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Characteristics of the extreme events observed in the Kerr-lens mode-locked Ti:sapphire laser
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Kerr-lens mode-locked Ti:sapphire lasers are known to display three coexistent modes of operation: continuous
wave, transform limited pulses (P1), and positive chirped pulses (P2). Extreme events (sometimes also called
optical rogue waves), in the form of pulses of high energy appearing much often than in a Gaussian distribution,
are observed in the chaotic regime of the P2 mode, but not of P1. The extreme events in P2 appear unpredictably,
but their separation (measured in number of round trips) is a simple combination of the numbers 11 and 12
(which were named “magic numbers”). The existence of extreme events in P2 and not in P1, and also of the
magic numbers, have been successfully reproduced by numerical simulations based on a five-variables iterative
map, but the intuitive insight on the physical causes has been limited. In this paper, we present evidence that
the extreme events in this laser appear if the amount of self-phase modulation on the pulses is above a certain
threshold, and also that the P1 mode becomes unstable before crossing that threshold. This explains why the
extreme events are observed in P2, and not in P1. Remarkably, even though the values of self-phase modulation
on all the pulses (in the chaotic regime) are widely spread, the values inside the set of extreme events are relatively
well defined. Finally, the magic numbers are found to be the residuals of the periodical orbits of the “cold” laser
cavity when they are perturbed by the opposite effects of a dissipative term, due to the presence of transversal
apertures, and an expansive term, due to the self-focusing.
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I. INTRODUCTION

Waves of extremely high amplitude, appearing outside
the Gaussian distribution, are important phenomena in deep
ocean waters, and have received the name of “freak,” or
“rogue,” waves [1]. In the last decade, scientific interest has
increased on analogous rare or extreme events (EEs) of large
amplitude observed in areas other than oceanography. In this
sense, “optical rogue waves” were first observed in the light
intensity fluctuations at the edge of the spectrum produced by
ultrashort pulse pumped, microstructured optical fibers, in the
threshold of supercontinuum generation [2,3]. Conditions for
their formation were determined in experiments using optical
fibers [4]. Optical EEs were observed in a Vertical Cavity
Surface Emitting Laser (VCSEL) with an injected signal [5],
in mode-locked fiber lasers [6–9], in all-solid-state lasers with
a (slow) saturable absorber [10], and, what is of our interest
here, in the Kerr-lens mode-locked (KLM) Ti:sapphire laser
[11] (fast saturable absorber). A review on optical rogue waves
has been recently published [12].

The quantitative definition of an EE usually is (a) amplitude
higher than twice the “significant wave height” or “significant
intensity” I1/3 [7,8,13], which is the average calculated among
the set of the one third highest events in the series [14]. An
event is then considered “extreme” if its abnormality index
AI ≡ Ievent/I1/3 is larger than 2. Alternatively, the definition
is (b) amplitude higher than four times the standard deviation.
These two definitions can be coincident or not, depending on
the form of the distribution. The optical community has often
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employed the additional criterion of a long-tailed or L-shaped
distribution. In previous contributions, we have also used the
value of the kurtosis as an additional quantitative measure of
a non-Gaussian feature. A value of the kurtosis larger than 3
means a distribution with a tail longer and higher than that
of a Gaussian distribution. It provides an additional numerical
criterion to classify a given dynamical regime as one with EE.

The KLM Ti:sapphire laser is the most widely used source
of femtosecond (fs) light pulses nowadays. Its dynamics is
intrinsically complex, because it is ruled by a balance of several
spatial and temporal effects. In the temporal domain the group
velocity dispersion (GVD) in all the optical components, and
the intensity-dependent self-phase modulation (SPM), mostly
in the laser rod, are balanced by the negative dispersion
produced by an intracavity pair of prisms. In the spatial
domain, the relevant effects are due to the cavity’s geometrical
configuration and the intensity-dependent self-focusing (SF).
The amplification in the active medium is an additional source
of nonlinearity through gain saturation. The pulse energy, the
beam size, and the pulse duration are coupled by both the
SPM and the SF effects. Three coexistent dynamical modes
of operation are observed in the laser output if the total GVD
is negative: continuous wave (cw), transform limited pulses
(P1), and positive chirped pulses (P2). The laser spontaneously
evolves from one mode to the other even in the absence of
noise [15], and it is possible to induce a transition from one to
the other by mechanical perturbations (say, by gently tapping a
mirror mount). As the GVD of the laser cavity is adjusted close
to zero from the negative side, the pulsed modes evolve towards
chaos following a different route: P1 through quasiperiodicity,
P2 through intermittency [16]. Be aware that what we call
“mode” here means a dynamical characteristic of operation,
not a spatial cavity mode (say, a Gauss-Laguerre mode). The
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laser is observed to oscillate in a single transversal spatial
cavity mode.

Regarding the EEs observed in this laser, two phenomena
appear especially intriguing:

(i) EEs are observed, and numerically predicted to occur,
in the chaotic regime of P2, but not of P1.

(ii) Even though the appearance of a single EE seems
to be unpredictable, preferred numbers (measured in cavity
round trips, or intermediate non-EE pulses) are observed in
the distance between successive EEs. We named them “magic
numbers” [17].

Both phenomena are accurately reproduced by a numerical
simulation based on a five-variables iterative map, yet, it
provides limited insight on the physical causes. In this paper,
we present evidence that the EEs in this laser appear if the
average SPM crosses a certain threshold value. This result is
in compliance with the report of different types of instabilities
in fiber lasers [18]. We find that EEs are not observed in the
P1 mode for, at the parameters’ values beyond that threshold,
this mode is unstable and the system rapidly evolves into the
P2 mode. Finally, the magic numbers are due to the residuals
of the periodic orbits of the “cold” laser cavity (i.e., the optical
cavity without gain, losses, SF, or SPM) when it is perturbed
by opposite dynamical effects.

