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Lowest-order relativistic corrections to the fundamental limits of nonlinear-optical coefficients
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The effects of small relativistic corrections to the off-resonant polarizability, hyperpolarizability, and second
hyperpolarizability are investigated. Corrections to linear- and nonlinear-optical coefficients are demonstrated in
the three-level ansatz, which includes corrections to the Kuzyk limits when scaled to semirelativistic energies. It is
also shown that the maximum value of the hyperpolarizability is more sensitive than the maximum polarizability
or second hyperpolarizability to lowest-order relativistic corrections. These corrections illustrate how the intrinsic
nonlinear-optical response is affected at semirelativistic energies.
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I. INTRODUCTION

Over a decade ago, Kuzyk [1] showed that there are
fundamental limits to the off-resonant, electronic, nonlinear-
optical response. This was discovered by manipulating both
the on- and off-diagonal elements of the Thomas-Reiche-Kuhn
(TRK) sum rule [2–4], which limits the oscillator strengths of
a quantum system with respect to fundamental constants in
the nonrelativistic regime. The oscillator strength is limited
by the nonrelativistic kinetic energy of a free particle, where
field interactions from a four-potential do not contribute to
the maximum oscillator strength. The intrinsic values of the
hyperpolarizability and second hyperpolarizability in the non-
relativistic limit have been studied in great detail [5–23], where
there is a looming gap between the measured and calculated
values and the fundamental limits in the nonrelativistic regime.

There have been several approaches to reduce this gap using
optimization routines on one-dimensional potentials, which
have resulted in the confirmation of the apparent gap [24–32].
Another approach to breach the gap involves a systematic
search for new classes of organic nonlinear-optical molecules
with multipolar charge-density analysis from crystallographic
data [33–35]. New abstract methods of calculating large non-
linear responses have also been studied for low-dimensional
quantum graphs [36–38]. All of these approaches focus on
breaching the gap between the fundamental limit and the
largest calculated (or directly measured) intrinsic values.

Although a four-potential does not contribute to the
nonrelativistic TRK sum rule, there may be other ways to
change the limiting value on the oscillator strength, and
thereby adjust the fundamental limits of the nonlinear-optical
response. Instead of focusing on optimizing the intrinsic value
based on a specific potential, I will discuss the changes in
the limiting constant of the TRK sum rules for a specific
type of quantum system that is not properly represented by a
closed Schrodinger equation. Specifically, a relativistic system
is examined which no longer has a simple p2/2m kinetic
energy approximation, and therefore, the energy-momentum
relationship directly affects the fundamental limits. Thus, this
paper is dedicated to the study of the fundamental limits of the
hyperpolarizability and second hyperpolarizability for systems
that have non-negligible relativistic energies.
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II. THEORY

In the far off-resonant limit (frequency approaches zero),
the respective one-dimensional polarizability, hyperpolariz-
ability, and second hyperpolarizability are [39]

α = 2e2
∞∑
n

′ x0nxn0

En0
, (1)

β = 3e3
∞∑
n,l

′ x0nx̄nlxl0

En0El0
, (2)

and

γ = 4e4

( ∞∑
n,l,k

′ x0nx̄nl x̄lkxk0

En0El0Ek0
−

∞∑
n,l

′ x0nxn0x0lxl0

E2
n0El0

)
, (3)

where x is the position operator in one dimension, e is
the magnitude of an electron’s charge, Ei is the ith energy
eigenstate, and the prime restricts the summation by excluding
the ground state. The shorthand notation, xij = 〈i |x| j 〉 and
Eij = Ei − Ej , was introduced in Eqs. (1)–(3). Note that the
barred operator presented in the expressions for the nonlinear
coefficients is the origin-specific expectation value, which is
given as x̄ii = xii − x00 when the indices are matched.

