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Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity
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Quantum squeezing in mechanical systems is not only a key signature of macroscopic quantum effects, but
can also be utilized to advance the metrology of weak forces. Here we show that strong mechanical squeezing
in the steady state can be generated in an optomechanical system with mechanical nonlinearity and red-detuned
monochromatic driving on the cavity mode. The squeezing is achieved as the joint effect of nonlinearity-induced
parametric amplification and cavity cooling and is robust against thermal fluctuations of the mechanical mode.
We also show that the mechanical squeezing can be detected via an ancilla cavity mode.
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I. INTRODUCTION

Enormous progress has been achieved in the field of cavity
optomechanics in the past few years [1]. Examples include
the preparation of mechanical modes in their quantum ground
state, the demonstration of strong optomechanical coupling
in the microwave and optical regimes, and the coherent-state
conversion between cavity and mechanical modes [2–11].
Given these technological advances, the effective quantum
manipulation of mechanical modes becomes a promising goal.

Quantum squeezing of mechanical modes is one of the
key macroscopic quantum effects that can be utilized to
study the quantum-to-classical transition and to improve
the precision of quantum measurements [12–18]. Thermal
squeezing of mechanical modes by using parametric processes
and measurement-based ideas has been demonstrated in recent
experiments [19–23]. In simple schemes using parametric
amplification, squeezing is limited by the so-called 3 dB
limit—quantum noise cannot be reduced below half of the
standard quantum limit—due to the instability of the mechan-
ical systems [24]. In recent years, a number of schemes have
been proposed to generate mechanical squeezing that can go
beyond the 3 dB limit, including methods based on parametric
processes, measurement- and feedback-based schemes, as
well as approaches utilizing the concept of quantum-reservoir
engineering [25–43]. However, quantum squeezing of me-
chanical modes has not been observed experimentally. Note
that, in recent experiments, squeezing in optical fields has
been achieved in optomechanical systems [44–46]. These
experiments have the potential to reach a squeezing level well
below the quantum limit.

Here we present a method to generate strong steady-
state mechanical squeezing in an optomechanical system via
mechanical nonlinearity and cavity cooling. The mechanical
nonlinearity required in this scheme is achieved by coupling
the mechanical mode to an ancilla system, such as an external
electrode or a qubit, and its magnitude far exceeds that of the
intrinsic mechanical nonlinearity [47,48]. The driving on the
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cavity is a red-detuned monochromatic source which generates
strong optomechanical coupling between the cavity and the
mechanical modes and greatly reduces the thermal fluctuations
of the mechanical mode. This driving, when combined with
the nonlinearity of the mechanical mode, also induces a
parametric-amplification process which plays a key role in
generating squeezing. We find that near an optimal detuning
point, strong squeezing well below the standard quantum
limit can be reached even at high temperatures. Meanwhile,
the red-detuned driving serves to protect the system from
instability. The mechanical squeezing can be detected by
homodyning the output field of an ancilla cavity mode driven
by a second pump pulse. Compared with previous works, our
proposal only requires one driving source on the main cavity
and is robust against thermal fluctuations. The parametric-
amplification process induces a huge increase in the effective
mechanical frequency which strongly suppresses the quantum
backaction noise. Our proposal could help the generation of
strong quantum squeezing in mechanical systems.

This paper is organized as follows: In Sec. II, we introduce
an optomechanical system with mechanical nonlinearity and
derive its effective Hamiltonian under strong driving. In
Sec. III, we study the steady-state squeezing of the mechanical
mode and identify the optimal parameter regime for the
squeezing. Analytical solutions of two limiting cases are pre-
sented in Sec. IV, and the detection of the mechanical squeez-
ing is discussed in Sec. V. In Sec. VI, we discuss the validity of
the linearization procedure and the effect of the detection on the
proposed squeezing scheme. Conclusions are given in Sec. VII.
In addition, we provide detailed discussions on the generation
of strong mechanical nonlinearity, squeezing with cubic
nonlinearity, and the stability conditions in the Appendices.

