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Optomechanics is concerned with the coupling between optical cavities and mechanical resonators. Most early
works are concentrated in the physics of optomechanics in the small-displacement regime and consider one single
optical cavity mode participating in the optomechanical coupling. In this article, we focus on optomechanics in the
extremely-large-amplitude regime in which a mechanical resonator is coupled with multiple optical cavity modes
during the oscillation. We explicitly show that the mechanical resonator can present self-sustained oscillations
with limit cycles in the shape of sawtooth-edged ellipses and can exhibit dynamical multistability. By analyzing
the mechanical oscillation process and the accompanying variation of the optical cavity occupation, we develop
an energy-balanced condition to ensure the stability of self-sustained oscillation. The effect of the mechanical
nonlinearities on the dynamics of the mechanical resonator is also investigated.
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I. INTRODUCTION

Optomechanics has attracted much attention and has
undergone rapid development in recent years [1–8]. It is
concerned with the coupling between optical cavity modes
and mechanical degrees of freedom via radiation pressure [9],
optical gradient forces [10], photothermal forces [11], or
the Doppler effect [12]. Various motivations have driven the
development of this research field, such as the detection
of gravitational waves [13–16]; more sensitive sensors of
displacement, mass, or force [17–22]; fundamental studies of
quantum mechanics [23–25]; preparation of the macroscopic
quantum state [26–29]; quantum state transfer [30–34]; novel
nonlinear coupling quantum physics [35–37]; and quantum
information processing [38]. Most of these motivations focus
on the quantum level of optomechanical systems and require
cooling the mechanical resonator as close as possible to
its ground state, which has been widely investigated both
theoretically [39,40] and experimentally [41–48].

On the other hand, amplification of the mechanical oscilla-
tion is very useful for both practical applications and funda-
mental research, such as nonvolatile mechanical memory [49],
synchronization of remote mechanical resonators [50], and
chaos dynamics [51,52]. With a driving laser of a frequency
blue detuned with respect to the cavity resonance and power
above a certain threshold, the mechanical resonator can run
into self-sustained oscillations [51,53,54]. An arbitrary tiny
thermal fluctuation will be amplified into an oscillation with
exponentially increasing amplitude and finally be saturated
into a stable periodic oscillation. Self-sustained oscillation is
of broad interest. It exists not only in optomechanical systems
but also in other systems such as a resonator driven by a
superconducting single-electron transistor [55], an ultracold
atomic gas in an optical cavity [56], or a metallic point
contact deposited on a metallic spin-valve stack [57]. When
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optomechanical systems present self-sustained oscillations,
dynamical multistability may emerge as theoretically pre-
dicted in Ref. [58] and experimentally explored in Ref. [59],
which means that there may exist multiple possible stable
oscillations at a set of fixed parameters.

Most early theoretical works on optomechanical self-
sustained oscillation focus attention on the small-displacement
regime. In this regime, it is sufficient to take only one
single optical cavity mode into account participating in the
coupling with a mechanical resonator, and the dependence of
the resonance frequency of this mode on the displacement
of the mechanical resonator can be treated linearly [58].
The mechanical resonator conducts approximately sinusoidal
oscillations at its intrinsic frequency, and therefore its limit
cycles in the phase space are approximately elliptical. While
in the large-amplitude regime, which can be realized in
an optomechanical system driven by a high-power laser,
the mechanical resonator can display different self-sustained
oscillations with limit cycles that are mushroomlike in
shape [60].

If the power of the driving laser is further increased, the
amplitude of the mechanical oscillation can be comparable
with the wavelength of the laser; i.e., the system reaches the
extremely-large-amplitude regime (ELAR). Multiple optical
cavity modes of different orders may be excited and participate
in the coupling with the mechanical resonator during the
oscillation. In this work, we focus on the optomechanics in
the ELAR. We organize the article in the following way.
Section II introduces the model and the Hamiltonian and
gives the dynamical equations of the system. In Sec. III,
the self-sustained oscillation and dynamical multistability
in the ELAR are studied by analyzing the limit cycles of
the mechanical resonator in the phase space. An energy-
balanced condition is given to ensure the stability of self-
sustained oscillation. The effect of the mechanical nonlin-
earities on the dynamics of the mechanical resonator is
discussed in Sec. IV. Finally, Sec. V gives a summary of this
work.
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II. HAMILTONIAN AND DYNAMICAL EQUATIONS

