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Parametrically coupled fermionic oscillators: Correlation functions and phase-space description

Arnab Ghosh*

Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
(Received 21 October 2014; published 23 January 2015)

A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting
fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of
the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that
the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville’s equation. The
equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical
context to show that the mathematical structures of both the correlation functions and the weight factors closely
resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a
characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon
down-conversion experiments.
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I. INTRODUCTION

The fundamental process of parametric amplification [1] to
amplify an oscillating signal by means of a particular coupling
through an idler mode has attracted wide attention over the
last few decades. The major motivation relies on its relevance
to several physical phenomena in quantum optics and laser
physics, such as low-noise amplifier in radio-frequency re-
gion, frequency splitting of light beams in nonlinear media,
coherent Raman effect, Brillouin scattering, and so on [2–9].
Traditionally, the two modes of the parametric amplifier are
represented by harmonic oscillators, which are bosonic in
nature [10]. However, recent experimental advances in the
field of fermionic quantum atom optics [11–15] have opened
up the possibility that the fermionic counterpart of parametric
amplifier could be a promising candidate for describing the
behavior of fermionic four-wave mixing [16], association of
fermionic atoms into molecules [17–19], or phase sensitivity
of fermionic interferometer [20]. Although differences leading
to distinctive behavior of a fermionic oscillator in contrast
to a traditional harmonic oscillator have been emphasized
in several earlier issues, particularly, in connection with
dissipative quantum coherence [21–24], full understanding of
their implications to other areas is rather new. Experimental
control over degenerate quantum gases of neutral atoms in
this regard sets up a new stage where the atomic correlations
and the quantum statistics of the constituent atoms can
be directly probed by analyzing the time-of-flight (TOF)
absorption images of the atomic gases [11–14]. While the most
direct analogy with quantum optics corresponds to the case
of bosonic statistics of parametric down-conversion realized
through dissociation of a Bose-Einstein condensate (BEC) of
molecular dimers 23Na2 and 87Rb2 [25,26], the dissociation of
40K2 [27] molecules with a characteristic upper bound in the
atomic correlation functions reveals a nontrivial twist. This
provides a major motivation for the study of full interacting
systems of parametrically correlated fermionic oscillators as
undertaken here.
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The basis of this analysis for the description of the statistical
behavior of the two interacting fermionic modes is based
on a time-dependent density operator, which is well known
for more familiar bosonic fields over many decades [28,29].
However, the main reason for which the straightforward ex-
tension of the scheme to their fermionic counterpart remained
problematic for a long time is the anticommuting nature of
fermionic operators [30]. To overcome this difficulty, Cahill
and Glauber have shown in their seminal work on the density
operator for fermions [31] using a practical calculus of anti-
commuting numbers that the mathematical methods that have
been used to analyze the statistical properties of boson fields
have their counterpart for fermionic fields. This, in particular,
indicates that the density operator and the quasiprobability
functions for boson have interesting fermionic analogs and
thus allow us to calculate correlation functions and counting
distributions for a general system of fermions.

The fundamental development as outlined above [31] is
however centered around equilibrium domain. Very recently,
we proposed a fermionic analog of parametric amplifier
and based on a time-dependent reduced density operator
for fermionic fields the behavior of the output of one of
the two modes of the system has been examined [32]. In
view of quantum mesoscopic systems and nanoscale devices,
which are implemented as parametric amplifiers [33,34], the
possibility of vacuum amplification, population trapping, and
quantum control for a single mode of the coupled system
have been analyzed [32]. However, the coupling between the
modes leads to correlations between the mode amplitudes,
which may be readily detected in experiments. To predict
the results of this type of experiments and the others that
correspond to the state of both the interacting modes, we
need to develop the full statistical description of the two-mode
system. With this in mind, we explore in this paper the joint
density operator ρ̂(t) for the two modes and discuss the
dynamics of the amplifier system in terms of a two-mode
fermionic Wigner and P -distribution function. The present
analysis reveals that the two-mode Wigner function for the
fermionic parametric amplifier evolves in a surprisingly similar
fashion as their bosonic counterpart and satisfies fermionic
Liouville’s equation. A detailed calculation is carried out
to correlate the upper bounds of the fermionic correlation
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functions, which corroborates quantum optical experiments
with fermionic atoms.

The outline of the paper is as follows: In Sec. II we
introduce the model and discuss the general aspects of the
operator equations of motion for the system. With a brief
overview of the density operator for fermionic fields, a formal
solution of the joint density operator is derived in Sec. III
in terms of its characteristic function. The properties of the
characteristic function is then used in Sec. IV to find out
the time evolution of the density operator in terms of its
two-mode Wigner and P function. Finally, the behavior of the
fermionic atom correlation functions are analyzed in Sec. V,
in connection with experiments. The paper is concluded in
Sec. VI.

II. PARAMETRIC COUPLING OF TWO
FERMIONIC OSCILLATORS

We begin with the model of a fermionic analog of
parametric amplifier described by the following Hamiltonian:

Ĥ = �ωaâ
†â + �ωbb̂

†b̂ − �κ[â†b̂†e−iωt + âb̂eiωt ], (2.1)

where we have introduced fermionic oscillators to represent
fermionic field modes in analogy with harmonic oscillators
that are used to represent bosonic field modes of traditional
parametric amplifier. Thus the two uncoupled modes of
the fermionic oscillators (A and B modes respectively) are
described by the annihilation (â and b̂) and creation (â†

and b̂†) operators, which obey fermionic anticommutation
relations

{â,â†} = {b̂,b̂†} = 1 (2.2)

{â,b̂} = {â,b̂†} = 0 (2.3)

instead of commutation relations as obeyed by the usual
bosonic creation/annihilation operators. These two modes
are further assumed to be coupled by a parameter κ , which
oscillates at a frequency ω satisfying the resonance condition

ω = ωa + ωb. (2.4)

A typical physical situation to keep in mind for the
realization of the present model Hamiltonian is the atom
optics counterpart of parametric down-conversion that has
been realized through dissociation of a BEC of 40K2 molecular
dimers [27]. Using the above Hamiltonian we have explained
the average mode occupancy of any one of the resonant
modes that undergo characteristic oscillation due to Fermi
statistics [32] and we are able to justify the upper bounds for
the atomic correlation functions that can be directly accessed
via experimental measurements of atom shot noise and atom
counting techniques [11–15].

