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2Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, Metrolohichna 14-b, UA-03680 Kiev, Ukraine
3Department of Numerical Analysis, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

(Received 13 November 2014; published 9 January 2015)

Based on the measurement of quantum correlation functions, the quantum statistical properties of spectral
measurements are studied for broadband radiation fields. The spectral filtering of light before its detection is
compared with the direct detection followed by the spectral analysis of the recorded photocurrents. As an example,
the squeezing spectra of the atomic resonance fluorescence are studied for both types of filtering procedures.
The conditions for which the detection of the nonclassical signatures of the radiation is possible are analyzed.
For the considered example, photocurrent filtering appears to be the superior option to detect nonclassicality due
to the vacuum-noise effects in the optical filtering.
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I. INTRODUCTION

Filtering of optical signals plays an important role in exper-
imental quantum optics. The optical field under investigation
always includes unwanted components, or noise, contributing
to the signal due to the imperfections and losses in constituents
of the optical setup or due to the environment surrounding this
setup. From the quantum optical point of view, it is impossible
to have no loss at all [1]. The task of the experimenter is to
minimize the inaccuracies, caused by the presence of such
noise, by proper filtering.

Optical filtering is a process in which certain spectral parts
of the signal are suppressed due to convolution with a filter
function, which represents the selecting device. The most
common filters are glasses, specifically designed to transmit
some definite wavelengths, which are placed in the input ports
of the detectors [2]. Alternatively, electric current filters can
be used in the detectors output channels [3]. These filters are
realized mainly as simple electronic pass-band filters, which
can be more easily controlled than optical filters. From the
viewpoint of classical optics, the application of both filtering
techniques is equivalent. Thus electronic filtering techniques
have been applied in many modern experimental setups [4].
This not only includes optical experiments, but virtually every
signal analysis in which a frequency-dependent input is trans-
formed into an electric current signal, e.g., in geophysics [5],
acoustics [6], and electronic devices themselves [7].

In the quantum domain, the equivalence of optical and
electronic filtering is by no means obvious. On one hand, the
disparity arises since the relation between the optical and the
photoelectric current spectra strongly depends on the statistical
properties of the optical signal field to be measured [8].
On the other hand, the filtering convolutions occur at very
different stages of the light-analyzing process. Optical filters
act on the quantum light itself, before the detector records
the radiation field. As a consequence, such a filtering process
unavoidably introduces additional quantum noise effects into
the signal before it is measured. The current filtering is a
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purely classical procedure, which is implemented after the
completion of the detection process of the radiation. Hence
the current filtering does not add quantum noise to the data.
However, when broadband fields are measured, in general
the detectors may only integrate over parts of the radiation
spectrum, so that information may be lost before the currents
are spectrally analyzed. Thus, it is a cumbersome problem
to identify the optimal strategy for spectral measurements
of quantum light fields of broad spectral bandwidths. It
is noteworthy that the optimal type of filtering may also
depend on the physical situation under study. For example, the
optical spectral filtering may be the preferential choice for the
extraction of entangled photon pairs, which could be generated
in the biexciton-radiative cascade process [9] or by V-type
three-level systems in microcavities [10]. However, electronic
photocurrent filters have been useful for the measurements of
the signal-to-noise ratio of light with a Gaussian statistics [8]
and for the quadrature-fluctuation spectroscopy with squeezed
light [11]. In the following, we shall focus on spectral
correlation measurements, for which both types of filtering
may be applied.

The theory of passive optical filters and their influence on
correlation properties of filtered quantum light was developed
in Refs. [12–16]. This topic has become of interest more
recently since methods were developed and set up to measure
arbitrary field correlation functions [17,18]. The theoretical
concepts, however, have proven difficult to analyze for higher-
order moments. Therefore, alternative descriptions have also
been studied [19,20]. Based on the above argumentation, the
current-filtering procedure includes the implicit filtering by
the detector, which acts in a similar manner as a spectral filter,
as well as the classical filtering of the current signals after
detection. The latter is a purely classical process.

The aim of the present paper is to compare the spectral
measurements of broadband radiation, based on optical and
electronic filtering. We provide a consistent theoretical ap-
proach to treat the quantum noise effects in both techniques.
Furthermore, detecting normally ordered and time-ordered
field correlation functions via balanced correlation homodyn-
ing with filters preserves the ordering from the original fields.
Thus, the filtered fields can be used to detect nonclassicality in
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the same way as for the original fields. To illustrate the results,
we analyze the elementary example of the squeezing spectrum
of the atomic resonance fluorescence. Our finding is that the
spectral filtering light limits the ability to detect the squeezing
to a greater extent than the current filtering, making the latter
preferential for this setup.