The study of the EEs observed in KLM lasers, as a subject
of dynamical systems, is interesting by itself. Besides, it will
lead to a deeper understanding of the operation of these lasers
and, eventually, to an improvement of their performance. KLM
lasers may also provide a convenient test bench to study the
general features of the phenomenon of EEs because laser
dynamics evolves instantaneously (at the human time scale)
and their control parameters are easy to adjust. One of the
motivations to study oceanic rogue waves is the damage they
inflict to ships or platforms. To the best of our knowledge,
there are no reports on damage produced in optical systems by
EEs in Ti:sapphire lasers. In this sense, it is fortunate that EEs
exist only in the P2 mode, because the P1 mode is the preferred
one in practice. It is also possible that damage produced by
EEs in lasers have not been recognized as such.

In the next section, we review the necessary background.
We describe the experimental setup where EEs are observed,
and then we review the theoretical description with the five-
variables iterative map. In Sec. III, we present evidence that the
existence of EEs in this laser is consistent with the crossing of
a threshold determined by the average value of the SPM, and
we also explain why the EEs are observed in the P2 mode only.
In Sec. IV, we consider the problem of the magic numbers.

II. BACKGROUND

A. The experiment: Setup and main results

The scheme of our Ti:sapphire laser is shown in Fig. 1. It
is an X configuration, with a flat High Reflectivity (HR) rear
mirror (M4) and a 12% output coupler (M1). The total cavity
length is 1724 mm (round-trip frequency: 87 MHz). For a
5-W cw pump at 532 nm, the output power is 400 mW in the
spectral region around 800 nm. Typical pulse durations in the
uniform mode-locking regime are 35 fs (P1 mode) and 65 fs
(P2 mode). We observe the mode-locking pulse train with a fast
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FIG. 1. Scheme of the laser. LB: pump focusing lens (f =
10 cm); M2,3: curved mirrors (R = 10 cm); MP1,2: plane HR mir-
rors; P1,2: pair of prisms. Distances in mm: M3–R = R–M2 = 50,
M2–MP2 = 140, MP2–M1 = 465, M3–P1 = 297, P1–MP1 = 198,
MP1–P2 = 415, P2–M4 = 109. The prisms’ positions are adjusted
to get negative total GVD.

photodiode (0.2-mm diameter, 0.5-ns rise time) and record the
signal in the memory of a high-speed sampling oscilloscope.
Note that the photodiode is too slow to resolve the fs pulse
shape—what we observe is the instrumental response to a
“delta” input—and we then analyze the time series [16].

In the bistable region of the parameters, the laser wanders
from one mode to the other in a time scale of several minutes.
The modes can be distinguished by the pulse duration, the
chirp, the spectrum, and even by the naked eye, as a change
in the size of the laser spot. The pulses of the mode P1
are transform limited, and about half the length of the P2
ones [15]. EEs are easily observed in the chaotic regime
of P2 (Fig. 2) [11]. Be aware that the experimental series
is not an oscilloscope trace, but that each point represents
the total energy of a single pulse, as it is obtained from the
digitized experimental data by following the algorithm detailed
in [16]. The theoretical series corresponds to the pulse energies
calculated from the iterative map described in Sec. II B. On
the right, a zoom of each series shows their detailed structure.
The visible high-intensity peaks are caused by the periodicities
of the cold optical cavity and are at the origin of the magic
numbers, as explained in Sec. IV.

Typically, 100–200 pulses out of 104 are EEs. On the other
hand, no EEs are observed in the chaotic regime of the P1
mode. This result supports the hypothesis of a nontrivial and
deterministic nature of the observed EE. For, if the EEs in P2
were mere noise, or caused by self-Q-switching, there is no
reason why they would not be observed in the coexisting P1
mode too. The theoretical approach based on the numerical
running of a five-variables iterative map predicts the existence
of EEs for P2 and not for P1, hence agreeing with the
observations.

The hypothesis of a deterministic origin for these EEs
is strengthened by the observation that, once inside the
intermittent high-energy region, the EEs tend to appear at
definite distances of each other [17]. Figure 3 shows the
histograms of the distances between successive EEs, measured
as the number of cavity round trips, for a representative time
series. It is immediately seen that they are not uniformly
distributed, but that they take only some preferred (magic)
numbers: {11, 12, 23, 35, 46, 58, 94} in the experimentally
obtained histogram, and {11, 12, 23, 24, 34, 35, 46, 58} in the
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FIG. 2. Chaotic regime of the P2 mode. The horizontal dashed
line indicates the threshold of EEs for the full time series according
to the 2×AI criterion. (a) Experimental time series, zoom of �2000
pulses of 9978 with a total of 205 EEs, kurtosis = 4.91; (b) further
zoom of the same; (c) theoretical time series obtained from the five-
variables iterative map, zoom of �2000 iterations of 104 with a total
of 226 EEs, kurtosis = 4.98; (d) further zoom of the same. Note
the intermittent excursions to a regime of pulses of higher energy
in both series. Be aware that each point in (b) and (d) is not the
sample of a digital oscilloscope, but the energy of a single pulse in
the mode-locking train. The periodicities behind the magic numbers
(Sec. IV) are clearly visible. Average pulse duration: 80 fs.

theoretically obtained one. Note the remarkable coincidence
between the experimental and the theoretical distributions. It
is possible to predict the moment when an EE will not appear,
despite the dynamics being chaotic. Note also that the magic
numbers are simple combinations of 11 and 12. There are,
however, missing combinations, as 22, 57, and 69 in both sets.
Besides, there is an internal structure: If the distance between
the n-EE and the (n + 1)-EE is 11, there is a 93% probability
that the distance to the (n + 2)-EE is 12 (this probability is 77%
in the theoretical series). In the same way, 23 follows 12 (with
probability 82% both in the experimental and the theoretical
series), 12 follows 23 (66% experimental and 40% theoretical),
23 follows 35 (61% experimental and 56% theoretical), and
after 58 comes 35 in 100% of the cases (both experimental and
theoretical). Second-step n to n + 2 correlations also exist, but

FIG. 3. Histograms of the number of EEs according to the
distance (in cavity round trips) to the next EE in the chaotic regime
of P2; left: experimental results; right: theoretical ones.

they are weaker. There is no correlation between the energy of
an EE and its magic number [17].

