1,η), (0,0), (0,Bη), (Aη,0), and (Cη,Dη), where Aη =
1.0030, Bη = 0.5481, Cη = 0.999 25, and Dη = 0.025 02.
The first three states are unstable, while (Aη,0), and (Cη,Dη)
are asymptotically stable, as is also seen in the phase portrait
of Eq. (4) in Fig. 1(b). The asymptotic stability of (Aη,0)
and (Cη,Dη) along with their proximity to (1,0) enable the
switching off of transmission of sequence 2 for a wide range
of input amplitude values.

Note that the instability of the steady state (0,0) of Eq. (4),
which is related to the presence of linear gain in the waveguide,
is a major drawback of a uniform waveguide setup with
linear gain and cubic loss. Indeed, the presence of linear gain
leads to enhancement of small-amplitude waves that, coupled
with modulational instability, can cause severe pulse-pattern
degradation. In the hybrid waveguide setup considered in the
current paper, this instability is overcome by employing a GL
gain-loss profile in even-numbered spans. We therefore turn to
describe the results of stability analysis for the corresponding
LV model (5). We choose η = 1, and require g

(2)
j < 0 for

j = 1,2, i.e., the solitons propagate in the presence of net
linear loss. Due to the linear loss, the steady state at (0,0)
is asymptotically stable, and as a result, energies of small-
amplitude waves decay to zero, and pulse-pattern corruption is
suppressed. In transmission stabilization and off-on switching
stabilization, we require that (1,1) is an asymptotically stable
steady state of Eq. (5). This requirement along with g

(2)
j < 0

for j = 1,2 yield the following condition [18]:

(4T + 90)/(5T + 30) < κ < (8T − 15)/(5T − 15)

for T � 60/17. (6)

The values κ = 1.6 and T = 20 are used in coupled-NLS-
equation simulations of transmission stabilization, while κ =
1.65 and T = 20 are chosen in simulations of off-on switching
stabilization. In stabilization of on-off switching we choose T

and κ values satisfying

κ > (8T − 15)/(5T − 15) for T � 60/17, (7)

such that (1,1) is unstable and another steady state at (ηs1,0)
is asymptotically stable. In this manner, the switching off of
soliton sequence 2 is stabilized in even-numbered spans. In
coupled-NLS-equation simulations for on-off switching, κ =
2 and T = 20 are used and ηs1 = 1.382 55. We emphasize,
however, that similar results are obtained for other values of T

and κ satisfying T > 15 and inequalities (6) or (7).

III. NUMERICAL SIMULATIONS WITH THE HYBRID
COUPLED-NLS-EQUATION MODEL

The LV models (4) and (5) are based on several sim-
plifying assumptions, whose validity might break down at
intermediate-to-large propagation distances. In particular, the
LV models neglect intrasequence interaction, radiation emis-
sion effects, and temporal inhomogeneities. These effects can
lead to instabilities and pulse-pattern corruption, and also to
the breakdown of the LV description [17,18]. In contrast, the
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coupled-NLS-equation model (1) provides the full description
of the propagation, which includes all these effects. Thus, in
order to check whether long-distance transmission and robust
broadband switching can be realized, it is important to carry
out numerical simulations with the full coupled-NLS-equation
model.

The coupled-NLS-equation system (1) is numerically
solved using the split-step method with periodic boundary
conditions [1]. The use of periodic boundary conditions
means that the simulations describe propagation in a closed
waveguide loop. The initial condition consists of two periodic
sequences of 2J + 1 overlapping solitons with amplitudes
ηj (0) and zero phase:

ψj (t,0)=
J∑

k=−J

ηj (0) exp[iβj (t − kT )]

cosh[ηj (0)(t − kT )]
, (8)

where j = 1,2, and β1 = 0, β2 = 40, T = 20, and J = 2 are
used.