The paper is organized as follows. In Sec. II, we will
describe the techniques for measuring the spectral correlation
functions of an optically filtered radiation field. In Sec. III, the
procedure of current filtering will be analyzed. Both kinds of
filtering techniques are compared in Sec. IV for the example
of the squeezing spectrum in the resonance fluorescence of a
two-level atom. A summary and some conclusions are given
in Sec. V.

II. CORRELATION PROPERTIES OF SPECTRALLY
FILTERED LIGHT

From a mathematical point of view, the intrinsic spectral
properties of a light field under study are recovered by a
Fourier analysis of the signals obtained in the time domain. In
classical optics, this procedure is straightforward. In quantum
optics, however, the application of the spectral analysis is a
more sophisticated problem because of the time- and normal-
ordering prescriptions of the field operators in the measured
correlation functions together with the related quantum noise
effects [15].

In order to recover the information about the spectral
properties of measured light, one may send the light beam
through a frequency-sensitive device, before detection. In
classical physics, the spectrally filtered field is expressed by a
convolution integral of the signal field with a filter response
function. The quantum theory of photodetection of optically
filtered light contains additional difficulties due to the quantum
noise effects introduced by the filtering procedure [12–16].
Therefore, a careful analysis of correlation properties must be
performed for the filtered optical radiation fields.

In Ref. [17], a universal measurement scheme has been
proposed to measure the quantum correlation functions of
light. We will briefly recall the results and refer to the paper
for details. A simple example of such a setup is shown in
Fig. 1 if one neglects the spectral filter (SF). The scheme can
be extended by adding more beam splitters and detectors. It
records normally ordered intensity correlation functions �

(k)
�

of the light field Ê , superimposed with the local oscillator
(LO). The specific form of these correlation functions in our
scenario will be discussed later on. These correlations are then
combined in a binomial sum,

F (k) =
k∑

�=0

(−1)k−�

(
k

�

)
�

(k)
� ∝ 〈

: X̂ k
ϕ :

〉
, (1)

which is proportional to the kth moment of the field quadrature
X̂ϕ . Herein, 2k is the total number of detectors and � is the
number of detectors chosen on the left side of the first beam
splitter (BS). In this section, we extend this scheme by a
spectral filter (SF), thereby changing the signal field from Ê to
Ê, in order to describe the measurement of filtered broadband
light fields.

SF

BS

BS BS

FIG. 1. The setup for four-detector correlation measurements.
The signal field Ê is filtered by passing through the spectral filter
(SF) and then it is mixed with the local oscillator (LO) by a beam
splitter (BS). The resulting field components Ê± pass through two
beam splitters, BS′ and BS′′, and are detected by four photodetectors
(PD′

1, . . . ,PD′′
2).

A. Spectral filtering of light with a single filter

Let us consider the measurement scheme proposed in [17]
and restrict it to the case of four photodetectors; see Fig. 1. In
this case, one measures the second-order intensity correlation
functions of the signal field superimposed with the LO; cf.
Eq. (1) for k = 2. This is sufficient for the detection of the
squeezing spectrum. The filter in this scheme must be carefully
chosen; when we add more spectral filters, we need to make
sure that we preserve the possibility to combine the measured
data in a binomial form as in Eq. (1).

The original signal field will be labeled Ê . After transmis-
sion through the SF, the resulting field Ê is a convolution of the
unfiltered field with the filter function Tf plus some (vacuum)
noise field Ên. Afterwards, the filtered field is superimposed
with the LO via the BS and reads [15]

Ê
(+)
± (t) = eiφ±

√
2

[∫
dt ′Tf(t − t ′)Ê (+)(t ′) + Ê(+)

n (t) ± iÊ (+)
LO (t)

]
,

(2)

Ê
(−)
± (t) = [Ê(+)

± (t)]†, (3)

where the upper indices +(−) refer to positive (negative)
frequency components of the fields, whereas the lower indices
+(−) refer to transmitted (reflected) parts of the incident
light by the first beam splitter (cf. Fig. 1). The two phases
φ± that correspond to the fields Ê± satisfy the constraint
φ+ − φ− = π/2.