II. SYSTEM

Consider the optomechanical system depicted in Fig. 1 with
the Hamiltonian (� = 1)

Ht = Hc + Hm − g0a
†a(b† + b), (1)

Hc = δaa
†a + �d (a† + a), (2)

Hm = ωmb†b + (η/2)(b† + b)4, (3)
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FIG. 1. (Color online) Schematic of an optomechanical system
with mechanical mode b (nonlinearity η), main cavity a, and ancilla
cavity as . The pump field on cavity a (as) is indicated by amplitude
�d (�p), and frequency ωd (ωp). The detection circuit is enclosed by
gray dashed lines.

where a (a†) and b (b†) are the annihilation (creation) operators
of the cavity mode and the mechanical mode, respectively.
The cavity mode (with frequency ωa) is described by the
Hamiltonian Hc written in the rotating frame of a monochro-
matic driving field with detuning δa and amplitude �d . The
Hamiltonian of the mechanical mode Hm (with frequency
ωm) contains a Duffing nonlinear term with amplitude η.
The last term in Eq. (1) describes the radiation-pressure
interaction between the cavity and the mechanical modes
with coupling strength g0 [49]. For mechanical modes in
the subgigahertz range, the intrinsic nonlinearity is usually
very weak with nonlinear amplitude smaller than 10−15ωm

[47]. A strong nonlinearity can be produced by coupling the
mechanical mode to an ancilla system [50–53]. For example,
by coupling the mechanical mode to a qubit, a nonlinear
amplitude of η = 10−4ωm can be obtained (see Appendix A
for details). Other approaches can also be applied to enhance
the nonlinearity, such as by softening the mechanical mode
[35,54]. Note that nonlinearity in other forms, such as the
cubic potential η(b + b†)3, can also be utilized to implement
our scheme (see Appendix B for details).

When including the dissipation caused by the system-bath
coupling, the full dynamics of this optomechanical system is
described by the master equation

ρ̇ = −i[Ht,ρ] + κD[a]ρ + γ (n̄th + 1)D[b]ρ

+ γ n̄thD[b†]ρ. (4)

Here, D[o]ρ = oρo† − (o†oρ + ρo†o)/2 is the standard Lind-
blad superoperator for the damping of the cavity and the
mechanical modes, κ and γ are the cavity and the mechanical
damping rates, respectively, and n̄th is the thermal phonon
occupation number.

Strong red-detuned driving on the cavity generates large
steady-state amplitudes in both the cavity and the mechanical
modes. Let α (β) be the steady-state amplitude of the cavity
(mechanical) mode under the red-detuned driving. By using the
standard linearization procedure, the steady-state amplitudes
can be derived by solving the following equations:

[−i(δa − 2g0β) − κ/2]α − i�d = 0, (5a)

16ηβ3 + (12η + ωm)β − g0|α|2 = 0, (5b)
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FIG. 2. (Color online) (a) The steady-state amplitudes |α| and β

versus the driving power P . (b) The squeezed mechanical frequency
ω′

m and the coupling constant G′ versus P . The asterisks in (a)
are obtained with the detection circuit included [see Eq. (23)]. The
frequencies of the cavity modes a and as are ωa/(2π ) = 500 THz
and ωs/(2π ) = 1000 THz, respectively. The driving amplitudes
are �d = √

2Pκ/ωa and �p = √
2Psκs/ωs . Other parameters are

ωm/(2π ) = 2 MHz, g0 = gs = 10−4ωm, η = 10−4ωm, κ = κs =
0.1ωm, γ = 10−6ωm, and Ps = 0.1 μW.

where we have dropped γ -dependent terms because γ �
κ, η. With (moderately) strong driving on the cavity, these
amplitudes satisfy |α|, β � 1, as shown in Fig. 2(a). At
a driving power of P = 0.1 mW, |α| ≈ 103 and β ≈ 40,
consistent with our assumptions for linearization.