We first describe the results of numerical simulations
for transmission stabilization. In this case we choose a = 1
and b = η = 1, so that the desired steady state of soliton
amplitudes is (1,1). We use two waveguide spans [0,150) and
[150,2000] with gain-loss profiles consisting of linear gain
and cubic loss in the first span, and of linear loss, cubic gain,
and quintic loss in the second span. The cubic loss coefficient
in the first span is ε

(1)
3 = 0.015. The quintic loss coefficient

in the second span is ε5 = 0.05, and the ratio between cubic
gain and quintic loss is κ = ε

(2)
3 /ε5 = 1.6. The z dependence

of ηj obtained by numerical simulations with Eq. (1) for
input amplitudes η1(0) = 1.2 and η2(0) = 0.7 is shown in
Fig. 2. Also shown is the prediction of the LV models (4)
and (5). The agreement between the coupled-NLS-equation
simulations and the prediction of the LV models is excellent,
and both amplitudes tend to 1 despite the fact that the input
amplitude values are not close to 1. Furthermore, as can be seen
from the inset, the shape of the soliton sequences is retained
during the propagation, i.e., radiative instability is fully
suppressed. Similar results are obtained for other choices of
input amplitude values. We emphasize that the distances over
which stable propagation is observed are larger by factors of 11
and 2 compared with the distances for the uniform waveguide
setups considered in Refs. [17] and [19]. Additionally, the
range of input amplitude values for which stable propagation
is observed is significantly larger for hybrid waveguides
compared with uniform ones. We therefore conclude that trans-
mission stabilization is significantly enhanced by employing
the hybrid waveguides described in the current paper.

We now turn to describing numerical simulations for
transmission switching. The off-on and on-off transmission of
sequence 2 is dynamically realized in odd-numbered spans by
abrupt changes in the value of η at distances zs(m+1) satisfying
z2m < zs(m+1) < z2m+1. These changes correspond to changes
in the linear gain coefficients g

(1)
1 = 4ε

(1)
3 (1/3 + 2η/T ) and

g
(1)
2 = 4ε

(1)
3 (η2/3 + 2/T ). In off-on switching, η = 0.02 for

z2m � z < zs(m+1) and η = 1 for zs(m+1) � z < z2m+1, so that
the steady state (1,η) becomes asymptotically stable. In on-off
switching, the same η values are used in reverse order and
(1,η) becomes unstable. After switching, transmission is
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FIG. 2. (Color online) The z dependence of soliton amplitudes ηj

for transmission stabilization with input amplitude values η1(0) = 1.2
and η2(0) = 0.7. The blue circles and green triangles represent η1(z)
and η2(z) as obtained by numerical solution of Eq. (1), while the solid
red and dash-dotted black curves correspond to η1(z) and η2(z) values
as obtained by the LV models (4) and (5). The inset shows the pulse
patterns at the final distance zf = 2000. The dashed black and solid
blue lines in the inset correspond to |ψ1(t,zf )| and |ψ2(t,zf )| obtained
by numerical simulations with Eq. (1), while the dash-dotted red
and dotted green curves represent |ψ1(t,zf )| and |ψ2(t,zf )| obtained
by summation over fundamental NLS solitons with unit amplitudes,
frequencies β1 = 0 and β2 = 40, and positions yjk(zf ) for j = 1,2
and −2 � k � 2, which were measured from the simulations.

stabilized in even-numbered spans by a proper choice of κ .
In off-on switching stabilization, κ = 1.65 is used, so that
(1,1) is asymptotically stable. In on-off switching stabilization,
κ = 2 is used, so that (1,1) is unstable and (1.382 55,0) is
asymptotically stable.

The following two setups of consecutive transmission
switching are simulated: (A) off-on-off-on-off-on-off-on, (B)
off-on-off-on-off-on-off. We emphasize that similar results
are obtained with other transmission switching scenarios.
The physical parameter values in setup A are T = 20, ε

(1)
3 =

0.03, ε5 = 0.08, and κ(m+1) = 1.65 for 0 � m � 3. The
waveguide spans are determined by z2m = 600m for 0 � m �
4 and z2m+1 = 140 + 600m for 0 � m � 3. That is, the spans
are [0,140), [140,600), . . . , [1800,1940), and [1940,2400].
The switching distances are zs(m+1) = 100 + 600m for 0 �
m � 3. The values of the physical parameters in setup B are
the same as in setup A up to z6 = 1800. At this distance,
on-off switching is applied, i.e., zs4 = 1800. In addition,
z7 = 1940, z8 = 3000, and κ = 2 for z7 < z � z8.