The TRK sum rules for the Dirac equation, gives the
well-known result of all states summing to zero, where the
zero value is due to the sum of the positive and corresponding
negative energy states [40]. We wish to only observe the
positive energy states from an electron in an atom or molecule,
and therefore, we must project out the positive energy
states. For a single electron system, the positive energy TRK
sum rules to lowest-relativistic order (ordered in 1/c) have
previously been derived [41–43] using a Foldy-Wouthuysen
(FW) transformation [44],

∞∑
l=0

〈k|r|l〉〈l|r|n〉
[
El − 1

2
(Ek + En)

]

= 〈k′|
(

3�
2

2m
+ 5�

4

4m3c2
∇2

)
|n′〉, (4)

where |n′〉 = eiS |n〉 with S being a unitary operator. Equation
(4) differs slightly from the results of Ref. [42], where we
have derived the relation with arbitrary eigenstates because
both the on- and off-diagonal components of the sum rules

1050-2947/2015/91(1)/013832(9) 013832-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.013832


NATHAN J. DAWSON PHYSICAL REVIEW A 91, 013832 (2015)

are essential in determining the off-resonant, nonlinear-optical
responses [1]. In the FW approach p = p′, where an operator
A in the FW approximation is defined as A′ = eiSAe−iS .
Thus, the momentum operator commutes with eiS , and
therefore 〈k′|p2|n′〉 = 〈k|e−iSp2eiS |n〉 = 〈k|p2|n〉. Note that
while transforming the Hamiltonian for an electron interacting
with fields, S is chosen at every iteration to remove all odd
operators.

Inasmuch as the ∇ operator is related to the momentum
operator, and that there is an equivalence between the momen-
tum operator in the Schrodinger equation and the momentum
in the FW transformation, the right-hand side (RHS) of Eq. (4)
may be written as

〈k|
(

3�
2

2m
− 5�

2p2

4m3c2

)
|n〉.

Thus, to the lowest-order relativistic correction, the RHS of the
TRK sum rules given in Eq. (4) decreases for any real value
of the momentum.

The lowest-order relativistic approximation to the Hamilto-
nian (for an electron in the presence of a scalar potential only)
is given as

H = H0 − p4

8m3c2
+ 1

4m2c2
(σ · p) V (r) (σ · p)

− 1

8m2c2
(p2V (r) + V (r) p2), (5)

where

H0 = p2

2m
+ V (r) , (6)

with V (r) denoting a spatially dependent scalar potential and
σ representing the Pauli spin matrices. We may rewrite Eq. (5)
as the well-known result [45]:

H = p2

2m
− p4

8m3c2
+ V (r) + �

4m2c2
σ · {[∇V (r)] × p}

+ �
2

8m2c2
∇2V (r). (7)

The Hamiltonian with lowest-order relativistic corrections is
a quartic equation with respect to momentum. For central
potentials, the spin-orbit term may be recast in terms of
the angular momentum operator, and thereby reduces the
Hamiltonian to a quadratic equation in p2.

There is an alternative method of reducing Eq. (7) to a
quadratic that does not require one to collapse the parameter
space to the centrosymmetric limit, which is observed when
limiting the system to one dimension. In one dimension,
there is no orbital angular momentum, ∇V × p = 0, and
therefore, the spin-orbit term vanishes. Thus, Eq. (7) reduces
to a simplified quadratic equation in p2

x , where

H = p2
x

2m
− p4

x

8m3c2
+ V (x) + �

2

8m2c2
∇2V (x). (8)

Note that the Darwin still term survives the one-dimensional
approximation. Although this approach simplifies the study
of generalized semirelativistic interactions while maintaining
a noncentrosymmetric parameter space, one should note
that many recent advances in quantum chemistry have been

introduced for numerically approximating specified relativistic
systems. Most notably are the electrostatic-potential-ordered
Douglass-Kroll-Hess method [46–49], the ordered regular
approximations [50–53], and others based on exact decoupling
methods [54–57].