In the vicinity of the steady-state amplitudes, the master
equation of our optomechanical system has the same form as
that in Eq. (4) but with Ht replaced by a shifted Hamiltonian
Hsh = Heff + Hnl. Here,

Heff = �aa
†a + ω̃mb†b + 
(b2 + b†2)

−G(a + a†)(b + b†), (6)

only containing linear and bilinear terms with the following
coefficients

�a = δa − 2g0β, ω̃m = ωm + 2
,


 = 3η(4β2 + 1), G = g0|α|; (7)

at the same time

Hnl = − g0a
†a(b + b†) + 1

2η(b†4 + 4b†3b + 3b†2b2

+ 8βb†3 + 24βb†2b + H.c.), (8)

composed of all the nonlinear terms generated by the radiation-
pressure interaction and the Duffing nonlinearity. The operator
a (b) here and hereafter is the shifted operator defined relative
to the steady-state amplitude α (β). With g0, ηβ � 
,G, these
nonlinear terms in Hnl are much weaker than the linear and
bilinear terms in Heff . After neglecting the nonlinear terms, the
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master equation becomes

ρ̇ = −i[Heff,ρ] + κD[a]ρ + γ (n̄th + 1)D[b]ρ

+ γ n̄thD[b†]ρ, (9)

governed by the effective Hamiltonian Heff and the damp-
ing terms. The third term in Heff describes a parametric-
amplification process induced by the Duffing nonlinearity and
plays a key role in squeezing generation [55]. This term can
also be viewed as an increase of the spring constant of the
mechanical mode. The last term in Heff describes an effective
optomechanical coupling that causes cooling and heating of
the mechanical mode [56–60].

Parametric-amplification processes induce instability. Ap-
plying the Routh–Hurwitz criterion [61], we derive the stability
condition for this system:

16G2 < (ωm + 4
)(4�a + κ2/�a), (10)

for red-detuned driving with �a > 0. This condition is
satisfied in all relevant parameter regimes in our scheme
(see Appendix C for details). Interestingly, at the optimal
detuning point for squeezing (see below), this condition
can be simplified to be g0 <

√
27ωmη, independent of the

driving power P . Meanwhile, our parameter regimes are well
separated from the bistability threshold for a Duffing oscillator.

III. MECHANICAL SQUEEZING

Apply the squeezing transformation S(r) = exp[r(b2 −
b†2)/2] with squeezing parameter

r = (1/4) ln (1 + 4
/ωm) (11)

to the effective Hamiltonian Heff [36]. Under this transforma-
tion,

S† (r) bS (r) = b cosh (r) − b† sinh (r) (12)

and S†(r)aS(r) = a. The Hamiltonian is hence transformed to
be H ′

eff = S†(r)HeffS(r) with

H ′
eff = �aa

†a + ω′
mb†b − G′(a + a†)(b† + b), (13)

where ω′
m = ωm

√
1 + 4
/ωm is the transformed mechanical

frequency and G′ = G(1 + 4
/ωm)−1/4 is the transformed
optomechanical coupling. In Fig. 2(b), we plot ω′

m and G′
as functions of the driving power P , both of which increase
monotonically with P . At a driving power of P = 0.1 mW,
we have ω′

m ≈ 3ωm and G′ ≈ 0.6G.
We then apply the squeezing transformation S(r) to the

master equation (9) and define the transformed density matrix
ρ ′ = S†(r)ρS(r). It can be shown that S†(r)D[a]ρS(r) =
D[a]ρ ′ and

S†(r)D[b]ρS(r) = cosh2(r)D[b]ρ ′ + sinh2(r)D[b†]ρ ′

− cosh(r) sinh(r)(G[b] + G[b†])ρ ′,

(14)

with G[o]ρ = oρo − (ooρ + ρoo)/2. A similar result can be
obtained for the term S†(r)D[b†]ρS(r). With the condition
�a,ω

′
m � G′, γ (n̄th + 1), the G[b]ρ ′ and G[b†]ρ ′ terms in

the above equation are fast oscillating with factors ∼e±2iω′
mt

and can be neglected under the rotating-wave approximation
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FIG. 3. (Color online) The squeezing of X (in units of dB) versus
�a and 
 at n̄th = 0. Parameters are the same as in Fig. 2. The
dashed and solid lines correspond to squeezing at the optimal detuning
(�a = ω′

m) and at 3 dB, respectively.