We consider a generic optomechanical system as shown in
Fig. 1, which is essentially a Fabry-Pérot cavity with a fixed,
partially reflecting mirror on one side and a movable, perfectly
reflecting mirror on the other side. In this system, radiation
pressure provides the dominant optomechanical coupling
which is typically dispersive, implying that the primary effect
of the movable mirror is to shift the frequency of the optical
cavity modes. The cavity is driven by an external laser of
frequency ωl and power P . If the driving laser is turned off,
the static equilibrium length of the cavity is L0. The movable
mirror in this model can be considered as a mechanical
resonator of intrinsic frequency ωm, mass m, and damping rate
γ . Usually, the displacement x of the mechanical resonator is
assumed to be very small, so that it is sufficient to take only one
single optical cavity mode of frequency ωc(x) and decay rate
κ into account in the coupling with the mechanical resonator.
In this small-displacement regime, ωc(x) is approximately
equal to the first-order expansion around the static equilibrium
position x = 0,

ωc(x) ≈ ωc(0) + ω′
c(0)x = ωc0 − (ωc0/L0)x,

where ωc0 = ωc(0). In the frame rotating at frequency ωl , the
Hamiltonian of the system can be written as

H = �(ωc0 − ωl)â
†â + p̂2

2m
+ 1

2
mω2

mx̂2 − �gâ†âx̂

+ �αL(â + â†) + Hκ + Hγ , (1)

where â and â† are the bosonic annihilation and creation
operators of the optical cavity mode, x̂ and p̂ are the
position and momentum operators of the mechanical resonator,
g = ωc0/L0 is the optomechanical coupling, and αL is the
complex amplitude of the driving laser field which satisfies
|αL|2 = 2κP/�ωc. Here, without loss of generality, αL is set
to be real. Hκ denotes the coupling between the optical cavity

x
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FIG. 1. (Color online) Schematic of a generic optomechanical
system. An optical cavity of static equilibrium length L0 with a fixed,
partially reflecting mirror on the left side and a movable, perfectly
reflecting mirror on the right side is driven by an external laser of
frequency ωl and power P . In the ELAR, multiple optical cavity
modes of frequencies ωn and decay rates κn can be excited and
coupled with the mechanical resonator of intrinsic frequency ωm,
mass m, and damping rate γ .

mode and the vacuum bath that leads to the decay rate κ .
Hγ refers to the interaction between the mechanical resonator
and the thermal reservoir which is the cause of the damping
rate γ .

If the optical cavity is driven by a high-power laser, the
small-displacement assumption will no longer be valid and the
system will reach the large-amplitude regime. The expansion
of ωc(x) to the first-order will not be a good approximation. It is
necessary to deal with ωc(x) directly without any approximate
expansion. If the power P is high enough, the amplitude A

of the mechanical oscillation may be comparable with the
wavelength λl of the driving laser,

A/λl ∼ 1,

i.e., the system reaches the ELAR. In this case, not only should
ωc(x) be dealt with directly but also multiple optical cavity
modes of different orders should be taken into account in the
coupling with the mechanical resonator during the oscillation.
Concretely, each time the mechanical resonator passes through
the positions that satisfy x + L0 = nλl/2 (n ∈ N), the nth-
order optical cavity mode of frequency ωn(x) = nπc/(x + L0)
will be excited. So during a whole cycle of the mechanical
oscillation, a series of optical cavity modes will be excited.
All these modes are coupled with the mechanical resonator
by radiation pressure. Here, we assume that the size of the
mechanical resonator is much larger than the amplitude of
the oscillation. In this situation, we can treat the mechanical
resonator as a harmonic resonator and neglect the effect of
mechanical nonlinearities (which are considered in Sec. IV).
Thus in the ELAR, the Hamiltonian of the system reads

H = �

∞∑
n=1

[ωn(x) − ωl]â
†
nân + p̂2

2m
+ 1

2
mω2

mx̂2

+ �αL

∞∑
n=1

(ân + â†
n) +

∞∑
n=1

Hκn
+ Hγ , (2)

where ân and â
†
n are the bosonic annihilation and creation

operators of the nth-order optical cavity mode of frequency
ωn(x) and decay rates κn. Heisenberg equations of motion
for operators ân, x̂, and p̂ can be easily derived from the
Hamiltonian above. In this article, we aim to investigate the
purely classical dynamics of the system, so we replace ân by
the complex coherent light amplitude αn(t), as well replace
x̂ and p̂ by their classical counterparts x(t) and p(t). We
thus obtain the classical dynamical equations of the system
as follows:

α̇n = −i

(
nπc

x + L0
− ωl

)
αn − iαL − κnαn, (3)

ẍ = −ω2
mx + �

m

∞∑
n=1

nπc

(x + L0)2
|αn|2 − γ ẋ. (4)