The solutions to the Heisenberg equations of motion, which
follow from the Hamiltonian [Eq. (2.1)], have been recently
derived [32] and may be written in terms of their initial
conditions as follows:

â(t) = â(0)Ĉa(t) + b̂†(0)Ŝa(t) (2.5)

b̂†(t) = b̂†(0)Ĉ∗
b (t) + â(0)Ŝ∗

b (t). (2.6)

In Eqs. (2.5)–(2.6) the operator functions are given by

Ĉa(t) ≡ e−iωat cos(�φ̂), Ĉ∗
b (t) ≡ eiωbt cos(�φ̂), (2.7)

Ŝa(t) ≡ −ie−iωa t sin(�φ̂), Ŝ∗
b (t) ≡ ieiωbt sin(�φ̂), (2.8)

where �φ̂ corresponds to a relative phase difference operator
between the A and B modes of the system, which in turn is
related to a time-independent population difference operator
�N̂ of the respective modes by a relation �φ̂ = κ(1 + 2�N̂ )t .
The constant of motion �N̂ in that relation may be expressed
as

N̂a(t) − N̂b(t) = N̂a(0) − N̂b(0) = �N̂, (2.9)

which specifies a conservation law between the number of
quanta present in the two modes. Now by denoting the initial
values of the operators in Eqs. (2.5)–(2.6) as

â(0) ≡ â and b̂†(0) ≡ b̂†, (2.10)

the formal solutions of the Heisenberg operators â(t) and b̂(t)
[Eqs. (2.5)–(2.6)] can be rewritten in the following form

â(t) = Û−1(t)âÛ (t) = âĈa(t) + b̂†Ŝa(t) (2.11)

b̂†(t) = Û−1(t)b̂†Û (t) = b̂†Ĉ∗
b (t) + âŜ∗

b (t). (2.12)

Here Û (t) refers to the unitary time translation operator,
which connects the equations of motion of the system
between the Heisenberg and Schrödinger picture. Since the
two representations coincide at t = 0, Eq. (2.10) is used to
recast Eqs. (2.5)–(2.6) in the form of Eqs. (2.11)–(2.12) and
from now on this notation will be used for all future purposes.
Moreover, in order to represent the above transformations to
be canonical, all the algebraic anticommutation relations for
fermionic operators, in particular {â,â†} = {b̂,b̂†} = 1, have
to be preserved. Unlike the bosonic field operators whose
algebraic properties are preserved under hyperbolic trans-
formation, fermionic anticommutation relations are invariant
under rotation. The above transformation therefore rotates the
fermionic field variables into each other and thereby preserve
their anticommutation properties [41].

To find out the various time-dependent expectation values
or correlations of the respective field modes, explicit solutions
of the Heisenberg operators [Eqs.(2.11)–(2.12)] can be used.
On the other hand, the Schrödinger picture provides a more
compact way of evaluating such averages by describing the
total system in terms of a time-dependent density operator ρ̂(t).
Although approaches based on density operator method and its
several variants are well known for bosonic parametric ampli-
fier for a long time [29] and form the basis for understanding
the phase-space properties of electromagnetic fields [28], an
extension of the scheme to its fermionic counterpart is difficult.
The main reason as pointed out by Schwinger [30] is the
anticommuting nature of fermionic field operators, which take
their values in anticommuting Grassmann algebra. While such
anticommuting numbers are well studied in mathematics [35]
and field theory [36], other applications of anticommuting
numbers are much less popular. However, in the last few years
a number of investigations on fermionic systems by adopting
Grassmann algebra have appeared in the literature. Among
them are the characterization of quantum qubit channels [37],
non-Markovian stochastic Schrödinger equation [38], study
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of decoherence and dissipation in a fermionic bath [39],
counting of strongly correlated fermions in and out of thermal
equilibrium [40], to name just a few.

In recent times, the statistical description of the fermionic
counterpart of a standard parametric amplifier has been
formulated in terms of a reduced density operator for fermionic
fields, which describes any one of the two modes of the
total system [32]. Since the coupling between the modes
leads to correlations between them, which can be measured
in experiments, a complete description requires specification
of the state of both the interacting modes. In what follows in
the next section we first briefly review the relevant parts of the
density operator of fermionic fields as developed by Cahill and
Glauber [31] and in the process discuss the properties of two-
mode characteristic function and construct the time-dependent
density operator ρ̂(t) for the field amplitudes of the two modes.
One may find that analogous to bosonic fields, one of the useful
ways of expressing a single-mode fermionic density operator
is by means of its P representation. The weight function
P (α,β,t), which appears in the P representation of ρ̂(t) is in
this sense a fermionic analog of the bosonic joint-probability
distribution for finding the A and B modes of the system with
Grassmann amplitudes α and β, respectively. From the time
evolution of this function it is shown that the solution of the
density operator may be expressed in a form that points directly
to the experimental measurement of correlation functions that
are made using absorption images of spatial or momentum
space column densities. The dynamics of the joint system
in terms of fermionic Wigner function are also discussed, a
quantum mechanical analog of phase-space distribution for
fermionic fields.