By restricting ourselves to one dimension, we may write

〈k|V + p2
x

2m
− p4

x

8m3c2
+ �

2

8m2c2

∂2V

∂x2
= En|n〉. (9)

Solving Eq. (9) for p2
x gives

〈k|p2
x |n〉 = 2m2c2δk,n − 2m2c2

×〈k|
√

1 − 2(En − V )

mc2
+ �2

4m3c4

∂2V

∂x2
|n〉, (10)

where δ is the Kronecker delta function, and the negative root
was chosen which reduces Eq. (10) to the nonrelativistic TRK
sum rules as 1/c → 0. Using Eq. (10), the one-dimensional
TRK sum rule with lowest-order relativistic corrections,

∞∑
l=0

〈k|x|l〉〈l|x|n〉
[
El − 1

2
(Ek + En)

]

= 〈k|
(

�
2

2m
− 3�

2p2
x

4m3c2

)
|n〉, (11)

may be rewritten as

∞∑
l=0

〈k|x|l〉〈l|x|n〉
[
El − 1

2
(Ek + En)

]

= �
2

m

(
3

2
λkn − δk,n

)
, (12)

where

λkn = 〈k|
√

1 − 2

mc2
(En − V ) + �2

4m3c4

∂2V

∂x2
|n〉. (13)

Under the current set of approximations, we take the
element (k = 0, n = 0), or (0,0), which gives

|x10|2 E10 = �
2

m

(
3

2
λ00 − 1

)
−

∞∑
l=2

|xl0|2 El0. (14)

Considering the diagonal components and neglecting the
Darwin term, there are two regimes that adjust the fundamental
limit. If En > Vn,n (x), then the electron is moving inside
a potential and λnn is real. This causes a decrease in the
maximum oscillator strength. If the electron is expected
to be outside a potential such that En < Vn,n (x), then λnn

becomes imaginary, which cannot occur for bound states with
positive energies. Therefore, the oscillator strength of a one-
dimensional semirelativistic system decreases with respect
to the nonrelativistic approximation; however, a competing
parameter may increase the final numerical value of some
systems (not the intrinsic value) of the off-resonant response
because the relativistic corrections reduce the transition en-
ergies with respect to those mapped from the nonrelativistic
Hamiltonian.
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In prior studies that began with a Hamiltonian in the
nonrelativistic limit, it was shown that the largest nonlinear-
optical responses occur when all other transition energies
become much larger than E10. In other words, the sum-over-
state (SOS) expressions are dominated by the first excited
state transition. This is also true for relativistically corrected
systems which is obvious from Eq. (14). Thus, we adopt the
same method as Kuzyk [1] and assume a three-level model.
Then, Eq. (14) reduces to

|x10|2E10 + |x20|2E20 = �
2

m

(
3

2
λ00 − 1

)
. (15)

Likewise, (1,1) produces the resultant equation,

|x12|2 E21 − |x10|2 E10 = �
2

m

(
3

2
λ11 − 1

)
. (16)

In the same manner as Eqs. (15) and (16) we take (1,0),
which gives

x10x̄11E10 + x12x20 (E21 + E20) = 3�
2

2m
λ10. (17)

Note that the left-hand side of Eq. (17) is identical for (1,0) and
(0,1) when we assume real transition moments, i.e., xij = xji

[6]. Thus, it is of no surprise that the corresponding λ parameter
must also possess the property λ10 = λ01. Finally, we set the
matrix elements corresponding to (2,0), or (0,2), which gives

x20x̄22E20 + x10x12 (E10 − E21) = 3�
2

2m
λ20. (18)

Note that Eqs. (17) and (18) contain off-diagonal components
that are real and positive for well-behaved systems.

Solving Eqs. (15)–(18) for the transition dipole moments,
we find

|x10| = �√
mE10

X

√
3

2
λ00 − 1, (19)

|x12| = �√
mE10

√
E

1 − E
Gλ (X) , (20)

x̄11 = �√
mE10

[
E − 2√
1 − E

√
1 − X2

X
Gλ(X)

+ 3λ10

2X

√
3
2λ00 − 1

]
, (21)

x̄22 = �√
mE10

[
1 − 2E√

1 − E

X√
1 − X2

Gλ(X)

+ 3
√

Eλ20

2
√

1 − X2
√

3
2λ00 − 1

]
, (22)

and

|x20| = �√
mE10

√
E

√
1 − X2

√
3

2
λ00 − 1, (23)

where

Gλ (X) =
√

X2
(

3
2λ00 − 1

) + 3
2λ11 − 1. (24)

Here, we used the notation inline with previous expressions
for the nonlinear-optical limits of nonrelativistic systems such
that