(RWA). The validity of this approximation is manifested in
Fig. 5, where numerical result calculated from the transformed
master equation agrees accurately with the result from the orig-
inal master equation. Hence, under the RWA, the transformed
master equation for the density matrix ρ ′ has the same form as
Eq. (9) with Heff replaced by H ′

eff and n̄th replaced by

n̄′
th = n̄th cosh(2r) + sinh2(r). (15)

Note that the mechanical damping rate is not affected by the
squeezing transformation. Because the Hamiltonian H ′

eff only
contains linear and bilinear couplings between the cavity and
the mechanical modes, the transformed master equation for
ρ ′ describes a standard cavity cooling process with thermal
phonon number n̄′

th [57–59].
The squeezing of the mechanical mode can be calculated

by solving the above master equation. The steady-state density
matrix ρ ′

ss in the transformed frame can be derived by solving
Eq. (9) numerically. The steady-state average of an arbitrary
operator A in the original frame (before the transformation)
is 〈A〉 = Tr[S†(r)AS(r)ρ ′

ss]. For the displacement quadrature
X = (b + b†)/

√
2 of the mechanical mode, its steady-state

variance can then be derived as

〈δX2〉ss = (
n̄′

eff + 1
2

)
e−2r , (16)

where n̄′
eff is the steady-state phonon number of the trans-

formed system and is determined by the cooling process. The
best cooling in the transformed system occurs at the optimal
detuning �a = ω′

m. Hence, Eq. (16) shows that, at a given
driving power (given r and 
), squeezing is strongest at the
optimal detuning. This is clearly illustrated by the dashed
contour in Fig. 3. For comparison, we also plot the contour
of the 3 dB limit where 〈δX2〉ss = 1/4.

In Fig. 4(a), we plot 〈δX2〉ss as a function of the average
thermal phonon number n̄th. The variance is proportional to
n̄th with a slope that decreases with the driving power. This
can be explained by Eq. (16), where the variance increases
with the effective phonon number n̄′

eff which is proportional
to n̄th. Our result also shows that, as the driving power reaches
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FIG. 4. (Color online) (a) The variance 〈δX2〉ss versus n̄th at
selected driving powers. (b) The variance 〈δX2〉ss versus P at selected
n̄th. All plots are at the optimal detuning. Other parameters are the
same as in Fig. 2. The shadowed blue bottom region corresponds
to squeezing beyond the 3 dB limit. The solid curves (circles)
correspond to the exact numerical solution (analytical solution in
the strong-coupling limit).

a threshold value, squeezing exceeding 3 dB can be reached.
Even at a high temperature with n̄th ∼ 104, strong steady-state
squeezing can still be achieved by increasing the driving power.
The dependence of the variance on the driving power is shown
in Fig. 4(b), where the mechanical squeezing becomes stronger
as the driving power increases.

IV. ANALYTICAL SOLUTIONS

A. Cooling limit

To better understand the proposed squeezing scheme, we
study limiting cases that have analytical solutions. First,
consider the limit G′ � κ � ω′

m, where a cooling equation for
the mechanical mode can be derived from the master equation
in the transformed basis by adiabatically eliminating the cavity
mode [57–59]. Let μ′ = Tra[ρ ′] be the reduced density matrix
of the mechanical mode. The cooling equation is

μ̇′ = −i[ω′
mb†b,μ′] + [γ (n̄′

th + 1) + �−]D[b]μ′

+ (γ n̄′
th + �+)D[b†]μ′, (17)

with the rates

�∓ = κ(G′)2

κ2/4 + (ω′
m ∓ �a)2

. (18)

The steady state of Eq. (17) is a thermal state with average
phonon number

n̄′
eff = γ n̄′

th + �+
γ + �

, (19)

where � = �− − �+ is the cooling rate. At the optimal
detuning, �a = ω′

m, �− = 4(G′)2/κ, �+ ≈ κ[G′/(2ω′
m)]2,

and strong cooling can be achieved. The density matrix of
the mechanical mode in the original basis μ = Sμ′S† is
hence a squeezed thermal state. The variance of the squeezed
mechanical quadrature depends on the squeezing parameter r

and the cooling rate �, both of which are determined by the
driving power.