III. TWO-MODE FERMIONIC DENSITY OPERATOR AND
THE CHARACTERISTIC FUNCTION

A. Density operator for fermionic field

In the spirit of quasiprobability functions for bosonic or
electromagnetic fields, Cahill and Glauber have shown that
density operator for fermionic field may also be expressed as a
statistical mixture of pure coherent states and a suitable weight
factor of P distribution as follows [31]:

ρ̂ =
∫

d2αP (α,α∗)|α〉〈−α|. (3.1)

Similar to the bosonic field, the fermionic coherent state |α〉
also acts as an eigenstate of the fermionic annihilation operator
â [29] as â|α〉 = α|α〉, with an eigenvalue α. Since fermionic
operators anticommute with each other, these eigenvalues are
anticommuting numbers, which can be treated by the rules
of Grassmann algebra [35,36]. These numbers satisfy very
unusual properties, i.e., for a set of anticommuting numbers
{αi}, i = 1,2, . . . ,n we have

αiαj + αjαi ≡ {αi,αj } = 0 ∀i,j. (3.2)

Equation (3.2) implies that for any given i, we have α2
i = 0.

In other words, Grassamnn numbers are nilpotent, which is an
important property for the treatment of fermions. Secondly,
since the square of every Grassmann monomial vanishes
identically, no Grassmann monomial can be an ordinary real,
imaginary, or complex number. This fundamental difference

between the Grassmann variables and the ordinary variables
has far-reaching consequences as, for example, differentiation
is identical to integration for Grassmann numbers. They also
anticommute with their fermionic operators as follows:

{αi,â} = 0; {αi,â
†} = 0. (3.3)

Lastly, Hermitian conjugation (H.c.) reverses the order of
all fermionic quantities, i.e., both the operators and the
anticommuting numbers. For instance, we have

(âαb̂†β∗)† = βb̂α∗â†. (3.4)

At this point an important note should be made. For bosons,
the integrations are carried out over commuting variables,
while for fermions the integrations are taken over anticom-
muting variables. So, one should be typically concerned with
integration over such pairs of anticommuting numbers, for,
e.g., α and α∗ and for such pairs we will confine ourselves to
a typical notation

∫
d2α = ∫

dα∗dα, in which the differential
of the conjugated variable dα∗ comes first and we should
keep in mind that dα∗dα = −dαdα∗. It is worth pointing out
therefore that the minus sign in Eq. (3.1) results from the
chosen convention d2α as dα∗dα. If the differential had been
chosen as d2α = dαdα∗ instead of dα∗dα, the sign would
have been positive.

Finally, a system described by an arbitrary density operator
ρ̂ of a single fermionic mode may be expressed in terms of its
characteristic function χ (η,η∗)

χ (η,η∗) = T r[ρ̂ exp(ηâ† − âη∗)] (3.5)

by means of an expansion due to Cahill and Glauber

ρ̂ =
∫

d2ηχ (η,η∗) exp(âη∗ − ηâ†). (3.6)

Equation (3.6) represents an operator analog of the Fourier
transform over Grassmann arguments η and η∗ while the
Fourier transformation of Eq. (3.5) gives the fermionic P
distribution.

B. Properties of two-mode characteristic function

In the Schrödinger picture, the density operator ρ̂(t)
behaves like a state vector and becomes a time-dependent
quantity. The density operator ρ̂(t) is however related to the
time-independent Heisenberg density operator ρ̂ for fermionic
fields [Eq. (3.1)] by the relation

ρ̂(t) = Û (t)ρ̂Û−1(t), (3.7)

where, Û (t) is the unitary time evolution operator as defined
in Eqs. (2.11)–(2.12). Now, our target is to find out a solution
of the two-mode density operator at an arbitrary time t , when
it is specified at t = 0. The density operator that describes the
two-mode system at time t , may be expressed by means of its
characteristic function by generalizing Eq. (3.5).

The characteristic function is then defined for two complex
Grassmann pairs (η,ξ ) and (η∗,ξ ∗) by the relation

χ (η,ξ ; η∗,ξ ∗; t) = Tr{ρ̂(t) exp(ηâ† + ξ b̂† − âη∗ − b̂ξ ∗)}.
(3.8)

Since both the operators and the Grassmann numbers anticom-
mute with each other, it is worth emphasizing that special care
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must be taken to the ordering of all the fermionic quantities,
i.e., both operators and anticommuting numbers. Apart from
these considerations, Eq. (3.8) takes a form analogous to the
one that defines the bosonic two-mode characteristic function.
Using Eq. (3.7) we may further express χ (η,ξ ; η∗,ξ ∗; t) in
terms of the initial density operator ρ̂ and the Heisenberg
operators (â(t), b̂†(t)) and their adjoints. The above equation
may then be rewritten as follows:

χ (η,ξ ; η∗,ξ ∗; t) = Tr{ρ̂ exp(ηâ†(t) + ξ b̂†(t)

− â(t)η∗ − b̂(t)ξ ∗)}. (3.9)

As the characteristic function χ (η,ξ ; η∗,ξ ∗; t) determines the
density operator ρ̂(t) uniquely, a solution can be determined
to the initial value density operator problem by calculating the
characteristic function χ (η,ξ ; η∗,ξ ∗; t) in terms of its initial
form.