The numerical coincidences between the experimental and
the theoretical results indicate that these preferred numbers
have a deep and robust cause, and that noise plays a minor
role in the dynamics of EEs in this type of laser. It is to be
noted that no fine-tuning of the many laser parameters has
been performed in the numerical simulations. Tabulated and
directly measured values have been used. Only the (negative)
GVD has been adjusted, to fit the observed average pulse
duration (80 fs, in this case).

B. The five-variables iterative map

The description of KLM lasers with iterative maps has been
developed in several previous publications [15–17,19,20]. For
completeness, it is briefly reviewed in the following lines. The
reader familiar with this approach may skip this section.

The description with maps is alternative to that with a
differential equation; no information is gained or lost. There
are, however, some immediate advantages: The number of
dimensions of the problem is reduced in (at least) one,
the stability of the solutions is easily determined, and the
numerical simulations run easier and faster. Period-doubling
bifurcations are trivially described. However, writing the map
equation can be as difficult as solving the differential equation,
unless the physical system has some “internal clock” that
determines the position of the adequate discrete times. In
the case of KLM lasers, that clock is provided by the cavity
round-trip time [19].

We suppose a Gaussian pulse, the electric field is given
by E(t) = E0exp(–ikr2/2q)exp(–ikt2/2p) where r is the
transverse distance to the optical axis; k is the wave number;
and p, q are the usual beam parameters defined by the
relationships [19,21]

1/q = n/R − 2i/kσ 2, (1)

1/p = Q/k − 2i/kτ 2, (2)

where σ is the spot radius, R the beam curvature radius, τ the
pulse duration, and Q the chirp (n is the index of refraction
of the medium). This approximation is found valid for pulses
longer than 20 fs [19]. As the pulse passes through an optical
component (or propagates a distance), q changes according to

qout = (A · qin + B)/(C · qin + D), (3)

where {A · · · D} are the elements of the usual 2 × 2 matrix of
that component [21]. An analogous relationship holds for p

[22]. The matrix describing the effect of the beam and pulse
propagation through several optical components is obtained as
the product of the matrices of each component. In standard
cavities of KLM lasers, the general 4 × 4 round-trip matrix
splits into two 2 × 2 diagonal blocks, which we call “spatial”
[ABCD] and “time” [KIJL] matrices [19].

The {A · · · L} elements include factors that are functions
of {σ,τ } and the pulse energy U . The factor due to SF is
γ = cγ U/(τσ 4) and the one due to SPM is β = cβU/(τ 3σ 2).
The constants cγ and cβ are proportional to the nonlinear index
of refraction of the Ti:sapphire. Their precise expression is
rather involved [23]. In our laser, they take the values cγ =
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1.38 × 10−11 cm3 fs/nJ and cβ = 2.18 × 10−7 cm2 fs/nJ. The
values of these factors are different if the pulse crosses
the Ti:sapphire rod in one direction or the other. We call
{γ ,β} the factors that correspond to the case when the pulse
propagates from M3 to M2 (see Fig. 1), and {γ ′,β ′} to the case
when it propagates from M2 to M3.

The matrix elements are then written as a series expansion:
A = A0 + γAγ + γ ′A′

γ + · · · (the same for B, C, and D)
being the coefficients of the expansion functions of the cavity’s
geometry. The time matrix is simpler: K = 1+ 2β ′δ, I = 2δ,
J = 2β ′βδ+β+β ′, L = 1+2βδ, where 2δ is the total GVD
per round trip. Note that the {γ ,β,γ ′,β ′} factors vanish in the
limit of zero energy pulse. This defines the cold cavity limit.
The equation for the pulse energy is obtained as an expansion
of the condition of gain saturation [19]. Defining Sn ≡ σ−2

n ,
ρn ≡ R−1

n , and Tn ≡ τ−2
n , the expressions that link the pulse

variable values at the n + 1 round trip with the ones at the n

round trip are [15,16]:

Sn+1 = Sn

(A + Bρn)2 + (BλSn)2 , (4a)

ρn+1 = (A + Bρn)(C + Dρn) + BD(λSn)2

(A + Bρn)2 + (BλSn)2 , (4b)

Tn+1 = Tn

(K + IQn)2 + ( ITn

π

)2 = Tn

L − IQn+1

K + IQn

, (4c)

Qn+1 = (K + IQn)(J + LQn) + IL
(

Tn

π

)2

(K + IQn)2 + ( ITn

π

)2 , (4d)

Un+1 = Un

{
1 − 2(U ∗Sn + UnS

∗)

μDs

+ 4(μ − 1)/μ

}
, (4e)

where μ = 1.61 is the product of the small signal gain 


and the single passage feedback factor due to passive losses,
and Ds = 1.22 mJ/cm2 is the saturation energy multiplied by
the cavity round trip. Here and in what follows, the asterisks
indicate the values of the variables at a fixed point. The fixed
points can be obtained analytically at first order in {γ ,β,γ ′,β ′}.
If t → ∞ then {γ ,β,γ ′,β ′}→0, which corresponds to the
cw mode of operation. The condition Qn = Qn+1 = 0 (i.e.,
zero chirp) leads to β = β ′ and corresponds to the P1 mode
(transform limited pulse) [15]. There is a fixed point with
positive chirp, for which β�β ′ (P2 mode) and one with
negative chirp, for which β�β ′ (P3 mode). The stability
analysis of the fixed points explains why the P3 mode is not
observed in practice [16].