For simplification, in the following, we assume all the κn are
equal, namely, κn = κ .
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III. SELF-SUSTAINED OSCILLATION AND
DYNAMICAL MULTISTABILITY

Equations (3) and (4) are two coupled nonlinear differential
equations; it is difficult to derive analytical solutions for them.
Therefore we integrate these two equations numerically by us-
ing a fourth-order Runge-Kutta algorithm. We have considered
the experimental feasibility [61–64] and set the parameters as
follows: the intrinsic frequency, mass, and damping rate of the
mechanical resonator are ωm = 107 Hz, m = 5 × 10−15 kg,
and γ = 10−2ωm. The wavelength and frequency of the
external driving laser are λl = 1000 nm and ωl = 2πc/λl .
The static equilibrium length of the cavity is L0 = Nλl/2
and N = 10 000. The decay rates of the cavity modes are
κn = κ = 102ωm; i.e., the system is in the unresolved sideband
regime so that the optical cavity can respond quickly enough to
the fast mechanical oscillation. It should be noticed here that,
compared with L0, the displacement of the moving mirror (i.e.,
the change of the cavity length) is usually very small even in
the ELAR. Thus, we treat κ as a constant rather than a function
of x.

From the numerical solutions of Eqs. (3) and (4), we plot
the limit cycles in the phase space of the mechanical resonator
scanned by x and p = mẋ as shown in Fig. 2. Each limit cycle
corresponds to a stable self-sustained oscillation in the long-
time limit. It is shown that the mechanical resonator can present
self-sustained oscillations with limit cycles in the shape of
sawtooth-edged ellipses. When P is relatively low, there is only
one dynamical stable solution of the coupled Eqs. (3) and (4)
in the long-time limit; hence there is only one limit cycle in the
phase space of the mechanical resonator as shown in Fig. 2(a).
The limit cycle is mushroomlike. Self-sustained oscillations
with limit cycles of this shape have been theoretically stud-
ied [60] and experimentally observed [65] in optomechanical
systems.

When P is above 4.1 W, there are multiple different
limit cycles in the phase space of the mechanical resonator
as shown in Figs. 2(b)–2(h), meaning that the mechanical
resonator exhibits dynamical multistability. In Fig. 3, we show
the variation of the minimum and maximum limit cycles
respectively as P changes in the range from 4.1 to 18 W. If the
mechanical resonator initially reaches a limit cycle in Fig. 3(a)
and P is then increased slowly, the mechanical resonator
will oscillate with an expanding limit cycle changing shape
in the way shown in Fig. 3(a). However, if the mechanical
resonator is initially trapped in a limit cycle in Fig. 3(b), it will
oscillate with a shrinking limit cycle as P decreases gradually,
as indicated in Fig. 3(b).

When the mechanical resonator moves forward (to the right
as shown in Fig. 1), the frequencies of the optical cavity
modes ωn(x) = nπc/(x + L0) = nπc/(x + Nλl/2) decrease.
Conversely, when it moves backward, the frequencies increase.
Every time the mechanical resonator passes through the
positions x = xk = kλl/2 (k = . . . , − 2, − 1,0,1,2, . . .), the
frequency of the optical cavity mode of order N + k meets
the external driving laser frequency ωl as shown in Fig. 4(a).
As a result, this optical cavity mode is excited and the photon
number in the cavity becomes very large rapidly; accordingly,
the radiation pressure exerted by the light stored in the cavity
increases rapidly. When the mechanical resonator goes away
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FIG. 2. Limit cycles in the phase space of the mechanical
resonator scanned by x and p = mẋ with different values of P .
The parameters are ωm = 107 Hz, m = 5 × 10−15 kg, γ = 10−2ωm,
κn = κ = 102ωm, λl = 1000 nm, L0 = Nλl/2, and N = 10 000.
The values of P are (a) P = 1 W, (b) P = 4.1 W, (c) P = 7 W,
(d) P = 10 W, (e) P = 11 W, (f) P = 12 W, (g) P = 15 W, and (h)
P = 17 W, as specified by the vertical black dashed lines in Fig. 4.

from these positions, the cavity occupation as well as the
radiation pressure decreases rapidly to almost zero due to
the large decay rates of the cavity modes. The variation of the
photon number in the cavity accompanied by the oscillation
of the mechanical resonator is shown in Fig. 4(b).