The results of numerical simulations with the coupled-
NLS-equation model (1) for setups A and B and input
soliton amplitudes η1(0) = 1.1 and η2(0) = 0.85 are shown
in Figs. 3(a) and 3(b), respectively. A comparison with the
predictions of the LV models (4) and (5) is also presented. The
agreement between the coupled-NLS-equation simulations
and the predictions of the LV models is excellent for both
switching scenarios. Furthermore, as shown in the inset of
Fig. 3(b), the shape of the solitons is preserved throughout
the propagation and no growth of small-amplitude waves
(radiative instability) is observed. The propagation distances
over which stable transmission switching is observed are larger
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FIG. 3. (Color online) The z dependence of soliton amplitudes
ηj in multiple transmission switching setups A (a) and B (b).
The blue circles and green triangles represent η1(z) and η2(z) as
obtained by numerically solving Eq. (1), while the solid red and
dash-dotted black curves correspond to η1(z) and η2(z) predicted by
the LV models (4) and (5). The inset shows the pulse pattern of
sequence 1 at the final distance zf = 3000 |ψ1(t,zf )| in setup B, as
obtained by numerical solution of Eq. (1) (solid red curve) and by
summation over fundamental NLS solitons (dotted black curve) with
amplitude η1 = 1.382 55, frequency β1 = 0, and positions y1k(zf ) for
−2 � k � 2, which were measured from the simulations.

by a factor of 3 compared with the distances reported in
Ref. [19], even though in the current paper, seven and eight
consecutive switching events are demonstrated compared with
only one switching event in Ref. [19]. Moreover, off-on trans-
mission switching is observed over a large range of amplitude
values, including η2 values smaller than 0.35. Consequently,
the value of the decision level ηth for distinguishing between
on and off states can be set as low as ηth = 0.35 compared
with ηth = 0.65 for the uniform waveguides considered in
Ref. [19]. Based on these observations, we conclude that
robustness of transmission switching is drastically increased in
hybrid waveguide systems with a clever choice of the physical
parameters. The increased robustness is a result of the global
asymptotic stability of the steady state (1,1) for the LV model
(4), which is used to bring amplitude values close to their
desired steady-state values, and the local asymptotic stability
of (0,0) and (1,1) for the LV model (5), which is employed to

stabilize the transmission against growth of small-amplitude
waves.

IV. CONCLUSIONS

In summary, we developed a method for transmission
stabilization and switching for colliding sequences of optical
solitons in broadband waveguide systems with nonlinear loss
or gain. The method is based on employing hybrid waveguides,
consisting of odd-numbered spans with linear gain and cubic
loss, and even-numbered spans with a GL gain-loss profile,
where the switching is dynamically realized by fast changes
in linear amplifier gain.