For simplicity, we use three different forms of the map in
the numerical simulations. In one of them the condition β =
β ′ is enforced, and hence it describes the evolution of the P1
mode only, as if the P2 mode did not exist. We call it the “P1
map.” In the same way, the forced condition β ′ = 0 defines
the “P2 map.” A more involved numerical simulation, where
β and β ′ evolve freely, is called the “bistable map” and is able
to accurately describe the observed transitions from one mode
to the other [20].

Each mode follows its own route to chaos. The calculated
bifurcations diagrams in the energy variable are displayed in
Fig. 4. The period-three stable window of P1 at ≈ –50 fs2 was
observed by Bolton and Acton [24]. In practice, the bistable

FIG. 4. Bifurcation diagrams for the pulse energy of the modes
P1 (left) and P2 (right) as the GVD is varied, as obtained from their
own five-variables maps. The energy is scaled to U ∗; the fixed point
energy value of P1 at GVD = –130 fs2.

region spans between –60 and –40 fs2. Near –38 fs2 the P1
mode destabilizes into self-Q-switching, while the P2 mode
does it near–20 fs2. The observed self-Q-switching regime
puts a limit to the validity of the description with this iterative
map. The large excursions in energy of the P2 mode in its
chaotic regime correspond to the existence of EEs (note the
different vertical scales).

III. THE CAUSE OF THE OBSERVED EXTREME EVENTS

A. The SPM instability threshold

Early observations [11,17] and some results for fiber fs
lasers [18] suggested that a high value of the SPM could be
related with the formation of EEs in this laser. The value of
the SPM acting on each pulse in a chaotic mode-locked train
cannot be reliably measured in practice. Fortunately, we have
at hand the five-variables iterative map which, as it was shown
above, accurately reproduces the effects of interest here. The
calculated values of β provide a measure of the amount of
SPM on each pulse when crossing the laser rod. In Fig. 5, the
calculated values of β and U (the total energy) for each pulse
in a train of 105 are plotted, for each of the two modes, in the

FIG. 5. Calculated values of β (a measure of the SPM) and the
energy; each point represents one pulse of a chaotic time series of
105 after removal of a transient of 3 × 104. Note that almost all the
pulses of the P2 mode (in black) have a larger value of β than even
the largest ones of the P1 mode (in gray). The total number of EEs
(the points to the right of the vertical dotted line) is 331, they seem
to be fewer because of the scale of the figure. GVD = –42 fs2.
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region where both modes are chaotic (GVD = –42 fs2). All
the parameters correspond to the operation values of the real
laser.

The P1(P2) map is used to calculate the points that
correspond to the P1(P2) mode. The EEs are the dots at the
right of the vertical dotted line; note that they belong to the
P2 mode only. Even though the P2 pulses are spread over a
large area in the diagram, the EEs all have practically the same
value of β. We call this value βEE ≈ 10−6 fs−2. Curiously,
βEE is relatively low for the P2 mode. The pulses of the P1
mode, instead, accumulate in a small “cloud,” below βEE. The
spiraling orbit corresponding to a quasiperiodical excursion,
typical of the P1 mode, is noticeable.

Except for a few pulses of very low energy (on the left),
the whole population of the P2 mode has a larger value of β

than the highest of the P1 mode. It seems, then, probable that
the P2 mode displays an EE because it is above an instability
threshold related with the value of the SPM on the pulses.
We speculate that the order of magnitude of this threshold, if
measured with β, is given by βEE. No pulse in the P1 mode is
above βEE in Fig. 5, but some of them are just at the border. A
small increase in the pulse energy U should allow the P1 mode
to cross the threshold too. We therefore increase the small
signal gain 
 in the P1 map to increase the pulse energy, and
plot histograms of the new energy pulse distributions. A 10%
increase of 
 [Fig. 6(b)] changes the shape of the distribution
[compare with Fig. 6(a)]: a central maximum appears and a
high-energy tail starts to develop. For a 20% increase the tail
is longer [Fig. 6(c)] and, for a 40% increase, EEs appear at
last.

As a further check, the values of β,U for P1 are plotted in
Fig. 7. In comparison with Fig. 5, the form of the P1 cloud
has changed and most of the pulses are above βEE ≈ 10−6 fs−2

now, as expected. The β values of the set of EEs are much less

FIG. 6. Energy histograms (total 104 pulses) in the chaotic regime
of the P1 mode for increasing small signal gain 
, GVD = –42 fs2

(a) at the normal operating value of the small signal gain, 
 = 
∗;
(b) 
/
∗ = 1.1; (c) 
/
∗ = 1.2, (d) 
/
∗ = 1.4; a total of 16 EEs
are observed, kurtosis = 4.55. For (a–c), the value 2×AI is higher
than 100 nJ and out of the figure, for (d) 2×AI = 63 nJ.

FIG. 7. β and the energy as in Fig. 5 but for the P1 mode only,
and 
/
∗ = 1.4. Note the changes in shape and position of the cloud,
and the appearance of EEs. The total number of EEs (the points to the
right of the vertical dotted line) is 16; they seem to be fewer because
of the scale of the figure.

spread than for the whole set of pulses, as in Fig. 5. Yet, in
this case they are near the average β value instead of near the
minimum.

B. Stability of the P1 mode in the regime with EEs

The natural conclusion at this point is that EEs should
be observed also in the P1 mode if the small signal gain
were increased. Nevertheless, this does not occur. We operate
the laser under many different pump focusing and alignment
conditions. In no case do we observe EEs in the P1 mode, and
in all cases we observe them easily in the P2 mode. A hint to
explain this result is that the volumes of the basins of attraction
and the change of the eigenvalues, as the laser parameters are
varied, indicate that the P1 mode is generally less stable than
the P2. This numerical result is confirmed in the practice of
this laser’s operation.