B. Strong-coupling limit

Next, we consider the strong-coupling limit with κ �
G′ � ω′

m. In this limit, by omitting the counter-rotating terms
(ab + a†b†) in the optomechanical coupling, we can derive the
analytical solution for the squeezing. At the optimal detuning,
we obtain

〈δX2〉ss = 2γ n̄th + γ + 2�sce
−2r

4(γ + �sc)
, (20)

with cooling rate

�sc = 4(G′)2κ

κ2 + κγ + 4(G′)2
. (21)

The contribution of the thermal noise in 〈δX2〉ss is reduced by a
factor γ /(2�sc) due to the cavity cooling. At zero temperature
and with ultrastrong driving (when e−2r � 1), the squeezing
will be ultimately limited by

〈δX2〉ss = γ

γ + 4�sc
, (22)

which can be approximated as 〈δX2〉ss ≈ γ /(4κ). For a
typical optomechanical system with γ � κ , this indicates a
strong squeezing well below the standard quantum limit. This
analytical solution is shown in Fig. 4. It can be seen that it
agrees well with that of exact numerical solution.

V. DETECTION OF SQUEEZING

To detect the mechanical squeezing generated in our
approach, we consider an ancilla cavity mode as (with resonant
frequency ωs) driven by a pump field of amplitude �p and
frequency ωp, as depicted in Fig. 1. The frequency separation
between the cavity modes a and as is much larger than the
frequency of the mechanical mode, i.e., |ωa − ωs | � ωm. With
the detection circuit included, the total Hamiltonian of this
system becomes

Hdec = Ht + δsa
†
s as − gsa

†
s as(b

† + b) + �p(a†
s + as),

(23)

where Ht is given by Eq. (1), δs = ωs − ωp is the detuning of
the ancilla mode as , and gs is the strength of the single-photon
optomechanical coupling. Under pumping, the ancilla mode
reaches a steady-state amplitude αs . The effective Hamiltonian
is then

H dec
eff = Heff + �sa

†
s as − Gs(as + a†

s )(b + b†), (24)
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where Heff is given by Eq. (6), �s = δs − 2gsβ, and Gs =
gsαs . As shown in Ref. [62], both the position and the
momentum quadratures of the mechanical resonator in the
original frame (untransformed frame) can be measured by
homodyning the output field of the ancilla mode with a local
oscillator. Effective detection of the mechanical state requires
that αs � 1 while Gs � κs , where κs is the damping rate of
the ancilla cavity mode. Meanwhile, to reduce the detection
backaction on the mechanical mode, it requires that αs � α

when the coupling constants gs ∼ g0. We choose Ps ≈ 0.1 μW
for an ancilla cavity of ωs/(2π ) = 1000 THz, which leads to
αs ≈ 50. With these parameters, the output field as of the mode
provides a direct measurement of the quadrature variances of
the mechanical resonator.

A weak force applied to the mechanical resonator can
be detected by measuring the output field of the ancilla
cavity. The weak impulsive force generates a displacement
of the mechanical state in its phase space of the original
frame, which can be detected from the output field within
a finite time window shorter than the inverse of the cooling
rate �s = 4G2

s /κs . Strong squeezing of the mechanical mode
ensures that the detection of this force has a resolution far
exceeding the standard quantum limit [16,17].