To calculate the solution in this way we substitute
Eqs. (2.11)–(2.12) for â(t) and b̂†(t) and their Hermitian
adjoints into Eq. (3.9) to obtain

χ (η,ξ ; η∗,ξ ∗; t) = Tr{ρ̂ exp[(ηĈ∗
a (t) + ξ ∗Ŝb(t))â†

+ (ξĈ∗
b (t) + η∗Ŝa(t))b̂† − H.c.]} (3.10)

Next, we define the Grassmann functions

η(η,ξ ; η∗,ξ ∗; t) = ηC∗
a (t) + ξ ∗Sb(t) (3.11)

ξ (η,ξ ; η∗,ξ ∗; t) = ξC∗
b (t) + η∗Sa(t), (3.12)

where the c-number functions are given by

C∗
a (t) ≡ eiωat cos(�φ) Sb(t) ≡ −ie−iωbt sin(�φ) (3.13)

C∗
b (t) ≡ eiωbt cos(�φ) Sa(t) ≡ −ie−iωa t sin(�φ) (3.14)

and �φ corresponds to the relative phase difference between
the modes. Using Eqs. (3.11)–(3.12) in Eq. (3.10) we imme-
diately find out that the function χ (η,ξ ; η∗,ξ ∗; t) obeys the
following functional identity:

χ (η,ξ ; η∗,ξ ∗; t)

= χ (η(η,ξ ; η∗,ξ ∗; t),ξ (η,ξ ; η∗,ξ ∗; t); η∗

(η,ξ ; η∗,ξ ∗; t),ξ
∗
(η,ξ ; η∗,ξ ∗; t); 0), (3.15)

where η∗(η,ξ ; η∗,ξ ∗; t) and ξ
∗
(η,ξ ; η∗,ξ ∗; t) are the complex

conjugates of η(η,ξ ; η∗,ξ ∗; t) and ξ (η,ξ ; η∗,ξ ∗; t). The char-
acteristic function χ (η,ξ ; η∗,ξ ∗; t) is thus specified in terms of
its initial form at t = 0 and by the Grassmann functions. This
property of the characteristic function will be further used in
Sec. III to analyze fermionic Wigner function.

C. General expression for the two-mode density operator:

Now, it is straightforward to obtain a formal solution of the
time-dependent density operator. A generalized form of the
two-mode density operator ρ̂(t) may be written down from
Eq. (3.6) as

ρ̂(t) =
∫

d2ηd2ξχ (η,ξ ; η∗,ξ ∗; t)

× exp(âη∗ + b̂ξ ∗ − ηâ† − ξ b̂†). (3.16)

Substituting Eq. (3.15) for χ (η,ξ ; η∗,ξ ∗; t) into this equation,
we have

ρ̂(t) =
∫

d2ηd2ξχ (η(η,ξ ; η∗,ξ ∗; t),ξ (η,ξ ; η∗,ξ ∗; t);

η∗(η,ξ ; η∗,ξ ∗; t),ξ
∗
(η,ξ ; η∗,ξ ∗; t); 0)

× exp(âη∗ + b̂ξ ∗ − ηâ† − ξ b̂†). (3.17)

The integration may now be carried out most conveniently by
change the variables from (η; ξ ) to [η = η(η,ξ ; η∗,ξ ∗; t); ξ =
ξ (η,ξ ; η∗,ξ ∗; t)] and (η∗; ξ ∗) to [η∗ = η∗(η,ξ ; η∗,ξ ∗; t); ξ

∗ =
ξ

∗
(η,ξ ; η∗,ξ ∗; t)] with the provision d2ηd2ξ = d2ηd2ξ , which

ensures that the anticommutation properties of the Grassmann
numbers are preserved under the transformation.

Then, carrying out the change of variables in Eq. (3.17) we
find out the density operator takes the form of

ρ̂(t) =
∫

d2ηd2ξχ (η,ξ ; η∗,ξ
∗
; 0)

× exp(âη∗(η,ξ ; η∗,ξ
∗
; t) + b̂ξ ∗(η,ξ ; η∗,ξ

∗
; t)

− η(η,ξ ; η∗,ξ
∗
; t)â† − ξ (η,ξ ; η∗,ξ

∗
; t)b̂†), (3.18)

where (η(η,ξ ; η∗,ξ
∗
; t); ξ (η,ξ ; η∗,ξ

∗
; t)) are the solutions of

the inverted Eqs. (3.11)–(3.12), which are given by

η(η,ξ ; η∗,ξ
∗
; t) = ηCa(t) + ξ

∗
Sa(t) (3.19)

ξ (η,ξ ; η∗,ξ
∗
; t) = ξCb(t) + η∗Sb(t) (3.20)

and (η∗(η,ξ ; η∗,ξ
∗
; t); ξ ∗(η,ξ ; η∗,ξ

∗
; t)) are their complex

conjugates. The time-dependent density operator is thus ex-
pressed in terms of the initial form of the characteristic function
and its time dependence is completely contained within the
linear functions (η,ξ ) and (η∗,ξ

∗
) of Fourier arguments of the

fermionic mode amplitudes.
This section closes with a few remarks on fermionic field

amplitudes or Grassmann amplitudes from a physical point
of view [38,39]. Keeping in mind the essential difference
between the ordinary variables and the Grassmann variables,
one may conclude that Grassmann variables do not bear any
classical analogy, since they obey anticommutation relations
and anticommutations do not have any classical analog. This
may lead to a misinterpretation and needs further clarification.
For a field to be classically measurable, field amplitude has to
be very strong, which is only possible when a large number
of particles are accommodated in one state so that the fields
get summed up coherently. In other words, particles have to
obey Bose-Einstein statistics for, e.g., light quanta are bosons
because strong electromagnetic fields can be produced and
measured classically. On the contrary, for fermionic fields
obeying Fermi-Dirac statistics, only quantities such as charge,
energy, current density, and particle number variance, which
are only bilinear in field operators, say for, â and â†, can be
measured classically. To illustrate the point a bit further, the
expectation values and the variance of the number of quanta are
considered, when the initial state of the system is taken as the
pure coherent state |α0,β0〉, where α0 and β0 are respectively
the Grassmann amplitudes of the A and B modes. The mean
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values of the operator â(t) and b̂(t) are then given by [32]

α(t) = α0Ca(t) + β∗
0 Sa(t) (3.21)

β(t) = β0Cb(t) + α∗
0Sb(t), (3.22)

while the variance of the number of quanta for the A mode
may be calculated as [32]

var = 〈α0,β0|[â†(t) − α∗(t)][â(t) − α(t)]|α0,β0〉
= |S2

a (t)| = sin2(�φ). (3.23)