Therefore, we run a numerical simulation with the bistable
map and 
/
∗ = 1.4, and follow the pulse evolution. An
example is shown in Fig. 8. The initial condition (U =
19 nJ, σ = 39 μm, τ = 19 fs,Q = 0) is very close to the fixed
point of the P1 mode. The pulses in the P1 mode are the cloud
on the left, and the ones in the P2 mode are the cloud on the
right; note the different average values of the pulse variables
in each cloud. After a few hundred iterations, corresponding
to some μs of real time, and precisely at the point of a large
excursion in the energy (the pulse energy reaches thrice the
fixed point value), the system crosses from the P1 region to
the P2 region, and remains there (where it does display EEs,
note the vertical spread of the dots). After many runs like this,
we see that in no case does the system remain in the P1 mode
for a time long enough to be observed in practice.

As a further check, we plot in Fig. 9 the values of β and
that of the largest (in modulus) eigenvalue, both for P1 and
P2, as a function of the small signal gain. For P2, β crosses
βEE ≈ 10−6 fs−2 before its largest eigenvalue crosses 1, while
the opposite occurs for P1. We conclude that EEs are not
observed in the P1 mode because this mode is unstable, against
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FIG. 8. Evolution of the pulse starting in the P1 mode (on the left)
towards the P2 mode (on the right). All the parameters correspond to
the operation point of the actual laser, except 
/
∗ = 1.4. Note that
a high-energy excursion in P1 (an EE?) is followed by a transition to
P2, where the system remains and displays EEs. The transition to P2
occurs after 218 round trips (�2.5 μs in real time); total length of the
run: 104 pulses. The variables are scaled to the fixed point of P1.

the coexisting P2 mode, if the gain is above the instability
threshold.

The SPM-related instability that produces EEs in this laser
is conceivably of a specific nature, still to be determined. We
just mention a possible link to the modulational instability
(MI) of the nonlinear Schrödinger equation. In physical
terms, the MI arises when the (focusing) Kerr nonlinearity
overwhelms the spread produced by the (negative) GVD scaled
with the frequency of some harmonic perturbation. Then the
perturbation grows exponentially, sidebands in the spectrum
are generated by the nonlinearity, and, eventually, rogue waves
are formed. The net value of GVD of our laser is negative, and
the Kerr term is self-focusing, as required. A condition parallel
to the MI can then be imagined, placing a threshold value to
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FIG. 9. Variation of β (curve, vertical axis on the left) and of
the modulus of the largest eigenvalue (broken line, axis on the right)
as a function of the scaled small signal gain 
/
∗, for the modes
P2 (left) and P1 (right); GVD = –42 fs2. For P2, the SPM crosses
βEE ≈ 10−6 fs−2 at 
/
∗ < 1, while the largest eigenvalue crosses 1
(and the mode becomes unstable) at 
/
∗ ≈ 2.5. Thus, at 
/
∗ = 1
the P2 is stable and displays EEs, as observed. Instead, for P1 the
eigenvalue is >1 at 
/
∗ ≈ 1.1 (and the mode becomes unstable)
and SPM > βEE at 
/
∗ ≈ 1.4. Thus, EEs are not observed in P1
because this mode becomes unstable before reaching the instability
threshold.

the Kerr nonlinearity (here, the SPM). An experimental result
suggesting that the EEs in this laser follow a process similar to
the MI is that spectral sidebands are observed in the P2 mode,
and not in P1 [11].

IV. THE CAUSE OF THE QUASIPERIODICITIES

A. Changes if the threshold value of EE is lowered

As discussed before, the distance between successive EEs
measured in round trips is observed to be a simple combination
of the numbers 11 and 12. The threshold that defines an EE
is rather arbitrary. If this threshold is lowered, “new” EEs
appear intermediate of the old ones, always at a distance that
is a combination of 11 and 12, depopulating the higher magic
numbers. For example, an experimental time series generates
the histogram of Fig. 3(a) if the threshold is established,
following the 2×AI criterion, as 87 arbitrary units (a.u.).
The total number of EEs is 237 and the magic numbers
are {11,12,23,35,46,58,94}. If the threshold is lowered to
80 a.u., the number of EEs increases to 328 and the set is
now {11,12,23,24,35}. If the threshold is further lowered to
75 a.u., the number of EEs increases to 397, the magic numbers
24 and 35 disappear, and the number 1 appears in the set (i.e,
there are two successive EEs). The same phenomenon occurs
in the theoretical time series, with a remarkable numerical
coincidence with the observed ones. It is evident that a robust
quasiperiodical phenomenon is underlying, with a typical
period related with 11 and 12 round trips, regardless of the
specific numerical value given to the threshold defining an EE.

B. Periodicities of the spatial part of the map

The evolution of the spatial part of the pulse (i.e., its beam
size and curvature radius) in a cold cavity is known to be a
periodical phenomenon [21]. It is therefore a natural candidate
to explain the origin of the observed quasiperiodicities of the
EE. In order to study this possibility, it is convenient to use a
simpler form of the iterative map, which has been discussed in
detail in Refs. [25,26]. We review here the essential points. The
ABCD cold-cavity round-trip spatial matrix of Sec. II B can
be transformed so that it has only two independent parameters:
A ≡ (A0 + D0)/2 (with no units) and B0 (units of length). Be
aware of the differences between A (the element of the spatial
matrix including SF and SPM), A0 (the same but without SF
and SPM) and A (just defined). Using B0 to scale the beam
parameter q in Eq. (1), such that ψn ≡ B0/q, Eq. (3) becomes