VI. DISCUSSIONS

In the previous sections, we showed that mechanical
squeezing robust against thermal noise can be generated
under the effective Hamiltonian Heff , where the nonlinear
Hamiltonian Hnl and the backaction of the detection circuit
are omitted from the discussion. To evaluate the validity of
the linearization procedure, we numerically solve the master
equation that includes the nonlinear Hamiltonian and plot
the steady-state variance 〈δX2〉ss in Fig. 5. Our results show
no distinguishable difference between the solutions with and
without the linearization approximation. Similarly, we study
the influence of the detection on our squeezing scheme. In
Fig. 2, the steady-state amplitudes |α| and β are plotted in the
presence of the detection circuit; in Fig. 5, the steady-state
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FIG. 5. (Color online) The steady-state variance 〈δX2〉ss versus
the driving power P at n̄th = 102. Solid line shows the solution
under the linearized Hamiltonian Heff . Squares are with Hnl included,
asterisks are with detection circuit included. Here, �a = ω′

m,�s =
ωm, and other parameters are the same as in Fig. 2.

variance 〈δX2〉ss is plotted. Our results show that detection has
negligible effect on the mechanical squeezing.

VII. CONCLUSIONS

To conclude, we presented a method to generate steady-
state mechanical squeezing that is robust against thermal
fluctuations. Our approach utilizes mechanical nonlinearity
and strong driving on the cavity mode in an optomechanical
system. The mechanical squeezing is a consequence of the joint
effect of the nonlinearity-induced parametric amplification
and cavity cooling. We showed that strong squeezing can be
achieved at the optimal detuning where the cavity detuning
is in resonance with the transformed mechanical frequency.
Analytical solutions in two limiting cases are derived. In a wide
range of driving power and thermal phonon number, squeezing
well below the standard quantum limit can be achieved. The
steady-state squeezing can be detected by measuring the output
field of an ancilla cavity mode.
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APPENDIX A: GENERATION OF STRONG
DUFFING NONLINEARITY

In this Appendix, we provide a detailed discussion on
the generation of strong mechanical nonlinearity. Various
approaches have been studied to generate strong nonlinearity
by coupling the mechanical resonator to an ancilla system
[50–53]. We focus on the method in Ref. [52], where the
nonlinearity is generated by coupling the mechanical resonator
to an ancilla qubit. Consider an ancilla qubit with the Hamil-
tonian Hq = (�q/2)σx , which couples to the mechanical
mode via an interaction λqXσz. This coupling induces an
effective Duffing nonlinearity on the mechanical resonator
in the form of H (4)

m = 6�q(λq/�q)4X4, when the qubit is
in an eigenstate of σx and under the condition λq/�q � 1.
With �q/(2π ) = 5 GHz and λq = 38 MHz, H (4)

m gives a
nonlinear amplitude η/(2π ) ∼ 0.2 kHz and η/ωm ∼ 10−4,
close to the parameters we used in our calculation. Note that
the second-order term induced by the qubit-resonator coupling
has been absorbed into the spring constant of the mechanical
resonator. For a typical driving power of P = 0.1 mW, the
dimensionless mechanical displacement in the stationary state
is X ∼ 50. The mechanical mode thus generates a backaction
on the qubit in the form of δHq = (0.6 GHz)σx , the amplitude
of which is much weaker than the detuning of the qubit. Hence,
the ancilla qubit can be treated as a passive system that is not
affected by the mechanical backaction.
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APPENDIX B: SQUEEZING WITH CUBIC
NONLINEARITY

In the main text, we showed that strong mechanical
squeezing in the steady state can be generated for a mechanical
mode with Duffing nonlinearity. In principle, mechanical
nonlinearity in other forms can also be utilized to generate
squeezing. In this section, we show that a cubic nonlinearity
in the form of η(b + b†)3 can also be used to generate strong
mechanical squeezing.