X = |x10|∣∣xmax
10

∣∣ and E = E10

E20
, (25)

where we can see that the maximum value for the x10 transition
moment is

∣∣xmax
10

∣∣ = �√
mE10

√
3

2
λ00 − 1. (26)

To find an expression for the off-resonant polarizability,
hyperpolarizability, and second hyperpolarizability of a three-
level system, we substitute Eqs. (19)–(26) into Eqs. (1)–(3).
The three-level polarizability, hyperpolarizability, and second
hyperpolarizability reduce to

α′
3L = 2e2

�
2

mE2
10

[X2 + E2(1 − X2)]H 2
λ , (27)

β ′
3L = 6e3

�
3√

m3E7
10

Hλ

[√
1 − X2X(1 − E)3/2

(
1 + 3

2
E + E2

)
HλGλ(X) − 3Xλ10 − 3

√
1 − X2E7/2λ20

]
, (28)

and

γ ′
3L = e4

�
4

m2E5
10

{
4[4 − (1 + 2X2 + 5X4)E5 − (1 − 2X2 − 5X4)E3 − (3 − 5X4)E2 − 5X4]

− 9[(1 − 2X2 + 5X4)E5 + (2X2 − 5X4)E3 + (4X2 − 5X4)E2 + 5X4 − 4X2]λ2
00

− 6[4 − 4X2 + (4X2 − 3)E2 + (4X2 − 1)E3 − 4X2E5]λ11

+ 6[(2 + 10X4)E5 + (1 − 10X4)E3 + (3 + 4X2 − 10X4)E2 + 10X4 − 4X2 − 4]λ00

− 9[4X2E5(1 − 4X2)E3 + (3 − 4X2)E2 + 4X2 − 4]λ00λ11 + 9
(
E5λ2

20 + λ2
10

)
− 12HλGλ(X)[λ10(2 + E)

√
1 − E

√
1 − X2 − λ20X

√
E(1 − E)(E3 + 2E4)]

}
, (29)
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where

Hλ =
√

3

2
λ00 − 1. (30)

The primed coefficients in Eqs. (27)–(29) denote relativistic
corrections to the TRK sum rules. Note that the energies in
these primed equations for the nonlinear-optical coefficients
are also relativistically corrected.

In the nonrelativistic limit, i.e., when c → ∞, Eqs. (27)–
(29) reduce to the off-resonant, three-level model calculated
from the nonrelativistic TRK sum rules [17,19]. The polariz-
ability, hyperpolarizability, and second hyperpolarizability in
the nonrelativistic limit are given by

α3L = e2
�

2

mE2
10

[X2 + E2(1 − X2)], (31)

β3L = 3e3
�

3

2
√

2m3E7
10

X
√

1 − X4

× (1 − E)3/2

(
1 + 3

2
E + E2

)
, (32)

and

γ3L = e4
�

4

m2E5
10

[4 − 2(E2 − 1)E3X2

− 5(E − 1)2(E + 1)(E2 + E + 1)X4

− (E3 + E + 3)E2]. (33)

III. DISCUSSION

Transition moments (and expectation values of many types)
in addition to diagonal energy or potential differences can
appear in the relativistically corrected equation via the λij

terms. If the values of λij are known for a specific potential,
then the second hyperpolarizability can be approximated by
Eq. (29). In other words, the inclusion of the momentum term
in the TRK sum rules no longer gives a simple relationship
between the transition moments and energies.

It is clear that the linear polarizability for all X and E

is reduced by the lowest-order relativistic correction. The
decrease is due to the presence of the Hλ parameter, which
can take values between 0 and 1, where Hλ → 1 in the
nonrelativistic limit. In X and E parameter space, the limit
of the hyperpolarizability is located at X = 1/

4
√

3 and E = 0.
The resulting limit corresponds to a two-level system, which
is not surprising given the relationships in Eq. (14). Because
the maximum is located when 1/E20 → 0, it seems counterin-
tuitive that the maximum of the nonlinear-optical coefficients
occur when X 	= 1; however, we can no longer think in terms
of simple linear optics. When calculating nonlinear-optical
coefficients, the intermediate states and excited state sum
rules are interwoven into Eqs. (1) and (3). The limit of the
hyperpolarizability of nonrelativistic systems calculated using
the three-level ansatz is given by