It may be noted that Eq. (3.21) for α(t) with Grassmann field
amplitudes α0 and β∗

0 or Eq. (3.22) for β(t) with Grassmann
field amplitudes β0 and α∗

0 has the same form as those of
bosonic field amplitudes with c numbers. The mean number
of quanta in Eq. (3.21) is linear in â and b̂† and hence
linear in Grassmann variables, represents the amplitude of the
fermionic field mode and is not an experimentally measurable
quantity while the variance, which is bilinear in Grassmann
amplitudes makes it experimentally relevant. These remarks
may be corroborated by another observation. The number
operator N̂ = ∑

n N̂n and the energy operator Ĥ = ∑
n εnN̂n

have classical limits because they are bilinear in â and â† and
hence commute with each other. Anticommutation relations
in quantum mechanics are something special because they
incorporate the Pauli exclusion principle, which does not make
sense at the classical level. Extrapolating this idea, we em-
phasize that Grassmann fields themselves and fermionic field
operators are, by construction, fermionic while the c numbers
and bosonic field operators are bosonic. A product of an even
number of Grassmann variables or fermionic quantities is
bosonic, which makes it experimentally relevant [38,39]. This
discussion will be resumed in the next section when fermionic
mode amplitudes of the Wigner function are considered.

IV. TIME EVOLUTION OF WIGNER AND P FUNCTION

A. Fermionic Liouville’s equation: Properties of
two-mode Wigner function

The Wigner function, which was originally introduced as
a quantum analog of the classical phase-space distribution
function, has various applications in quantum optics, quantum
kinetic theory, radiation transport, and others [42,43]. In this
section the Wigner function is constructed for the fermionic
parametric amplifier in terms of its initial form and it is
shown that for arbitrary initial states of the quantum system,
the Wigner function satisfies fermionic analog of Liouville’s
equation.

We may define the Wigner function W (α,β; α∗,β∗; t) for
the coupled two-mode systems as the Fourier transform of the
characteristic function as

W (α,β; α∗,β∗; t) =
∫

d2ηd2ξ exp[αη∗ + βξ ∗ − ηα∗ − ξβ∗]

×χ (η,η∗; ξ,ξ ∗; t). (4.1)

The identity Eq. (3.15), which permits us to express the
characteristic function in terms of its initial form, and allows
us to do the same with the Wigner function. Substituting

Eq. (3.15) for χ (η,ξ ; η∗,ξ ∗; t) into Eq. (4.1) we find

W (α,β; α∗,β∗; t) =
∫

d2ηd2ξ exp[αη∗ + βξ ∗ − ηα∗ − ξβ∗]

×χ (η(η,ξ ; η∗,ξ ∗; t),ξ (η,ξ ; η∗,ξ ∗; t);

η∗(η,ξ ; η∗,ξ ∗; t),ξ
∗
(η,ξ ; η∗,ξ ∗; t); 0).

(4.2)

As usual, by changing the variables of integration as car-
ried out previously from (η; ξ ) to [η = η(η,ξ ; η∗,ξ ∗; t); ξ =
ξ (η,ξ ; η∗,ξ ∗; t)] and (η∗; ξ ∗) to [η∗ = η∗(η,ξ ; η∗,ξ ∗; t); ξ

∗ =
ξ

∗
(η,ξ ; η∗,ξ ∗; t)] and making use of Eqs. (3.19)–(3.20) we can

write down the above integral as

W (α,β; α∗,β∗; t) =
∫

d2ηd2ξ exp{[αC∗
a (t) − β∗Sb(t)]η∗

+ [βC∗
b (t) − α∗Sa(t)]ξ

∗ − H.c.}
×χ (η,ξ ; η∗,ξ

∗
; 0). (4.3)

Now the following functions are introduced, which are defined
by

α0c(α,β; α∗,β∗; t) = αC∗
a (t) − β∗Sb(t) (4.4)

β0c(α,β; α∗,β∗; t) = βC∗
b (t) − α∗Sa(t). (4.5)

Equations (4.4)–(4.5) when substituted in Eq. (4.3), we obtain
the identity relation satisfied the Wigner function as follows

W (α,β; α∗,β∗; t) =
∫

d2ηd2ξ exp[α0c(α,β; α∗,β∗; t)η∗

+β0c(α,β; α∗,β∗; t)ξ
∗ − H.c.]

×χ (η,ξ ; η∗,ξ
∗
; 0)

= W (α0c,β0c; α∗
0c,β

∗
0c; 0). (4.6)

Equation (4.6) expresses the Wigner function at
time t in terms of its initial form. To obtain a
better insight about the above identity, we denote
α0c(α,β; α∗,β∗; t) = α0; β0c(α,β; α∗,β∗; t) = β0 and define
functions αc(α0,β0; α∗

0 ,β
∗
0 ; t) and βc(α0,β0; α∗

0 ,β
∗
0 ; t) as the

solutions of Eqs. (4.4)–(4.5) for α and β as follows:

αc(α0,β0; α∗
0 ,β

∗
0 ; t) = α0Ca(t) + β∗

0 Sa(t) (4.7)

βc(α0,β0; α∗
0 ,β

∗
0 ; t) = β0Cb(t) + α∗

0Sb(t). (4.8)

In terms of these functions the identity Eq. (4.6) for Wigner
function takes the form of

W (αc(α0,β0; α∗
0 ,β

∗
0 ; t),βc(α0,β0; α∗

0 ,β
∗
0 ; t);

α∗
c (α0,β0; α∗

0 ,β
∗
0 ; t),β∗

c (α0,β0; α∗
0 ,β

∗
0 ; t); t)

= W (α0,β0; α∗
0 ,β

∗
0 ; 0), (4.9)

which is valid for arbitrary Grassmann amplitude (α0,β0) and
its complex pairs.