We showed that dynamics of soliton amplitudes can be
described by a hybrid LV model. The stability and bifurcation
analysis of the steady states of the LV model were used
to guide the choice of physical parameter values, which
leads to a drastic enhancement in transmission stability and
switching robustness. The hybrid nature of the waveguide
and the corresponding LV model is essential to this enhanced
stability. More specifically, the global asymptotic stability of
the steady state (1,1) of the LV model in odd-numbered spans
was used to bring amplitude values close to their desired
steady-state values, while the local asymptotic stability of
the LV model in even-numbered spans was employed to
stabilize the transmission against higher-order instability due
to growth of small-amplitude waves. Numerical simulations
with the coupled NLS equations, which took into account in-
trasequence and intersequence interaction as well as radiation
emission, confirmed the predictions of the hybrid LV model.
The simulations showed complete suppression of radiative
instability due to growth of small-amplitude waves, which
enabled stable propagation over distances larger by an order
of magnitude compared with the results reported in Ref. [17]
for transmission in uniform waveguides with linear gain and
cubic loss. Moreover, multiple on-off and off-on dynamic
switching events, which are realized by fast changes in linear
amplifier gain, were demonstrated over a wide range of soliton
amplitudes, including amplitude values smaller than 0.35. As
a result, the value of the decision level for distinguishing
between on and off transmission states can be set as low as
ηth = 0.35, compared with ηth = 0.65 for the single static
switching event that was demonstrated in Ref. [19] in uniform
waveguides with a GL gain-loss profile. Note that the increased
flexibility in off-on switching in hybrid waveguides can be used
for transmission recovery, i.e., for the stable amplification of
soliton sequences, which experienced significant energy decay,
to a desired steady-state energy value. Based on these results,
we conclude that the hybrid waveguide setups studied in the
current paper lead to significant enhancement of transmission
stability and switching robustness compared with the uniform
nonlinear waveguides considered earlier.

Finally, it is worth making some remarks about potential ap-
plications of hybrid waveguides with different crosstalk mech-
anisms than the ones considered in the current paper. Of par-
ticular interest are waveguide setups where the main crosstalk
mechanism in odd-numbered and even-numbered spans are
due to delayed Raman response and a GL gain-loss profile,
respectively. One can envision employing these hybrid waveg-
uides for enhancement of supercontinuum generation. Indeed,
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the interplay between Raman-induced energy exchange in
soliton collisions and the Raman self-frequency shift is known
to play a key role in widening the bandwidth of the radiation
[64–68]. However, the process is somewhat limited due to the
fact that energy is always transferred from high-frequency
to low-frequency components [1]. This limitation can be
overcome by employing waveguide spans with a GL gain-loss
profile subsequent to spans with delayed Raman response.
Indeed, the main effect of cubic gain on soliton collisions is
an energy increase for both high- and low-frequency solitons.
As a result, the energies of the high-frequency components of
the radiation will be replenished in even-numbered spans. This

will in turn sustain the supercontinuum generation along longer
propagation distances and might enable a wider radiation
bandwidth compared with the one in uniform waveguides,
where delayed Raman response is the main crosstalk-inducing
mechanism.
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and A. Flores-Rosas, Opt. Express 16, 2636 (2008).

[67] E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and
H. Rigneault, J. Opt. Soc. Am. B 28, 1716 (2011).

[68] M. Andreana, A. Labruyère, A. Tonello, S. Wabnitz, P. Leproux,
V. Couderc, C. Duterte, A. Cserteg, A. Bertrand, Y. Hernandez,
D. Giannone, S. Hilaire, and G. Huss, Opt. Express 20, 10750
(2012).