ψn+1 = A − (A + ψn)−1. (5)

The real part of the complex variable ψn is hence propor-
tional to the inverse of the beam’s radius of curvature, and
the imaginary part to the inverse of the spot area (both in the
n iteration). The fixed points of this map are ±i(1–A2)1/2;
one of them is physically meaningful and corresponds to the
actual stable mode of the cavity. The other one is physically
meaningless [21]. The expression for the map after n iterations
starting from an arbitrary initial condition ψ0 is [25]

ψn = (
P n

1 + P n
2 ψ0

)/(
P n

2 + P n
3 ψ0

)
, (6)

where the P n
j are polynomials in A, similar to Legendre

polynomials. If P n
3 = 0 then P n

1 = 0 and P n
2 �= 0 (see the
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Appendix), and the solution becomes n periodic for any initial
condition. It is then sufficient finding the zeros of P n

3 to know
the periodicities of the cold cavity. The P n

3 polynomials and
their roots until n = 13 can be found in the Appendix.

The two fixed points of the map Eq. (5) have indifferent
stability. By taking into account that transversal apertures
unavoidably exist (due to the finite diameter of the mirrors, of
the pumped region, etc.), the physically meaningful fixed point
becomes definitely stable, and the unphysical one, unstable
[21]. The effect of an aperture of radius Rap is taken into
account in Eq. (5) by adding a term –ia, where a = B0λ/πR2

ap.
The effect of this term is dissipative: The map converges to the
physically meaningful fixed point as n → ∞, for all the initial
conditions.

The effect of a self-focusing Kerr nonlinearity is taken into
account with a term –KS × Sn, where KS is approximated as
a constant that includes the pulse intensity and the nonlinear
index of refraction [26]. This means an important limitation in
comparison with the five-variables map and the actual situation
(see Fig. 2), where KS varies. In spite of this limitation, this
approximation allows a simple understanding of the origin of
the magic numbers, as it is explained in what follows. Recalling
that Sn (i.e., the inverse of the spot area at the n iteration) is
proportional to the imaginary part of ψn, the map including
the spatial effects of the apertures and the (approximate) SF
is, from Eq. (5),

ψn+1 = A–(A + ψn)−1 − ia − KSIm(ψn). (7)

The numerical study of Eq. (7) shows that, if A > 0, the
map converges to the physically meaningful fixed point [26].
Its basin of attraction covers almost the whole complex plane if
a = 0, and the whole plane if a > 0. If A < 0 instead, at least
one of the Lyapunov exponents is positive and the iterations
of the map diverge. Therefore, if A < 0 and a,KS > 0, there
are two tendencies in opposition: The effect of the aperture is
to converge to the fixed point, while the effect of the nonlinear
term is to diverge from it. Depending on the values of {a,KS}
the map converges to the fixed point, diverges, or converges
to periodic orbits of low periodicity. The latter can occur only
if a,KSSn 	 1, i.e., if the last two terms in Eq. (7) are small
perturbations of the cold cavity.

FIG. 10. (a) Values of {a,A,KS} that produce stable periodical
orbits (period < 100) in the map [Eq. (7)]. Each dot represents an
orbit, the fringed pattern is due to the accumulation of the orbits near
the values of A that are zeros of P n

3 of low order. (b) The same as (a)
but orbits of period 7 are plotted only; note that they are close to the
zeros of P 7

3 : {±0.223, ±0.624, ±0.901} (from Ref. [27]).

In Fig. 10(a), each dot indicates the set of values of
{a,A,KS} producing a periodic orbit in Eq. (7). The set of dots
accumulate in vertical lines or “fringes” close to the values of
A that are zeros of polynomials P n

3 of low order. The effect
is seen more clearly in Fig. 10(b), where only the perturbed
orbits of period 7 are plotted. Note that all the orbits are near
the zeros of P 7

3 (see the Appendix) and that they gently shift
as {a,KS} increase. In other words, the orbits arising from the
balance between the opposite tendencies of the Kerr effect and
the aperture have a period equal to the n of the P n

3 (A) of lowest
order that has a zero near the value of A of the laser cavity.

In our opinion, this numerical result is quite intuitive.
The periodic orbits of the cold cavity survive, modified, to
the presence of the two opposite perturbations. The low-
periodicity orbits dominate, after a sort of Darwinian selection,
because their iterations are more distant in the complex plane
than the ones with higher periodicity, and are hence more
robust against the “blurring” of the trajectories caused by the
perturbations.

C. The numbers of the real laser

In our laser, the Kerr effect is a small perturbation and there
are no tight transversal apertures into the cavity. Therefore, the
condition that the last two terms in Eq. (7) must be small is
surely fulfilled. The numerical evaluation of the average value
of KS using the complete five-variables map supports this
conclusion. The values of the elements of the round-trip matrix
for the cold cavity are A0 = 4.1381, B0 = 2.3048 cm, C0 =
8.3276 cm−1, D0 = –4.3965, so that A = –0.1292 (they can be
calculated from the data in Fig. 1). Hence, the condition A <

0, KS > 0 that defines opposite tendencies for the aperture
and the Kerr effect is fulfilled too. Finally, the lowest P n

3
polynomial having a zero close to A = –0.1292 is P 11

3 (the
zero is −0.142; see the Appendix; the next closest zero of low
order is −0.174, of P 9

3 ). This means that the cold cavity is
close to the condition of periodicity 11. It is then reasonable to
expect that the “hot” cavity displays orbits with a periodicity
near 11, which is precisely what is observed both in the lab
and in the numerical simulations with the complete (i.e., KS

not constant) five-variables map.
It remains to explain why there is nearly one pulse of higher

energy than the average in each orbit. The iterations of the cold
cavity (i.e., a,KS = 0) lie on a circle in the complex plane of
ψn, which is defined by the initial condition ψ0. This circle
passes between the fixed point and the origin of the complex
plane [25]. The iterations are not equally spaced on this circle.
There is “almost always” (it depends on the initial condition
ψ0) at least one iteration in the region between the fixed point
and the origin, that is, a region of large spot area. A larger spot
means a better overlap with the pumped region, and hence
a larger value of Un [see Eq. (4e)]. This means that, almost
always, there is at least one pulse of higher energy per period.
The perfect periodical process of the cold cavity is perturbed
by the opposite effects of the aperture and the SF, but it survives
in the form of the magic numbers. The perturbations also blur
(and erase) the critical dependence on the initial condition.