It is important to note that the structure of Eqs. (4.7)–(4.8)
is identical to the earlier Eqs. (3.21)–(3.22) for the mean
values of the operators â(t) and b̂(t). This immediately
suggests that the mean value of the quantum mechanical
operators â(t) and b̂(t) are governed by the same equations of
motion that are obeyed by the complex Grassmann amplitudes.
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The functions αc(α0,β0; α∗
0 ,β

∗
0 ; t) and βc(α0,β0; α∗

0 ,β
∗
0 ; t) are

just the complex Grassmann amplitudes evaluated at time
t for the coupled modes of parametric fermionic amplifier
with initial amplitudes α0 and β0. On the contrary, α0 and
β0 in Eqs. (3.21)–(3.22) represent the initial values of the
average amplitudes of the fermionic modes. In other words,
the functions α0c(α,β; α∗,β∗; t) and β0c(α,β; α∗,β∗; t) are
the initial amplitudes, which correspond classically to the
amplitudes α and β at time t . Now, the sense of classicality
for fermionic fields require further investigation. To illustrate
the point, first the differential form of Eq. (4.9) is constructed.

To express Eq. (4.9) or Eq. (4.6) in the differential form, the
line of work on Wigner functional for fermionic fields [44] is
followed and the total time derivative of the Wigner function
is written in the following form:[

∂

∂t
+ i

�

∑
{k}

(
∂H

∂�k

∂

∂�k

+ ∂H

∂�k

∂

∂�k

)]
W (�,�,t) = 0,

(4.10)

where H represents the classical form of the starting Hamil-
tonian operator [Eq. (2.1)] that we are looking for and �

and � are the canonical conjugate pairs for the fermionic
fields. For this model the index {k} takes the values a and b,
corresponding to the Grassmann amplitudes �a = α; �b = β

and �a = α∗; �b = β∗. The classical Hamiltonian for the
fermionic counterpart of parametric amplifier is then obtained
by replacing the operators â(t), b̂(t) in Eq. (2.1) by α and β

and similarly for their Hermitian adjoints. Therefore, the form
of the classical Hamiltonian is given by

H = �ωaα
∗α + �ωbβ

∗β − �κ[α∗β∗e−iωt + αβeiωt ]. (4.11)

It is noted that the classical Hamiltonian H is different
from the Hamiltonian operator Ĥ in Eq. (2.1) since the
classical field variables in Eq. (4.11) belong to Grassmann
numbers. Equation (4.10) forms the structure of classical-like
Liouville’s equation for fermionic field. It is important to note
that the positive sign in Eq. (4.10) carries the signature of
anticommutation relations that are obeyed by the fermionic op-
erators or by the Grassmann variables. The sign is significantly
negative for the more familiar bosonic fields for which the
corresponding operators obey commutation relations instead
of anticommutation relations or in turn the c-number variables
commutes with each other. Now by substituting the form of
the classical Hamiltonian in Eq. (4.10) we identify the form of
the classical like Liouville operator as

L =
[

(ωaα − κβ∗e−iωt )
∂

∂α
+ (ωbβ − κα∗e−iωt )

∂

∂β

− ∂

∂α∗ (ωaα
∗ − κβeiωt ) − ∂

∂β∗ (ωbβ
∗ − καeiωt )

]

(4.12)

and Eq. (4.10) can be written in the following form

dW

dt
= ∂W

∂t
+ iLW = 0. (4.13)

Equation (4.13) thus asserts that the Wigner function
W (α,β; α∗,β∗; t) for the fermionic parametric amplifier sat-
isfies Liouville’s equation and is therefore constant along a

classical trajectory. This is the property that the Wigner func-
tion for fermionic fields always shares with the classical phase-
space distribution functions and satisfied by bosonic Wigner
function in their classical limit. It should be emphasized that
the result is valid for both kind of fields and for arbitrary density
operators. The fact that the Wigner function has this property
is a consequence of the form taken by the initial Hamiltonian
Eq. (2.1). It may be shown that whenever the Hamiltonian of
a system of oscillators (both bosonic or fermionic) is given
by a bilinear form in the creation and annihilation operators,
the Wigner function is constant [45] along classical trajec-
tories. This property does not extend to systems of arbitrary
Hamiltonians of bosonic fields, as happens in case of classical
phase-space distributions. Here lies an important difference
between the fermionic Wigner function when compared with
Wigner functional of bosonic fields where the Liouville’s
equation is obtained only when the fields are either free or the
quantum correction to the interaction are neglected [29,44]. In
this sense, the fermionic analogs of the Wigner function, which
is linear in field variables, is always classical except for the
effect that they incorporate Pauli exclusion principle. This is
not surprising because of the simple reason that the Grassmann
algebra does not allow for any derivative higher than second
order. This is the same reason that guides the Dirac equation
for a fermionic field to take a simple linear form [44].

B. P-distribution function

The Wigner function obviously is not the only quasiproba-
bility distribution, which allows for the description of the phase
space of fermionic systems. The Wigner function for fermionic
fields may be related to other quasiprobability functions by the
convolution of Gaussian function in Grassmann variables [31]

W (α,s) =
∫ ∏

j

[
(r − s)

2
d2βj

]

× exp

[
2

(r − s)

∑
i

(αi − βi)(α
∗
i − β∗

i )

]
W (β,r),

(4.14)
where an ordering of operators are specified by the real
parameters r and s, which can take values from −1 for
antinormal to +1 for normal ordering. For the special case
of r = 1 and s = 0, Eq. (4.14) relates the Wigner function
with the P -distribution function as

W (α,β; α∗,β∗; t) = 1

4

∫
d2μd2ν exp[2(α − μ)(α∗ − μ∗)

+ 2(β − ν)(β∗ − ν∗)]P (μ,ν; μ∗,ν∗; t).