βmax = 4
√

3
e3

�
3√

m3E7
10

. (34)

The effects of linear, relativistic, kinetic energy on the
fundamental limit of the hyperpolarizability may be studied
by substituting X = 1/

4
√

3 and E = 0 into Eq. (28). The
lowest-order relativistic correction to the limit of the hyperpo-
larizability, β ′ (X,E), is given by

β ′( −4
√

3,0) = 2
4
√

3

e3
�

3√
m3E7

10

Hλ

×
(√

6Hλ

√
3

2
λ00 + 3

2
λ11 − 1 − 9λ10

)
. (35)

Note that when E = 0, the second excited state is infinitely
large; however, E20 does not enter into the oscillator strength
corrections as there is no λ22 term. The same is true for any
number of truncated states, where there is no diagonal λpp term
for a system truncated to p states. Thus, we may still assume
that E20 → ∞ without any obvious negative consequences.

The limit to the hyperpolarizability for increasingly rel-
ativistic systems is shown in Fig. 1, where the intrinsic
value, β ′

int = β ′/βmax, is plotted as a function of λ00 and
λ11. We must place a lower bound on some parameters due
to the low-order approximation. We observe that for real
values of the off-resonant hyperpolarizability, λ00 and λ11

can have a minimum value of 2/3. As shown in Fig. 1(a),
the lowest-order relativistic correction to the limit of the
hyperpolarizability is reduced, or even negative, when λ10 = 0
while λ00 and λ11 increase. The hyperpolarizability is further
reduced when the off-diagonal relativistic term λ10 is increased
as illustrated in Fig. 1(b). If we further increase λ10 away from
the nonrelativistic limit, there are values of λ00 and λ11 that
correspond to a negative hyperpolarizability that is greater
in magnitude than the fundamental limit. These occurrences
where the limit is broken appear for values of λ11 that deviate
from unity, but not for large deviations of λ00, where the entire
function of β ′ is multiplied by Hλ. Thus, large values of λ00

quickly decrease the effects of an increasing λ10.
The red region shown in Fig. 1(c) corresponds to the region

that is opposite in sign and greater in magnitude to the funda-
mental limit when λ10 = 0.2, which is still within the stability
boundaries of the lowest-order approximation. There is the
possibility that higher-order relativistic corrections may lessen
the effects of the lowest-order correction; however, introducing
higher-order corrections into an analytical framework is quite
complicated and beyond the scope of the present study. The
lowest-order correction to the (n, n) sum rules appears to damp
the total strength of the transition probabilities by increasing
the momentum at semirelativistic energies. Note that an
exotic Hamiltonian with a small momentum correction of
opposite sign to that of the lowest-order relativistic correction
would instead produce a virtual increase in the total oscillator
strength. Relativistic corrections to the (n, k) TRK sum rules,
where n 	= k, appear to directly subtract from the total response
as opposed to an apparent quadratic damping. These nonzero
terms are what appear to allow the nonrelativistic fundamental
limit to be broken when scaled to semirelativistic kinetic
energies.

To get a general idea of how relativity affects the second
hyperpolarizability, we first study the limits of the non-
relativistic three-level model, Eq. (33). The upper limit of
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FIG. 1. (Color online) The intrinsic hyperpolarizability as a func-
tion of λ00 and λ11 when X = 1/

4
√

3 and E = 0. The relativistic
behavior of the Kuzyk limit is illustrated for (a) λ10 = 0, (b) λ10 = 0.1,
and (c) λ10 = 0.2. Values outside the magnitude for the nonrelativistic
limit are given by the solid (red) region.

the nonrelativistic second hyperpolarizability, in the reduced
parameter space, is located at E = 0 and X = 0, which gives

γmax = 4e4
�

4

m2E5
10

. (36)

The lower limit is found when either E = 1, or when E = 0
and X = 1. For the nonrelativistic case, the lower limit of the
second hyperpolarizability is

γmin = − e4
�

4

m2E5
10

. (37)

We may now substitute the corresponding three-level
energy and first transition moment fractions, X and E, into the
lowest-order corrected second hyperpolarizability expression
to study the maximum value of semirelativistic systems. After
substituting the parameters associated with the maximum for
the nonrelativistic limit, Eq. (29) reduces to