To check this explanation, we modify the values of the
geometrical parameters of the cavity and see if the magic
numbers change accordingly. We choose A = –0.225, which
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FIG. 11. Histogram of the number of EEs according to the
distance (in cavity round trips) to the next EE, for the cavity modified
such that A is a zero of P 7

3 and P 5
3 ; the other laser’s parameters are the

same as in Fig. 3. The magic numbers are now simple combinations
of the numbers 5 and 7, as expected. The total number of pulses in
this run is 15 000 and there are 239 EEs.

is a root of both P 7
3 and P 5

3 . This leads to new values of
the cold cavity parameters: A0 = 4.1860, B0 = –2.3048 cm,
C0 = 8.5058 cm−1, D0 = –4.4444. These values are inserted
in the five-variables P2-map and new numerical simulations
are run, all the other parameters’ values being the same as
before. Figure 11 displays the histograms for a run of 15 000
pulses, with a total of 239 EEs. As it is seen, the magic numbers
are now {5, 7, 12, 17, 22, 23, 24, 26, 27, 121 (out of the
figure)}. Leaving aside 23, with only one EE, these new magic
numbers are simple combinations of 5 and 7, which are the
periodicities of the orbits of the cold cavity for the value of A

chosen. If the threshold for an EE is lowered, the larger magic
numbers disappear and the EEs are separated by even simpler
combinations of 5 and 7, in a way analogous to what happened
in the original cavity. Analogous results are obtained for other
values of A tested close to other zeros of the P n

3 of low order.
We conclude then that the observed quasiperiodicities of

the EEs in this laser are the residuals of the stable geometrical
orbits of the cold cavity, when perturbed by the opposite
tendencies of a transversal aperture and SF.

V. SUMMARY

The chaotic regimes of the bistable KLM Ti:sapphire laser
display a large variety of interesting dynamical behaviors,
whose exploration is far from being completed here. We have
focused on two intriguing features: (i) Why EEs appear in
the chaotic regime of only one of the two pulsed modes of
operation (the chirped-pulse mode or P2), and (ii) the cause of
the discontinuous distribution of the separation between two
successive EEs (the magic numbers).

Regarding (i), evidence is presented that the EEs appear if
the average value of the SPM on the pulses is above a certain
threshold, which we numerically estimate as βEE ≈ 10−6 fs−2.
This result is in general accordance with the instabilities
reported in fs fiber lasers [18], and it may have a link with

the MI. The crossing of that threshold occurs first for the P2
mode compared to the P1, for the average SPM on the pulses
is larger for the former. Increasing the small signal gain in the
P1 map makes the laser to cross that threshold and to display,
numerically, EEs too. Yet, the EEs are not observed because
the P1 mode is unstable at the increased value of the gain. In
fact, the simulations with the bistable map show that, in spite
of starting at the fixed point of P1, the laser evolves rapidly
(in a scale of μs in real time) into the P2 mode, where it
remains and does display EEs. In other words: no EE in the
P1 mode is observed, because P1 becomes unstable (and the
laser evolves into P2) before reaching the EE threshold. This
result is fortunate for this laser’s users, but pulses of very high
energy are possible anyway during a transient (as in Fig. 8).
It is therefore advisable in practice to block the laser cavity if
the pump power or any other parameter is to be changed, even
if the laser is running in the P1 mode.

A curious result is that the EE pulses take values of β that
are much less spread than those of the whole set of pulses. This
means that the EEs occur inside a relatively well defined region
in phase space (say, a “β-constant” manifold). This result
gives some hope to predicting, and eventually controlling, the
formation of EEs. We foresee further research along this line.

Regarding (ii), the magic numbers are the residuals of the
periodic orbits of the cold cavity, perturbed by the opposite
tendencies of an expansive Kerr nonlinearity and dissipative
losses. This result is easily explained with a simplified
theoretical approach that reduces the KLM evolution, from
the complete five-variables map, to an approximate map in the
complex plane. The fact that the EEs in this laser are generally
unpredictable, but that they can occur at only preferred times,
is a further confirmation of their deterministic (i.e., not noise
driven) nature. Note that it is not possible to predict when an
EE will occur, but at least it is possible to predict when it
will not occur. This can be considered as a step towards their
complete forecast and control.

In this paper, we have studied the KLM Ti:sapphire laser as
an object of dynamical interest. Nevertheless, the knowledge
obtained from this study may prove helpful to improve the
performance of this most used device and, hopefully, to shed
some light on some general features of the formation of EEs.
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APPENDIX

The Pj
n polynomials are linked by the formation relation-

ships: P n
1 = (A2 − 1)P n

3 and P n
3 = AP n

3 − P n−1
3 P n−1

3 , so that
all of them can be calculated knowing the P n

3 . The general
form of the P n

3 is detailed in [25]. The first P n
3 polynomials

are P 1
3 = –1, P 2

3 = 2A, P 3
3 = 4A2–1, P 4

3 = 8A3–4A. The
following ones can be calculated from the recursive equation:
P n+1