Finally, after propagation through the other two beam
splitters, BS′ and BS′′, the fields at the photodetectors are

Ê
(±)′
j = e±iφj

√
2

(Ê(±)
+ + Êvac1), i = 1,2, (4)
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Ê
(±)′′
j = e±iφj

√
2

(Ê(±)
− + Êvac2), i = 1,2, (5)

where φ1,2 are the phase differences caused by the beam
splitters. The terms Êvac1,2 describe the vacuum contributions
in the unused input ports, which are eliminated by the normal
and time ordering of the field correlation functions [14]. Here it
has been assumed that all of the beam splitters are symmetric,
50:50 ones. As usual in homodyne measurements, the LO
is a strong coherent field with amplitude ELO, such that the
operator nature of the LO field plays no role in the observed
correlation functions. Hence, the result is the same if we use a
classical approximation for the LO,

Ê (−)
LO (t) = ELOei(ωLOt −φLO), Ê (+)

LO = [Ê (−)
LO ]∗. (6)

Consequently, only the signal field shows quantum effects in
the measured quantities.

Let us define the following analogs of the photon number
operator (cf. [17]):

N̂± = Ê
(−)
± Ê

(+)
±

= 1

2

[ ∫
dt ′1dt ′2T

∗
f (t − t ′1)Tf(t − t ′2)Ê (−)(t ′1)Ê (+)(t ′2)

+ Ê(−)
n Ê(+)

n + Ê(−)Ê(+)
n + Ê(−)

n Ê(+)

+E2
LO ± ELO(X̂ϕ + X̂n,ϕ)

]
, (7)

where ϕ = ϕLO + π/2 and

X̂ϕ = ˆ̃E(+)e−iϕ + ˆ̃E(−)eiϕ, (8)

X̂n,ϕ = ˆ̃E(+)
n e−iϕ + ˆ̃E(−)

n eiϕ,
(9)

ˆ̃E(±) = Ê(±)e±iωLOt , ˆ̃E(±)
n = Ê(±)

n e±iωLOt ,

Ê(+) =
∫

dt ′Tf(t − t ′)Ê (+)(t ′) + Ê(+)
n . (10)

Here and in the following we indicate the slowly varying field
amplitudes via a tilde. Using the definition (7), we calculate the
field correlation functions similar to those in [17]; cf. Eq. (1)
with k = 2. For � (0 � � � 2) photodetectors on the left side
of the setup in Fig. 1 and 2 − � on the right side, we get the
correlation functions

�
(2)
� = 2−2

〈 ◦
◦ N̂ �

+N̂ 2−�
−

◦
◦
〉
, 0 � � � 2. (11)

Combining Eqs. (1), (7), and (11), we obtain, for the spectral
filtered version of the quantity F (2) defined in Eq. (1), the
expression

F
(2)
spectral = 2−2

2∑
�=0

(−1)2−�

(
2

�

) 〈 ◦
◦ N̂ �

+N̂ 2−�
−

◦
◦
〉

= 1

22

〈 ◦
◦ (N̂+ − N̂−)2 ◦

◦
〉

= E2
LO

22

〈 ◦
◦ X̂2

ϕ
◦
◦
〉
. (12)

Here, ◦
◦ . . . ◦

◦ denotes the normal- and time-ordering prescrip-
tion [21]. The ordering allows the application of the binomial
summation, which leads to higher-order moments of X̂ϕ . Using
Eq. (8), we may write Eq. (12) explicitly as

F
(2)
spectral = E2

LO

22

∫
dt ′1

∫
dt ′2 ×

〈
◦
◦

2∏
i=1

[Tf(t − t ′i )Ê (+)(t ′i )

× ei(ωLOt−ϕ) + T ∗
f (t − t ′i )Ê (−)(t ′i )e

−i(ωLOt−ϕ)] ◦
◦

〉
.

(13)

This formula generalizes the result of Ref. [17] for the case of
spectrally filtered radiation fields.