(4.15)

Substituting Eq. (4.15) into Eq. (4.10) for the Wigner function
with a little bit of algebra we obtain

dW

dt
= 1

4

∫
d2μd2ν exp[2(α − μ)(α∗ − μ∗)

+ 2(β − ν)(β∗ − ν∗)]

×
{[

d

dt
+ I + II + Ihc + IIhc

]

×P (μ,ν; μ∗,ν∗; t)

}
≡ 0, (4.16)
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where the I and Ihc have the following forms:

I = i(ωaα − κβ∗e−iωt )
∂

∂α
exp[2(α − μ)(α∗ − μ∗)

+ 2(β − ν)(β∗ − ν∗)] (4.17)

Ihc = −i
∂

∂α∗ exp[2(α − μ)(α∗ − μ∗) + 2(β − ν)(β∗ − ν∗)]

× (ωaα
∗ − κβeiωt ) (4.18)

and similarly for II and its Hermitian conjugate IIhc. By
calculating all these differentials in Grassmann variables and
using the anticommuting properties of the respective variables
one may simplify Eq. (4.16) in the following form

1

4

∫
d2μd2ν exp[2(α − μ)(α∗ − μ∗) + 2(β − ν)(β∗ − ν∗)]

×
{[

d

dt
+ i(ωaαα∗ + ωbββ∗)

]
P (μ,ν; μ∗,ν∗; t)

}
≡ 0.

(4.19)

Now, from Eqs. (4.17)–(4.18) and its Hermitian conjugations,
it is possible to recognize the differential forms of the
Grassmann variables in the present case as follows:

α ≡ 1

4

(
− ∂

∂α∗ + ∂

∂μ∗

)
; α∗ ≡ 1

4

(
∂

∂α
− ∂

∂μ

)
(4.20)

β ≡ 1

4

(
− ∂

∂β∗ + ∂

∂ν∗

)
; β∗ ≡ 1

4

(
∂

∂β
− ∂

∂ν

)
(4.21)

Substituting Eqs. (4.20)–(4.21) in Eq. (4.19) we have

∫
d2μd2ν exp[2(α − μ)(α∗ − μ∗) + 2(β − ν)(β∗ − ν∗)]

×
[

d

dt
+ i

4

(
ωa

∂2

∂μ∂μ∗ + ωb

∂2

∂ν∂ν∗

)]

×P (μ,ν; μ∗,ν∗; t) = 0. (4.22)

Then changing the dummy variables from μ = α and ν =
β and similarly for the complex conjugates, we find that
P (α,β; α∗,β∗; t) fulfills the following differential equation

[
d

dt
+ i

4

(
ωa

∂2

∂α∂α∗ + ωb

∂2

∂β∂β∗

)]

×P (α,β; α∗,β∗; t) = 0, (4.23)

where d/dt is the total time derivative as defined by Eq. (4.13).
Equation (4.23) is the Liouville analog of the P function,
which is satisfied by the fermionic Wigner function. In this
sense P (α,β; α∗,β∗; t) is a fermionic analog of the bosonic
joint-probability distribution for finding the A and B modes
of the system. It is evident that the P function, unlike the
Wigner function does not remain constant along the classical
trajectory. The positive sign in Eq. (4.23) as usual bears the true
fermionic nature of the underlying dynamics which appears
negative for the traditional bosonic fields.

V. CALCULATION OF CORRELATION FUNCTION:
CONNECTION TO EXPERIMENT

To investigate the time-dependent correlation between the
modes, let us define the following fluctuation operators:

�â(t) = â(t) − α(t) (5.1)

�b̂(t) = b̂(t) − β(t), (5.2)

which describes the quantum fluctuations of the mode am-
plitudes about their mean values α(t) and β(t) respectively.
One may infer from the quantum regression theorem that
the fluctuation operators �â(t), �b̂(t) obey the same set of
linear equations of motion as obeyed by the operators â(t) and
b̂(t). The time dependence of the correlation functions that
characterize the density operator ρ̂(t) may now be expressed
in simple terms by carrying out a transformation of variables
that decouples the basic equations of motion of the system.
Therefore two such operators σ̂+(t) and σ̂−(t) are introduced
that are defined in terms of the Heisenberg operators â(t) and
b̂†(t) by the relations

σ̂+(t) = 1√
2

[â(t)eiωat + ib̂†(t)e−iωbt ] (5.3)

σ̂−(t) = 1√
2

[â(t)eiωat − ib̂†(t)e−iωbt ]. (5.4)

With the help of Eqs. (2.5)–(2.6), the newly defined operators
take a simple form

σ̂±(t) = σ̂±[cos(�φ̂) ∓ sin(�φ̂)], (5.5)

where the operators σ̂± are the initial values of σ̂±(t) and
are given by σ̂± = 2−1/2(â ± ib̂†). It is clear from Eq. (5.5)
that the operators σ̂±(t) are decoupled from one another. Thus
the transformation Eqs. (5.3)–(5.4) actually define a species
of normal coordinates for the system. The operators σ̂±(t)
and their Hermitian adjoints satisfy the following algebraic
properties:

{σ̂+(t),σ̂ †
+(t)} = {σ̂−(t),σ̂ †

−(t)} = 1 (5.6)

{σ̂+(t),σ̂ †
−(t)} = {σ̂−(t),σ̂ †

+(t)} = 0. (5.7)

Now with the Heisenberg density operator ρ̂, one can
similarly define operators such as �σ̂±(t) as the deviation
of the operators σ̂±(t) from their mean values as follows:

�σ̂±(t) ≡ σ̂±(t) − Tr{ρ̂σ̂±(t)}. (5.8)

Furthermore, using the argument of quantum regression
theorem we can state that the solutions of the equations of
motion for the fluctuation operators �σ̂±(t) would be identical
with the operators σ̂±(t).