When the mechanical resonator is away from positions
x = xk , it approximately carries out damped harmonic
oscillation:

ẍ = −ω2
mx − γ ẋ. (5)

Every time the mechanical resonator passes through po-
sitions x = xk , radiation pressure in the cavity kicks it and
dynamical equations of the system can be approximately
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FIG. 3. (Color online) The variation of the minimum (a) and
maximum (b) limit cycles as the power of the external driving power
changes in the range of 4.1 to 18 W, in which the mechanical resonator
presents dynamical multistability.

written as follows:

α̇
N+k

= ig
N+k

(x − xk)α
N+k

− iαL − κα
N+k

, (6)

ẍ = −ω2
mx + �g

N+k

m
|α

N+k
|2 − γ ẋ, (7)

where g
N+k

= 4πc/[(N + k)λ2] is the optomechanical cou-
pling strength. It can be derived from Eq. (7) that

|α
N+k

|2 ≈ α2
L

g2
N+k

(x − xk)2 + κ2

×
[

1 + 4κg2
N+k

(x − xk)ẋ[
g2

N+k
(x − xk)2 + κ2

]2

]
. (8)

Thus, the mechanical resonator satisfies the following
equation of motion:

ẍ = −ω2
mx − γ ẋ + �g

N+k
α2

L

m
[
g2

N+k
(x − xk)2 + κ2

]
×

[
1 + 4κg2

N+k
(x − kλ/2)ẋ[

g2
N+k

(x − xk)2 + κ2
]2

]
. (9)

x/λl

(ω
n
−

ω
l)

/κ

x/
λ lp/mω
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l
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l
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FIG. 4. (Color online) (a) The dependence of the frequencies ωn

of the optical cavity modes on the displacement x of the mechanical
resonator. (b) The variation of the optical cavity occupation with
the oscillation of the mechanical resonator. Here, the power of the
external driving laser is P = 11 W. The other parameters are same as
those in Fig. 2.

If the mechanical resonator moves forward, the radiation
pressure does positive work on it:

W+
N+k

= �α2
Lπ

κ
+ 3�

2α4
Lg

N+k
π

8mκ4ẋ−
k

, (10)

where ẋ−
k is the velocity of the mechanical resonator just before

it passes forward through the position x = xk . As a result, the
kicks lead to sharp accelerations of the mechanical resonator.
On the contrary, if the mechanical resonator moves backward,
the radiation pressure does negative work on it:

W−
N+k

= −�α2
Lπ

κ
− 3�

2α4
Lg

N+k
π

8mκ4ẋ+
k

, (11)

where ẋ+
k is the velocity of the mechanical resonator just before

it passes backward through position x = xk . So the mechanical
resonator experiences sharp decelerations. As a reflection of
these processes, there are some sawteeth on the limit cycles
at positions x = xk as shown in Fig. 2. If xk is out of the
oscillation range of the mechanical resonator, we have W+

N+k
=

W−
N+k

= 0. When the total net work done by radiation pressure
is balanced with the dissipative energy Eγ during one whole
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FIG. 5. (Color online) (a) Definition of the average amplitude as
A = √

(A2
min + A2

max)/2. (b) Attractor diagram on a plane of A and P .
Here, the parameters are same as those in Fig. 2. The red (dense) dots
show the numerically exact results captured by solving the original
coupled dynamical equations, Eqs. (3) and (4). The black (sparse)
dots are the approximately estimated results (see the Appendix) from
the energy-balanced condition, Eq. (12). The vertical black dashed
lines specify some values of P distributed in different regions. Limit
cycles for these values of P are plotted in Fig. 2.

cycle, ∑
k

(W+
N+k

+ W−
N+k

) = Eγ , (12)

the mechanical resonator reaches stable self-sustained oscil-
lation. At some parameters, there may simultaneously exist
multiple different possible stable oscillations that can satisfy
this energy-balance condition. So the mechanical resonator
may exhibit dynamical multistability.

To demonstrate dynamical multistability concisely, we
define the average amplitude as A = √

(A2
min + A2

max)/2 as
shown in Fig. 5(a), where Amin(Amax) is the minimum
(maximum) amplitude of a limit cycle. It should be noticed that
with the effect of radiation pressure the dynamical equilibrium

position x is shifted from the static equilibrium position x = 0,
but in the ELAR, the shift is small and can be neglected
compared with the amplitude.

Figure 5(b) shows the dependence of A on P , which can be
considered as an attractor diagram. The red (dense) dots refer
to the numerically exact results captured by solving the original
coupled dynamical equations, Eqs. (3) and (4). The black
(sparse) dots denote the approximately estimated results (for
details, see the Appendix) from the energy-balanced condition,
Eq. (12). The discrete average amplitudes of the mechanical
resonator reveals that the energy-balance condition leads to
an amplitude locking effect. When P is above 4.1 W, the
mechanical resonator exhibits dynamical multistability, so A

can take multiple values for a fixed P as shown in Fig. 5(b).