Performing the Fourier transformation of Eq. (12) with
respect to the phase ϕ, we are able to reconstruct the moments
of field operators according to∫ 2π

0
dϕF

(n+m)
spectrale

−i(n−m)ϕ ∝ 〈 ◦
◦

ˆ̃E(−)n ˆ̃E(+)m ◦
◦
〉
, (14)

with m and n being integers. For the case k = 2, Eq. (14) yields∫ 2π

0
dϕF

(2)
spectrale

−i2ϕ = π

2
E2

LO

〈 ◦
◦

ˆ̃E(−)2 ◦
◦
〉
, (15)

∫ 2π

0
dϕF

(2)
spectral = πE2

LO

〈 ◦
◦

ˆ̃E(−) ˆ̃E(+) ◦
◦
〉
, (16)

∫ 2π

0
dϕF

(2)
spectrale

i2ϕ = π

2
E2

LO

〈 ◦
◦

ˆ̃E(+)2 ◦
◦
〉
. (17)

These moments, when expressed in terms of the signal fields,
are for the case of Eq. (17) of the form〈 ◦

◦
ˆ̃E(+)2 ◦

◦
〉 =

∫
dt1

∫
dt2Tf(t − t1)Tf(t − t2)

× e2iωLOt
〈 ◦
◦ Ê (+)(t1)Ê (+)(t2) ◦

◦
〉
. (18)

Hence, we obtained the connection between the incident
light fields, the filter functions, and the fields at the
detector.

B. Spectral filtering of light with two filters

Let us turn to the case of two optical filters applied within
the measurement setup. Calculating the correlations of optical
fields with different frequencies allows us to resolve the
squeezing spectrum. Again, the filters must be configured in a
manner to allow the binomial summation.

The setup is given in Fig. 2. The signal field Ê is split
in two equal parts and each one passes one of two different
homodyning setups. At the spectral filters SF1 and SF2, the
signal field Ê transforms into the fields Ê1 and Ê2. These
fields are then mixed with two LOs with different phases ϕ1

and ϕ2 and then impinge on the four detectors. The detected
fields are

Ê
(+)
j,± = eiφ±

√
2

(Ê(+)
j ± iÊ (+)

j,LO), (19)

where each detector is numbered by the index {j,±}, j = 1,2,
which refers to the corresponding subdevice in Fig. 2. The
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GRÜNWALD, VASYLYEV, HÄGGBLAD, AND VOGEL PHYSICAL REVIEW A 91, 013816 (2015)

SF SF

FIG. 2. The four-detector measurement scheme for correlations
of electromagnetic waves of different frequencies and phases. The
signal field Ê in the j th arm of the setup (j = 1,2) is passing through
the spectral filter SFj . Then it is mixed with the phase-controlled LO.
The resulting beams are detected by the photodetectors PD±. The
outcomes of the photodetectors are correlated.

filtered fields Êj are related to the unfiltered ones as

Ê
(+)
j =

∫
dt ′j Tfj (t − t ′j )Ê (+)(t ′j ) + E

(+)
j,n , (20)

where the response functions Tfj (t − t ′j ) describe the action of
the filter devices. For the local oscillator field in a coherent
state, the photon number operators read as

N̂j,± = Ê
(−)
j,±Ê

(+)
j,±

= 1
2

(
Ê

(−)
j Ê

(+)
j + Ê

(−)
j,n Ê

(+)
j,n

+ Ê
(−)
j Ê

(+)
j,n + Ê

(−)
j,n Ê

(+)
j + E2

j,LO ± Ej,LOX̂j,ϕ

)
, (21)

with

X̂j,ϕ = ( ˆ̃E(+)
j + ˆ̃E(+)

j,n )e−iϕj + H.c., (22)

and the tilde denotes the slowly varying field component, e.g.,
ˆ̃E(±)
j = Ê

(±)
j e±iωj,LOt . Note also that ϕj = ϕj,LO + π/2.

Now we need to correlate the detected signals from
both filter arms. Consequently, we may chose two indices
� and m with 0 � �,m � k for the left and the right setup,
respectively. The normally ordered correlation functions of
the photodetectors are

�
(1,1)
�,m = 〈 ◦

◦ N̂ �
1,+N̂ 1−�

1,− N̂m
2,+N̂ 1−m

2,−
◦
◦
〉
. (23)

The upper double indices of �
(d1,d2)
�,m indicate the depth levels of

the homodyning measurement in each arm of the setup and are
equal to half of the numbers kj (j = 1,2) of detectors placed
in each arm of the setup. Since in our case both indices are
equal to one, we can use this setup to measure second-order
correlation functions of two frequencies.