013839-9

http://dx.doi.org/10.1063/1.321997
http://dx.doi.org/10.1063/1.321997
http://dx.doi.org/10.1063/1.321997
http://dx.doi.org/10.1063/1.321997
http://dx.doi.org/10.1103/PhysRevA.79.053841
http://dx.doi.org/10.1103/PhysRevA.79.053841
http://dx.doi.org/10.1103/PhysRevA.79.053841
http://dx.doi.org/10.1103/PhysRevA.79.053841
http://dx.doi.org/10.1007/s00340-011-4641-x
http://dx.doi.org/10.1007/s00340-011-4641-x
http://dx.doi.org/10.1007/s00340-011-4641-x
http://dx.doi.org/10.1007/s00340-011-4641-x
http://dx.doi.org/10.1088/1367-2630/7/1/217
http://dx.doi.org/10.1088/1367-2630/7/1/217
http://dx.doi.org/10.1088/1367-2630/7/1/217
http://dx.doi.org/10.1088/1367-2630/7/1/217
http://dx.doi.org/10.1038/nature01938
http://dx.doi.org/10.1038/nature01938
http://dx.doi.org/10.1038/nature01938
http://dx.doi.org/10.1038/nature01938
http://dx.doi.org/10.1063/1.123521
http://dx.doi.org/10.1063/1.123521
http://dx.doi.org/10.1063/1.123521
http://dx.doi.org/10.1063/1.123521
http://dx.doi.org/10.1049/el:20001289
http://dx.doi.org/10.1049/el:20001289
http://dx.doi.org/10.1049/el:20001289
http://dx.doi.org/10.1049/el:20001289
http://dx.doi.org/10.1038/nphoton.2010.186
http://dx.doi.org/10.1038/nphoton.2010.186
http://dx.doi.org/10.1038/nphoton.2010.186
http://dx.doi.org/10.1038/nphoton.2010.186
http://dx.doi.org/10.1038/nphoton.2013.304
http://dx.doi.org/10.1038/nphoton.2013.304
http://dx.doi.org/10.1038/nphoton.2013.304
http://dx.doi.org/10.1038/nphoton.2013.304
http://dx.doi.org/10.1364/OE.17.002326
http://dx.doi.org/10.1364/OE.17.002326
http://dx.doi.org/10.1364/OE.17.002326
http://dx.doi.org/10.1364/OE.17.002326
http://dx.doi.org/10.1007/s12274-010-0082-9
http://dx.doi.org/10.1007/s12274-010-0082-9
http://dx.doi.org/10.1007/s12274-010-0082-9
http://dx.doi.org/10.1007/s12274-010-0082-9
http://dx.doi.org/10.1364/OE.19.006155
http://dx.doi.org/10.1364/OE.19.006155
http://dx.doi.org/10.1364/OE.19.006155
http://dx.doi.org/10.1364/OE.19.006155
http://dx.doi.org/10.1109/LPT.2006.882225
http://dx.doi.org/10.1109/LPT.2006.882225
http://dx.doi.org/10.1109/LPT.2006.882225
http://dx.doi.org/10.1109/LPT.2006.882225
http://dx.doi.org/10.1016/j.optcom.2011.06.032
http://dx.doi.org/10.1016/j.optcom.2011.06.032
http://dx.doi.org/10.1016/j.optcom.2011.06.032
http://dx.doi.org/10.1016/j.optcom.2011.06.032
http://dx.doi.org/10.1364/OE.15.001773
http://dx.doi.org/10.1364/OE.15.001773
http://dx.doi.org/10.1364/OE.15.001773
http://dx.doi.org/10.1364/OE.15.001773
http://dx.doi.org/10.1016/j.optcom.2010.04.044
http://dx.doi.org/10.1016/j.optcom.2010.04.044
http://dx.doi.org/10.1016/j.optcom.2010.04.044
http://dx.doi.org/10.1016/j.optcom.2010.04.044
http://dx.doi.org/10.1364/OE.14.009391
http://dx.doi.org/10.1364/OE.14.009391
http://dx.doi.org/10.1364/OE.14.009391
http://dx.doi.org/10.1364/OE.14.009391
http://dx.doi.org/10.1364/OE.14.009844
http://dx.doi.org/10.1364/OE.14.009844
http://dx.doi.org/10.1364/OE.14.009844
http://dx.doi.org/10.1364/OE.14.009844
http://dx.doi.org/10.1364/OE.16.002636
http://dx.doi.org/10.1364/OE.16.002636
http://dx.doi.org/10.1364/OE.16.002636
http://dx.doi.org/10.1364/OE.16.002636
http://dx.doi.org/10.1364/JOSAB.28.001716
http://dx.doi.org/10.1364/JOSAB.28.001716
http://dx.doi.org/10.1364/JOSAB.28.001716
http://dx.doi.org/10.1364/JOSAB.28.001716
http://dx.doi.org/10.1364/OE.20.010750
http://dx.doi.org/10.1364/OE.20.010750
http://dx.doi.org/10.1364/OE.20.010750
http://dx.doi.org/10.1364/OE.20.010750