IV. MECHANICAL NONLINEARITIES

In ELAR, if the size of the mechanical resonator is not
very large, the stress induced in it during the oscillation may
be strong and the resulting mechanical nonlinearities [66–68]
may be non-neglectable. In this situation, the dynamics of
the mechanical resonator can be described by the following
Duffing equation, including optomechanical coupling,

ẍ = −ω2
m(1 + αx2)x + �

m

∞∑
n=1

nπc

(x + L0)2
|αn|2 − γ ẋ, (13)

where α is the cubic nonlinear constant and has the units
of m−2. If the spring constant of the mechanical resonator
weakens with increasing amplitude, the value of α is negative.
On the contrary, a positive value of α indicates that the spring
constant stiffens with increasing amplitude. Figure 6 shows the
dependence of the average amplitude A on α. When α < 0, the
average amplitude A changes gently with α, meaning that, for
a weakening mechanical spring, the mechanical nonlinearities
have a weak effect on the mechanical oscillation. For a

A
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l
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FIG. 6. (Color online) The dependence of the average amplitude
A on α. Here, the power of the external driving laser is set to be
P = 7 W. The other parameters are same as those in Fig. 2.
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stiffening mechanical spring (α > 0), the effect is also very
weak when α is small. Only when α is large does the effect
become strong. As α increases, A increases sharply and the
distribution of the dynamical multistability is affected.

V. SUMMARY

We have studied classical dynamics of a generic op-
tomechanical system in the ELAR in which a mechanical
resonator is coupled with multiple optical cavity modes. It
has been shown that the mechanical resonator can present
self-sustained oscillations in a wide range of parametric space.
Instead of sinusoidal oscillations in the small-displacement
regime, the mechanical resonator displays more complicated
oscillations in the ELAR with limit cycles in the shape of
sawtooth-edged ellipses. We have analyzed the process
of the mechanical oscillation and the accompanying variation
of the optical cavity occupation. Based on these, we derived an
energy-balanced condition of stable self-sustained oscillation.
We have demonstrated that the mechanical resonator may
exhibit dynamical multistability, which can be explained by the
fact that multiple different stable oscillations that can satisfy
the energy-balanced condition may simultaneously exist. The
effect of the mechanical nonlinearities on the dynamics of the
mechanical resonator has also been discussed, and it has been
shown that the effect is weak in a wide range of values of the
nonlinearity parameter α. Only when α is positive and very
large does the effect become strong and may have an influence
on the distribution of the dynamical multistability.

Dynamical multistability may find applications in sensitive
force or displacement detections and memory storage. In the
parametric space of our calculation in this article, the required
power of the external driving laser is very high. However,
with smaller mass, intrinsic frequency, or damping rate, the
mechanical resonator can reach the ELAR driven by a much
weaker laser field. It is possible to observe the self-sustained
oscillation demonstrated in this article within the reach of
current experimental technology.
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APPENDIX

The energy-balanced condition, Eq. (12) can be rewritten
as an equation of the two unknown quantities Amin and Amax

as follows: ∑
k

(−Amin�xk�Amax)

(
W+

N+k
+ W−

N+k

)

= Eγ (Amin,Amax), (A1)

where W+
N+k

and W−
N+k

are expressed by Eqs. (10) and (11). It
should be noticed that Amin and Amax are not independent of
each other, but are correlated. Concretely, if the mechanical
resonator moves forward with initial position and velocity
(x,ẋ) = (−Amin,0), it approximately experiences the follow-
ing motion processes. It carries out damped harmonic motion
obeying Eq. (5) until it reaches a state (xk,ẋ

−
k ). Next, it

experiences a sharp acceleration rapidly and its state undergoes
an abrupt change:

(xk,ẋ
−
k ) →

(
xk,

√
(ẋ−

k )2 + 2�α2
Lπ

mκ
+ 3�2α4

LgN+kπ

4m2κ4ẋ−
k

)
, (A2)

which can be derived from Eq. (10). Then the mechanical
resonator alternately experiences damped harmonic motions
and sharp accelerations at the positions x = xk until it reaches
a unique and determinate state (Amax,0). Similarly, when
the mechanical resonator moves backward, it alternately
experiences damped harmonic motions and the following
sharp decelerations at the positions xk:

(xk,ẋ
+
k ) →

(
xk, −

√
(ẋ+

k )2 − 2�α2
Lπ

mκ
− 3�2α4

LgN+kπ

4m2κ4ẋ+
k

)
.

(A3)

By numerically simulating these motion processes, we can get
values of WN+k+ , W−

N+k , and Eγ . By testing whether Eq. (13)
is satisfied, we can get Amin, Amax, and then A of stable self-
sustained oscillation.
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