Using Eq. (23), analogously to Eq. (1), we define

F
(1,1)
spectral =

1∑
�=0

1∑
m=0

(−1)1−�(−1)1−m �
(1,1)
�,m . (24)

Applying the binomial formula, we obtain

F
(1,1)
spectral = 〈 ◦

◦ (N̂1,+ − N̂1,−)(N̂2,+ − N̂2,−) ◦
◦
〉

= E2
LO

〈 ◦
◦ X̂1,ϕ1X̂2,ϕ2

◦
◦
〉

= E2
LO

∫
dt ′1

∫
dt ′2

〈
◦
◦

2∏
j=1

[
Tfj (t − t ′j )Ê (+)(t ′j )

× ei(ωj,LOt−ϕj ) + T ∗
fj (t − t ′j )Ê (−)(t ′j )e−i(ωj,LOt−ϕj )

] ◦
◦

〉
,

(25)

which can be used for the reconstruction of the field oper-
ator moments, similarly to Eq. (14). After performing two-
dimensional Fourier transformation, we arrive at

〈 ◦
◦

ˆ̃E(±)
1

ˆ̃E(±)
2

◦
◦
〉 =

∫
dt1

∫
dt2T

(±)
f1

(t − t1)T (±)
f2

(t − t2)

× ei(± ω1,LO ± ω2,LO)t
〈 ◦
◦ Ê (±)(t1)Ê (±)(t2) ◦

◦
〉
,

(26)

where T +
f (t) = Tf(t) and T −

f = [T +
f ]∗. This formula can be

compared with Eq. (18) for the corresponding expression for
one filter frequency.

III. PHOTOCURRENT FILTERING

The other major technique of spectral detection used in
experiments is based on current filtering. In this method, the
photoelectric current generated from the light field incident on
the detector is filtered. The obvious advantages are that the
light field itself is not modified by the filter and the technical
process of current filtering is much more easily controlled than
optical selective devices. Furthermore, as we have mentioned
above, current filtering is a classical process, since the current
is already the output of the detection.

A. Photocurrent filtering with one filter frequency

Let us consider the four-detector setup, shown in Fig. 3.
Instead of the optical spectral filters, four electronic filters

FIG. 3. Four-detector setup with current filtering. The outcomes
of the photodetection measurement are filtered by the current
filters Tc.
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act on the photocurrents. In the following, we analyze the
measurement scheme in more detail.

Following the procedure given in Ref. [21], which describes
the detector operation based on quantum and classical statis-
tics, we introduce the �̂ functions,

�̂(t,�t) = N

∫ t + �t

t

dτ

∫ t + �t

t

dτ ′S(τ − τ ′)Ê (−)(τ )Ê (+)(τ ′).

(27)

They correspond to the observable measured by a single
detector. These functions hold for N identical atoms in a
pointlike detector setup irradiated by light within the time
interval t,t + �t ; S(τ ) is the detector response function.
In the situation where the bandwidth of the field is much
narrower than the detector bandwidth, the detector response is
usually approximated by a δ function, the so-called broadband-
detector approximation. Here this is not justified and we keep
S(τ ) in the form of a general function.

Now we implement the results of [21] and calculate the
correlation of two detectors, indicated by 1 and 2, measuring
over the same interval �t , but from different initial times t1
and t2,

n(t1,�t)n(t2,�t) =
∞∑

m1,2=0

m1m2Pm1,m2 (t1,�t,t2,�t)

= 〈 ◦
◦ �̂(1)(t1,�t)�̂(2)(t2,�t) ◦

◦
〉
, (28)

where n(tj ,�t) is the number of “clicks” in the detector j .
Here, Pm1,m2 (t1,�t,t2,�t) is the joint probability of emission
of m1 photoelectrons within the time interval t1,t1 + �t in
detector 1 and m2 photoelectrons within t2,t2 + �t in detector
2. Equation (28) is equivalent to the corresponding expression
for one detector in a case of nonoverlapping time intervals
t1,t1 + �t and t2,t2 + �t . For two detectors, such an overlap
is not relevant. The only correlation stems from the fact that
the same light field is incident on both detectors, given by the
�̂ operators.