3 = 2AP n
3 − P n−1

3 .
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A P n
3 polynomial has n–1 zeros. The values of the

zeros of the P n
3 until order n = 13 are as follows:

n = 1 : none; n = 2 : 0; n = 3 : ± 1
2 ; n = 4 : 0, ± 1/

√
2;

n = 5 : ±0.223, ± 0.901; n = 6 : 0, ± 1
2 , ± √

3/2; n = 7 :
±0.223, ± 0.624, ± 0.901; n = 8 : 0, ± 0.329, ± √

2/2,

± 0.924; n = 9 : ±0.174, ± 1
2 , ± 0.766, ± 0.940; n = 10 :

0, ± 0.309, ± 0.588, ± 0.809, ± 0.951; n = 11 : ±0.142,

± 0.415, ± 0.654, ± 0.840, ± 0.960; n = 12 : 0, ± 0.259,

± 1
2 , ± √

2/2, ± √
3/2, ± 0.966; n = 13 : ±0.120, ±

0.350, ± 0.566, ± 0.748, ± 0.883, ± 0.971.
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lasers with Poincaré maps in the complex plane, Opt. Commun.
199, 189 (2001).

[27] L. Sánchez, Dinámica de mode-locking por efecto Kerr, Ph.D.
Thesis, Universidad de Buenos Aires, 2003.

013836-9

http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1109/JQE.2009.2030513
http://dx.doi.org/10.1109/JQE.2009.2030513
http://dx.doi.org/10.1109/JQE.2009.2030513
http://dx.doi.org/10.1109/JQE.2009.2030513
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.107.053901
http://dx.doi.org/10.1103/PhysRevLett.107.053901
http://dx.doi.org/10.1103/PhysRevLett.107.053901
http://dx.doi.org/10.1103/PhysRevLett.107.053901
http://dx.doi.org/10.1103/PhysRevE.84.016604
http://dx.doi.org/10.1103/PhysRevE.84.016604
http://dx.doi.org/10.1103/PhysRevE.84.016604
http://dx.doi.org/10.1103/PhysRevE.84.016604
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevLett.108.233901
http://dx.doi.org/10.1103/PhysRevLett.108.233901
http://dx.doi.org/10.1103/PhysRevLett.108.233901
http://dx.doi.org/10.1103/PhysRevLett.108.233901
http://dx.doi.org/10.1364/OL.39.000319
http://dx.doi.org/10.1364/OL.39.000319
http://dx.doi.org/10.1364/OL.39.000319
http://dx.doi.org/10.1364/OL.39.000319
http://dx.doi.org/10.1088/2040-8978/15/6/064004
http://dx.doi.org/10.1088/2040-8978/15/6/064004
http://dx.doi.org/10.1088/2040-8978/15/6/064004
http://dx.doi.org/10.1088/2040-8978/15/6/064004
http://dx.doi.org/10.1364/OL.36.004449
http://dx.doi.org/10.1364/OL.36.004449
http://dx.doi.org/10.1364/OL.36.004449
http://dx.doi.org/10.1364/OL.36.004449
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1140/epjst/e2010-01244-9
http://dx.doi.org/10.1140/epjst/e2010-01244-9
http://dx.doi.org/10.1140/epjst/e2010-01244-9
http://dx.doi.org/10.1140/epjst/e2010-01244-9
http://dx.doi.org/10.1016/S0030-4018(01)01184-1
http://dx.doi.org/10.1016/S0030-4018(01)01184-1
http://dx.doi.org/10.1016/S0030-4018(01)01184-1
http://dx.doi.org/10.1016/S0030-4018(01)01184-1
http://dx.doi.org/10.1103/PhysRevA.70.043813
http://dx.doi.org/10.1103/PhysRevA.70.043813
http://dx.doi.org/10.1103/PhysRevA.70.043813
http://dx.doi.org/10.1103/PhysRevA.70.043813
http://dx.doi.org/10.1002/lpor.200710041
http://dx.doi.org/10.1002/lpor.200710041
http://dx.doi.org/10.1002/lpor.200710041
http://dx.doi.org/10.1002/lpor.200710041
http://dx.doi.org/10.1364/JOSAB.12.000718
http://dx.doi.org/10.1364/JOSAB.12.000718
http://dx.doi.org/10.1364/JOSAB.12.000718
http://dx.doi.org/10.1364/JOSAB.12.000718
http://dx.doi.org/10.1142/S0218127408021300
http://dx.doi.org/10.1142/S0218127408021300
http://dx.doi.org/10.1142/S0218127408021300
http://dx.doi.org/10.1142/S0218127408021300
http://dx.doi.org/10.1109/3.108113
http://dx.doi.org/10.1109/3.108113
http://dx.doi.org/10.1109/3.108113
http://dx.doi.org/10.1109/3.108113
http://dx.doi.org/10.1016/S0030-4018(97)00640-8
http://dx.doi.org/10.1016/S0030-4018(97)00640-8
http://dx.doi.org/10.1016/S0030-4018(97)00640-8
http://dx.doi.org/10.1016/S0030-4018(97)00640-8
http://dx.doi.org/10.1103/PhysRevA.62.063803
http://dx.doi.org/10.1103/PhysRevA.62.063803
http://dx.doi.org/10.1103/PhysRevA.62.063803
http://dx.doi.org/10.1103/PhysRevA.62.063803
http://dx.doi.org/10.1016/S0030-4018(99)00275-8
http://dx.doi.org/10.1016/S0030-4018(99)00275-8
http://dx.doi.org/10.1016/S0030-4018(99)00275-8
http://dx.doi.org/10.1016/S0030-4018(99)00275-8
http://dx.doi.org/10.1016/S0030-4018(01)01569-3
http://dx.doi.org/10.1016/S0030-4018(01)01569-3
http://dx.doi.org/10.1016/S0030-4018(01)01569-3
http://dx.doi.org/10.1016/S0030-4018(01)01569-3