To this end we define the correlation function of the
fluctuations of the mode amplitudes as t → ∞ by

G−(t) = Tr{ρ̂[�â†(t)e−iωat + i�b̂(t)eiωbt ]

× [�â(t)eiωat − i�b̂†(t)e−iωbt ]}
= 2Tr{ρ̂�σ̂

†
−(t)�σ̂−(t)}. (5.9)
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Similarly, to discuss the correlation of fluctuations as t → −∞
we define function

G+(t) = 2Tr{ρ̂�σ̂
†
+(t)�σ̂+(t)}. (5.10)

Since ρ̂ is Hermitian and positive definite, the correlation
functions must be real positive quantities, i.e., G±(t) � 0.
Equation (5.5) and its adjoints imply that time dependence
of the correlation functions G±(t) may be expressed as

G±(t) = 2G±(0)[1 ± sin(2�φ)]. (5.11)

In order to make a better connection with the JILA
experiment [27], we now consider the form of the correlation
functions G±(t) in the Schrödinger picture. Making use of
Eq. (3.7) and Eqs. (2.11)–(2.12) in Eq. (5.9) we obtain

G±(t) = (Trρ̂(t){â† − α∗(t)]e−iωat ∓ i[b̂ − β(t)]eiωbt }
× {[â − α(t)]eiωat ± i[b̂† − β

∗
(t)]e−iωbt }). (5.12)

Equation (5.12) allows us to calculate the maximum value that
the correlation functions can attain. It is evident from Eq. (5.12)
that correlations of the mode amplitudes attain their maximum
value when the state of the joint system is specified by the
pure coherent state |α,β〉. Then, at any time t , if the density
operator ρ̂(t) = |α,β〉〈α,β|, we obtain by using Eq. (5.12) and
the anticommutation relation for b̂ and b̂† that

G max
± (t) = 1. (5.13)

Equation (5.13) gives the upper bound for the correlation func-
tions, which directly correspond to experimental measurement
of correlation functions that are carried out after time-of-flight
expansion of the dissociation of 40K2 molecules near magnetic
Feshbach resonance [27]. To correlate the spatial correlation
measurement performed at JILA, previous efforts have been
made based on a fermionic analog of the standard quantum
optical squeezing Hamiltonian [15]. Their observations corre-
spond to the results here, i.e., correlation functions for atom
optics counterparts of parametric down-conversion possess
an upper bound of value 1, which is in complete contrast
to the bosonic case for which the correlation functions possess
only lower bound, i.e., G±(t) � 0. Equation (5.13), therefore
suggests a good agreement between the present theory and
the experimental observations. The result is a hallmark of the
fermionic character of the constituent atoms, which makes the
properties of the correlation functions completely distinct from
the traditional parametric amplifier of bosonic case.

Finally, it is asked in more general terms what constrains
the correlation functions impose on the joint P -distribution
function. For that, let us assume that ρ̂(t) has a two-mode P

representation as

ρ̂(t) =
∫

d2αd2βP (α,β; α∗,β∗,t)|α,β〉〈α,β|. (5.14)

Then by making use of Eq. (5.12) and the anticommutation of
b̂ and b̂† we find

0 � G±(t) = 1−
∫

|{[α−α(t))]eiωat ± i[β∗ − β
∗
(t)]e−iωbt }|2

×P (α,β; α∗,β∗,t)d2αd2β � 1, (5.15)

which implies that fermionic two-mode P (α,β; α∗,β∗,t)
function can not take negative values, whereas a single mode

fermionic P distribution is exclusively negative. This result
is also remarkable when compared with bosonic two-mode
P distribution, which may take negative values and even
sometimes fails to exist.

VI. CONCLUSION

In this paper the statistical formulation of the fermionic
counterpart of a conventional parametric amplifier of bosonic
case is explored. The key elements of the analysis are based
on two-mode generalization of the time-dependent density
operator for fermionic fields to describe the joint quantum
state of the full interacting system, which was originally
developed by Cahill and Glauber in the equilibrium domain.
Since fermionic operators anticommute, it is necessary to
work with anticommuting numbers or Grassmann variables for
expressing the solution of the joint density operator in terms
of fermionic quasiprobability functions, such as Wigner or P

distribution. The main conclusions are summarized as follows.
(i) It has been shown that the time evolution of the

density operator, correlation functions, and the weight factors
P (α,β; α∗,β∗; t) and W (α,β; α∗,β∗; t) possess identical struc-
tures as their corresponding bosonic counterparts. For arbitrary
initial states of the density operator, the Wigner function has
been shown to satisfy the fermionic counterpart of Liouville’s
equation. Although the anticommuting nature of Grassmann
variables precludes the possibility of interpreting the fermionic
field amplitude in physical terms, one can identify classical
Liouville operator for matter wave counterpart of parametric
amplifier.

(ii) It is interesting to note that fermionic correlation
functions are marked by a characteristic upper bound due to
Fermi statistics obeyed by the underlying dynamical variables,
which make it distinct from bosonic correlation functions.
Properties of such correlation functions can be verified in
atom optics counterpart of parametric down-conversion that
can be realized through dissociation of BEC molecular dimers
consisting of fermionic atoms.

(iii) The relation between the correlation functions and
the fermionic P distribution reveals a remarkable property
of the two-mode P (α,β; α∗,β∗; t) function, that it is always
positive definite while it is predominantly negative for the
single-mode case. This is in sharp contrast to bosonic two-
mode P distribution, which may take negative values and can
be even singular.

(iv) Due to the peculiar properties of the Grass-
mann algebra, fermionic field amplitudes become linear in
Grassmann variables, which ensures that, unlike the bosonic
Wigner functions (and irrespective of any interaction in the
Hamiltonian), Wigner functions for fermionic fields are bound
to satisfy fermionic analog of classical Liouville’s equation
and therefore most closely resemble to classical phase-space
distribution functions.
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