The photocurrent generated in an electron multiplying
detector can be described as i(t) = ge n(t,�t)/�t , with g

being the gain factor, which we assume to be constant. We
thus obtain two-time current-correlation function of the form

i1(t1)i2(t2) = g2e2

(�t)2

〈◦
◦�̂

(1)(t1,�t)�̂(2)(t2,�t)◦◦
〉
. (29)

The correlation function for the filtered currents,

if(t) =
∫

dt ′Tc(t − t ′)i(t ′), (30)

is calculated to be

i1f(t1)i2f(t2) = g2e2

(�t)2

∫
dt ′1Tc(t1 − t ′1)

∫
dt ′2Tc(t2 − t ′2)

× 〈◦
◦�̂

(1)(t ′1,�t)�̂(2)(t ′2,�t)◦◦
〉
. (31)

Now we can turn to the special scheme in Fig. 3 and define
the appropriate �̂ operators as

�̂′
j (t,�t) = N

∫ t + �t

t

dτ

∫ t +�t

t

dτ ′S(τ − τ ′)Ê (−)′
j (τ )Ê (+)′

j (τ ′),

(32)

�̂′′
j (t,�t) = N

∫ t+�t

t

dτ

∫ t +�t

t

dτ ′S(τ − τ ′)Ê (−)′′
j (τ )Ê (+)′′

j (τ ′).

(33)

Here, one prime denotes the left arm of the detector setup,
whereas double prime denotes the right arm (cf. Fig. 3).

The detected fields Ê ′
j and Ê ′′

j are expressed through linear

combinations of fields Ê− and Ê+ and vacuum contributions.
Defining

�̂±(t ′j ,�t) = N

2

∫ t ′j + �t

t ′j

dτ

×
∫ t ′j +�t

t ′j

dτ ′S(τ − τ ′)Ê (−)
± (τ )Ê (+)

± (τ ′) (34)

as a correlation function for the field, which would be detected
right after the signal and LO fields pass the first beam
splitter, one can show, after some straightforward algebra, that
〈 ◦

◦ �̂�
+�̂2−�

− ◦
◦ 〉 = 〈 ◦

◦ �̂
′�
i �̂

′′2−�

j
◦
◦ 〉, with i,j = 1,2 and � = 0,1,2.

Then it is easy to see that the (equal-time) current-correlation
functions for our system can be written as

i+(t)� i−(t)2 − �

= g2e2

(�t)2

∫
dt ′1Tc(t − t ′1)

∫
dt ′2Tc(t − t ′2)

〈◦
◦�̂

�
+�̂2 − �

−
◦
◦
〉
,

and the subscript ± refers to the corresponding fields and
detectors on the left (+) and right (−) side of the first beam
splitter.

Having obtained the expression for the correlation functions
that we are interested in, we construct the F

(k)
current function

[cf. Eq. (1)],

F
(k)
current =

k∑
�=0

(−1)k−�

(
k

�

)
n�+nk−�

− , n± = �t

ge
i±. (35)

For our setup with k = 2, this expression reduces to

F
(2)
current =

2∑
�=0

(−1)2−�

(
2

�

)
n�+n2−�

−

=
∫

dt1Tc(t − t1)
∫

dt2Tc(t − t2)

×
〈

◦
◦

2∏
i=1

[�̂+(ti) − �̂−(ti)]
◦
◦

〉
. (36)

In turn, the fields Ê± in Eq. (34) for a symmetric beam splitter
are linear combinations of signal and LO fields, leading to

Ê (−)
± Ê (+)

± = 1
2 [Ê (−)Ê (+) + Ê (−)

LO Ê (+)
LO ± iÊ (−)Ê (+)

LO ∓iÊ (−)
LO Ê (+)].

With the help of this relation, the difference of two correlation
functions in Eq. (36) can be reduced to

�̂+(ti) − �̂−(ti)

= NELO

2

∫ ti+�t

ti

dτ

∫ ti+�t

ti

dτ ′S(τ − τ ′)

× [Ê (−)(τ )e−iωLOτ ′+iϕ + Ê (+)(τ ′)eiωLOτ − iϕ], (37)
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where Eq. (6) has been used and ϕ = ϕLO + π/2. Thus, the
full expression for the F

(2)
current function becomes

F
(2)
current =N2E2

LO

22

∫
dt1Tc(t − t1)

∫
dt2Tc(t − t2)

×
〈
◦
◦

2∏
j=1

∫ tj + �t

tj

dτj

∫ tj + �t

tj

dτ ′
j S(τj − τ ′

j )

× [Ê (−)(τj )e−iωLOτ ′
j + iϕ + Ê (+)(τ ′

j )eiωLOτj − iϕ] ◦
◦

〉
.

(38)

The obtained result can be compared with Eq. (13) for the
radiation filtering case. One should note that the essential dif-
ference between radiation and current filtering now becomes
obvious, namely, the spectral filtering process is performed
before the quantum mechanical averaging procedure, whereas
the current filtering acts on the averaged light field. At the
same time, one should note that the detector response function
acts similar to an optical spectral filter now. Hence, for both
methods, a certain degree of optical filtering is unavoidable
when dealing with broadband fields.