γ ′(0,0) = e4
�

4

m2E5
10

[16 + 9λ10 − 24λ11 + 3λ00(12λ11 − 8)

−12λ10

√
(3λ00 − 2)(3λ11 − 2)]. (38)

The lowest-order relativistic corrections to the second
hyperpolarizability are shown in Fig. 2. Note that the maximum
intrinsic value, γ ′

int, is 1 and the minimum is −1/4. As shown
in Fig. 2(a), the maximum possible second hyperpolarizability
is reduced for a potential with negligible off-diagonal λ

parameters. The other two plots in Fig. 2 illustrate how a
nonzero λ10 further reduces the second nonlinear response
from the nonrelativistic maximum. Again, note that even
though the intrinsic values are reduced, the net numerical
values for the off-resonant response may be affected differently
because of relativistic changes in E10.

There are two regimes that are associated with the minimum
value of the second hyperpolarizability. Focusing only on
the minimum at the two-level limit, i.e., E → 0, there is an
intrinsic value of −0.25 when X = 1. The lower limit in this
regime, with lowest-order relativistic corrections, is given by

γ ′ (1,0) = e4
�

4

m2E5
10

[
12λ00 − 9λ2

00 + 9λ2
10 − 4

]
. (39)

The minimum value in this regime is only affected by the
lowest diagonal term λ00, and the first off-diagonal term λ10.
Thus, it appears that, for well-behaved systems under these
approximations, the first excited state does not contribute to
the lowest-order relativistic correction at the (1,0) minimum.

The minimum at (1,0) is plotted in Fig. 3 as a function of
λ00 and λ10. The value of λ00 is “walked” away from the
nonrelativistic value of 1, while λ10 is increased from the
nonrelativistic limit of zero. Notice how the magnitude of
the lower limit in this regime is also reduced which signifies
response damping as the dominant mechanism as opposed to
a subtraction of the net response. Similar to β ′, under more
extreme circumstances, it appears that a negative value of γ

may also become zero or even positive. The positive is due to
the off-diagonal λkn subtraction of the response which is less
prominent for the second hyperpolarizability.

The second regime where there exists a minimum is found
when E = 1, where the minimum also reaches the negative
intrinsic limit of −1/4. In this regime, the lowest-order
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FIG. 2. (Color online) The maximum intrinsic value of the sec-
ond hyperpolarizability as a function of λ00 and λ11 from the
relativistic corrections to the TRK sum rules. The corrected maximum
is shown for (a) λ10 = 0, (b) λ10 = 0.1, and (c) λ10 = 0.2.

relativistic correction gives

γ ′(X,1) = e4
�

4

m2E5
10

[
12λ00 − 9λ2

00 + 9λ2
10 + 9λ2

20 − 4
]
. (40)

Thus, this degenerate minimum is more strongly affected by
relativistic corrections with the inclusion of a positive λ20

0.0
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-0.25
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0.3

γ’   (1,0)int
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FIG. 3. (Color online) The minimum intrinsic value of the second
hyperpolarizability as a function of λ00 and λ10 from the relativistic
corrections to the TRK sum rules.

parameter that increases the minimum value away from the
negative limit.

Relativistic effects of H-like ions and the 3-level ansatz

It is well known that, unlike many organic molecules,
the continuum states make a significant contribution to the
total dipole response of a single hydrogen atom. Thus, these
continuum states cause problems with the SOS method for
the second hyperpolarizability. Other nonrelativistic methods
have been developed such as a time-independent perturbation
approach [58,59] to calculate the zero-frequency response and
a method employing Sturmian functions used by Shelton [60]
to calculate the frequency-dependent coefficients. Because the
largest portion of the dipole strength is in the 1s-2p transition,
a qualitatively study of the lowest-relativistic corrections to
H-like ions can be performed with a simple three-level model.
Here, problems with convergence and continuum states are
washed away by placing the entire oscillator strength in the
first two excited state transitions, which gives a reasonably
approximate description for most systems.