We start with the linearization procedure for a mechanical
mode with cubic nonlinearity. Let us denote the steady-state
amplitude of the cavity (mechanical) mode as αc (βc). We find
that these amplitudes satisfy the following nonlinear equations:

[−i(δc − 2g0βc) − κ/2]αc − i�d = 0, (B1a)

12ηβ2
c + ωmβc + 3η − g2

0 |αc|2 = 0, (B1b)

where we have dropped γ -dependent terms for γ � κ, η. The
quantum master equation in terms of the shifted operators can
be written as

ρ̇ = −i
[
Hc

sh,ρ
] + κD[a]ρ + γ (n̄th + 1)D[b]ρ

+ γ n̄thD[b†]ρ, (B2)

where the total Hamiltonian has the form

Hc
sh = Hc

eff − g0a
†a(b + b†) + (3ηb†2b + ηb†3 + H.c.),

(B3)

and Hc
eff is composed of the linear and bilinear terms with

Hc
eff = �c

aa
†a + ω̃c

mb†b + 
c(b2 + b†2)

−Gc(a + a†)(b + b†). (B4)

The parameters in the above equations are

�c
a = δa − 2g0βc, 
c = 6ηβ,

ω̃c
m = ωm + 2
c, Gc = g0|αc|. (B5)

With |αc|, βc � 1, the nonlinear terms can be neglected and
Hsh can be approximated by the effective Hamiltonian Hc

eff .
We want to point out that the Hamiltonian Hc

eff has exactly
the same form as Heff in Eq. (6) with its parameters depending
on the specific form of the cubic nonlinearity. The squeezing
of the mechanical mode can be achieved similarly as in the
case of the Duffing nonlinearity.

APPENDIX C: STABILITY CONDITION

In this Appendix, we study the stability of our system
by applying the Routh–Hurwitz criterion to the equations of
motion (the Langevin equations) of this system. Based on the
Hamiltonian Heff , the equations of motion of this system can
be written as

Ṙ(t) = AR(t) − Rin(t), (C1)

where we introduce the operator vectors R(t) =
(a†,a,b†,b)T for the system operators and Rin(t) =
(
√

κa
†
in,

√
κain,

√
γ b

†
in,

√
γ bin)T for the input noise operators,

and the matrix A is

A =

⎛
⎜⎜⎜⎝

i�a − κ
2 0 −iG −iG

0 −i�a − κ
2 iG iG

−iG −iG iω̃m − γ

2 2i


iG iG −2i
 −iω̃m − γ

2

⎞
⎟⎟⎟⎠ .

(C2)

The stability for this system is determined by the eigenvalues
of the matrix A. If all the eigenvalues of A have negative real
parts, then the system is stable.

Based on the fact that the similarity transformation does not
change the eigenvalues of a matrix, below we apply a similarity
transformation

V =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cosh r − sinh r

0 0 − sinh r cosh r

⎞
⎟⎟⎟⎠ , (C3)

with r = (1/4) ln(1 + 4
/ωm) to the matrix A. The trans-
formed matrix becomes

A′ = V−1AV

=

⎛
⎜⎜⎜⎝

i�a − κ
2 0 −iG′ −iG′

0 −i�a − γa

2 iG′ iG′

−iG′ −iG′ iω′
m − γ

2 0

iG′ iG′ 0 −iω′
m − γ

2

⎞
⎟⎟⎟⎠ ,

(C4)

with G′ = G(1 + 4
/ωm)−1/4 and ω′
m = ωm

√
1 + 4
/ωm.

By calculating the eigenvalues of A′, we derive the stability
condition in the red-detuned regime �a > 0 as

4ω′
m(G′)2�a −

[
(ω′

m)2 + γ 2

4

] (
�2

a + κ2

4

)
< 0. (C5)

Converting this to the original parameters (before the squeez-
ing transformation), the stability condition can be expressed
as

16G2 < (ωm + 4
)(4�a + κ2/�a), (C6)

after omitting the γ -dependent term as given in the main text.
In order to generate strong squeezing, we are interested in
the parameter regime of strong driving with |α|, β � 1 and
near the optimal detuning point with �a ∼ ω′

m. In this regime,
Eq. (C5) can be simplified to

g0 <
√

27ωmη, (C7)

which is independent of the driving power. The parameter
regime of interest in our scheme always satisfies this condition.
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