B. Filtered current using two filter frequencies

Extending the concept of current filtering to the case of
two current filters tuned on different frequencies, we adopt the
scheme in Fig. 4. In order to construct the Fcurrent function, we
note the following useful relation for the field moments being
detected:

1∑
� = 0

1∑
m=0

(−1)1 − �(−1)1 −mn�
1,+ n1−�

1,− nm
2,+ n1−m

2,−

= n1,− n2,− − n1,+ n2,− − n1,− n2,+ + n1,+ n2,+. (39)

Here the indices 1,2 refer to photons detected in different
arms of the setup. The Fcurrent function which involves filtered
currents can be expressed with the help of Eq. (39) in terms of
the �̂ operators as

F
(1,1)
current =

∫
dt1Tc1 (t − t1)

∫
dt2Tc2 (t − t2)

〈◦
◦�̂1,−�̂2,−

− �̂1,+�̂2,− − �̂1,−�̂2,+ + �̂1,+�̂2,+ ◦
◦
〉
. (40)

FIG. 4. Modified scheme of Fig. 2 without radiation filtering but
with the current filtering devices Tcj

for the j th arm of the setup
(j = 1,2).

The sum inside the normal and time ordering in Eq. (40)
can be evaluated analogously to Eq. (37), yielding

2∏
j=1

[�̂j,+(tj ) − �̂j,−(tj )]

= NELO

2∏
j=1

∫ tj +�t

tj

dτ

∫ tj +�t

tj

dτ ′S(τ − τ ′)

× [
Ê (−)(τ )e−i(ωj,LOτ ′−ϕj ) + Ê (+)(τ ′)ei(ωj,LOτ−ϕj )

]
, (41)

where ϕj = ϕj,LO + π/2. The full expression for F
(1,1)
current

follows as

F
(1,1)
current

= N2E2
LO

∫
dt1Tc1 (t − t1)

∫
dt2Tc2 (t − t2)

×
〈
◦
◦

2∏
j=1

∫ tj +�t

tj

dτj

∫ tj +�t

tj

dτ ′
j S(τj − τ ′

j )

× [
Ê (−)(τj )e−i(ωj,LOτ ′

j −ϕj ) + Ê (+)(τ ′
j )ei(ωj,LOτj −ϕj )] ◦

◦

〉
.

(42)

Again, Eq. (42) can be compared with the corresponding
expression (25) for the radiation filtering case.

One should note that both methods of spectral filtering
can be applied in one experimental setup as well. For
the description of this case, one will have to combine the
formalisms for the two cases above. This calculation is
straightforward but lengthy. Otherwise, it is interesting to
compare the two methods and raise the question under which
conditions the different filterings are useful from the viewpoint
of an experiment.

IV. APPLICATION TO RESONANCE FLUORESCENCE

As an example for our calculations, let us now consider
the resonance fluorescence from a driven two-level atom as
a source field. We are interested in nonclassical properties
of the resonance fluorescence, namely, the squeezing phe-
nomenon predicted in Refs. [22] and [23] and then verified
experimentally in Ref. [24]. Based on the influence of the two
filtering processes, we discuss which method is preferable for
this specific quantum optical problem.

The light field of interest is emitted by a free two-level atom
(with the transition frequency ω21), which in turn is irradiated
with a resonant laser field of the same frequency, ωL = ω21.
The total emission field can be written as

�̂E(�r,t) = �̂E (+)(�r,t) + �̂E (−)(�r,t), (43)

�̂E (+)(�r,t) = �̂E (+)
free(�r,t) + �̂E (+)

s (�r,t), (44)

�̂E (−)(�r,t) = [ �̂E (+)(�r,t)]†, (45)

where the source field is given by

�̂E (+)
s (�r,t) = �g(�r − �rA)Â12 (t − |�r − �rA|/c) . (46)
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Herein, Âab = |a〉〈b| are the atomic flip operators ({a,b} =
1,2 refer to the ground and excited state of an atom, respec-
tively) evaluated at the retarded times tR = t − |�r − �rA|/c,
where �rA is the position of the atom and �g relates atomic
operators to the field quantities. We assume that the free
field is in the vacuum state at the detectors. Hence, only the
source field part of Eq. (46) is observed in measurements of
time-ordered and normally ordered correlation functions. For

simplicity, in the following we shall denote it by �̂E .