The only nonzero angular contributions from the non-
relativistic transitions are either 1/

√
3 for ns-n′p or 2/

√
15

for np-n′d. The similarity between the two nonzero angular
contributions, the low frequency of np-n′d transitions in the
SOS expression, and the fact that we can limit our study to
the γzzzz component allows us to make a one-dimensional
approximation; thus, the total response is given by Eq. (11).
Note that the spin-orbit term will still enter into the calculation,
but it will be later introduced as a perturbation in the energy
so that we can further simplify the example.

We can treat the lowest-order linear moment, spin-orbit, and
Darwin terms as first-order perturbations in the energy [61].
This provides a simpler approach when solving Eq. (9), where
we may write

p2
nk ≈ δk,n

Z4α2

(n + 1)2

[
2

(1 + 2j ) (n + 1)
− 3

4 (n + 1)2

]

−δk,n

Z2

(n + 1)2 − 2Vkn, (41)
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FIG. 4. The second hyperpolarizability as a function of atomic
number for an H-like ion using the three-level model with lowest-
order relativistic corrections to the TRK sum rules.

given in atomic units (� → 1, m → 1, e → 1), where Z

is the number of protons, α is the fine structure constant,
n = 0,1,2, . . . , and V = −Z/r . We can simplify the example
even further by assuming a single energy level from averaging
the j = l ± 1/2 splitting for l 	= 0. To make this simplification,
the transition probabilities for the 1s1/2-1p1/2 and 1s1/2-1p3/2

doublet as well as for the second transition’s 2p1/2-3p3/2,
2p3/2-3p3/2, and 2p3/2-3p5/2 multiplet are evaluated from the
Dirac equation [62–64], and used to perform the weighted
averages for the excited state energies.

The λkn terms are then given by

λH−like
nk ≈ δk,n − α2p2

kn, (42)

where the off-diagonal terms in Eq. (42) are taken to be
zero under the current set of approximations with energy
perturbations from a three-dimensional central potential.

The second hyperpolarizability can now be calculated by
substituting the approximate Z-dependent coefficients EH−like

10 ,
EH−like, XH−like, λH−like

01 , and λH−like
02 , into Eq. (29). The

ratio of the second hyperpolarizability for H-like atoms for
the z-diagonal tensor component, λH−like

zzzz , divided by the

approximate second hyperpolarizability of the hydrogen atom,
λ

hydrogen
zzzz , is given in Fig. 4 as a function of the atomic number.

The total strength of the transitions decrease causing a drop
in the static nonlinear optical response. Note that the severity
of damping to the second nonlinear response is lessened by
a decrease in the first transition energy as the atomic number
increases.

IV. CONCLUSION

The lowest-order relativistic correction to the TRK sum
rules was shown to limit the oscillator strength below the value
derived from the nonrelativistic Hamiltonian. This correction
was applied to both the static linear and first two nonlinear
optical responses; the magnitude of this correction is no longer
a constant and depends on the potential energy function.
This lowest-order relativistic correction has been applied to
the three-level ansatz, where in the relativistic regime, the
magnitudes of the fundamental limits of the polarizability, hy-
perpolarizability, and second hyperpolarizability are reduced.
Thus, the nonrelativistic regime gives the largest values of the
fundamental limit for closed quantum systems.

In the regime where the relativistic parameters pull the
hyperpolarizability, at the positive fundamental limit, to below
the negative bound, we find that it may be possible to break the
Kuzyk limit (although with opposite sign). This is a disturbing
result and further studies with higher degrees of accuracy
must be performed for this consequence to be supported.
Further studies with additional corrections may also help in
understanding the peculiar influences of the off-diagonal sum
rules on the linear and nonlinear responses. Originally, these
off-diagonal terms were equal to zero in the nonrelativistic
limit, where they are the primary reason that the Kuzyk limit
of the hyperpolarizability could possibly be broken when
referencing to the lowest-order correction.

ACKNOWLEDGMENTS

I would like to thank Professor Kenneth D. Singer and
Professor Mark G. Kuzyk for useful discussions. I would
also like to thank the National Science Foundation, Grant No.
OISE-1243313, for partial support of this project.

[1] M. G. Kuzyk, Physical limits on electronic nonlinear molecular
susceptibilities, Phys. Rev. Lett. 85, 1218 (2000).
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