A. The Bloch equations

In order to evaluate the correlation functions for our
filtered correlations as in Eqs. (25) and (42), we need explicit

information about the incident field �̂E . For the basic methods
to deal with atomic resonance fluorescence, we refer to [21].
We start with the optical Bloch equations that describe the time
evolution of the radiating atom,

σ̇22 = −�1σ22 − 1
2 i�Rσ̃21 + 1

2 i�Rσ̃12, (47)

σ̇11 = �1σ22 + 1
2 i�Rσ̃21 − 1

2 i�Rσ̃12, (48)

˙̃σ21 = −�2σ̃21 + 1
2 i�R(σ11 − σ22), (49)

˙̃σ12 = −�2σ̃12 − 1
2 i�R(σ11 − σ22), (50)

where σab = 〈Âba〉 are the density-matrix elements with
slowly varying diagonal elements. The off-diagonal elements
are split into a fast oscillating term, ∝ exp(±iωLt), and a slowly
varying term, σ̃ab, a �= b. Moreover, �R is the Rabi frequency
and �a , a = 1,2, are the energy and phase damping rates,
respectively.

Using the quantum regression theorem [21,25], we define

Gab(τ ) = 〈Âba(τ )Â12(0)〉, τ � 0. (51)

The correlation functions Gab obey the same Bloch equations
as σab, but the initial conditions are given by

Gab(0) = δa1σ2b. (52)

As we deal with a continuous-wave scenario, the explicit
values of the initial conditions for Gab follow from the
steady-state values of σab. The system of differential equations
(47)–(50) can be solved more easily by reformulating the
correlation functions as Laplace integrals. We define

S̃ab(s) =
∫ +∞

0
dτe−sτ G̃ab(τ ) (53)

as the Laplace transform of the slowly varying G̃ab functions
(cf. [21]), which leads to algebraic equations in place of
Eqs. (47)–(50).

The relevant solutions for the S̃ab functions are

S̃12(s) = σ22(∞)

s + �2
− S̃21(s) (54)

and

S̃21(s) = i�R

2s(s + �2)

[
σ̃21(∞) − is�Rσ22(∞) + �2

Rσ̃21(∞)[
(s + �1)(s + �2) + �2

R

] ]
,

(55)

which are expressed by the steady-state solutions of the
density-matrix elements,

σ22(∞) = 1

2

�2
R

�1�2 + �2
R

, (56)

σ̃21(∞) = i

2

�1�R

�1�2 + �2
R

. (57)

The solutions of the system of Bloch equations are further
used for the calculation of the electromagnetic field correlation
functions. Here we intend to calculate the normally ordered
squeezing spectrum as defined in [26],

Ssq(ω) = 1

2π

∫
dτeiωτ

〈 ◦
◦ �

−̂→E (τ )�
−̂→E (0) ◦

◦
〉
, (58)

where we use �
−̂→E = −̂→E − 〈−̂→E 〉. The squeezing spectrum (58)

follows from Eqs. (54) and (55) by inserting Eqs. (46), (51),
and (53). We shall now discuss the squeezing spectrum for
both spectral and current filtering of resonance fluorescence
light.

B. The squeezing spectrum of filtered light

As special filters used in the detection scheme, we choose
Lorentz-type filter functions with different filter frequencies
ωfi (i = 1,2), but equal pass bandwidths �f . For details on
the filters, we refer to Appendices A and B. Using the
measurement scheme of Fig. 2 with Lorentzian filters SF1 and
SF2, we reconstruct the spectral function F

(1,1)
spectral by means of

Eq. (25), which can be related to the field moments (26) by two-
dimensional Fourier transform. By Eq. (58), we can express
the squeezing spectrum as a function of �ω = ωf2 − ωf1 . We
characterize squeezing in the form

Smax
sq (�ω) = 2

π�f|g|2
∫

dτ Re
{〈 ◦

◦ Ê
(−)
1 (τ )Ê(+)

2 (0) ◦
◦
〉

− 〈 ◦
◦ Ê

(+)
1 (τ )Ê(+)

2 (0) ◦
◦
〉}

ei�ωτ (59)

= 2

π
Re

[
σ22(∞)

�2 + �f − i�ω
− S̃21(�f − i�ω)

]
,

(60)

which is considered for those phases of the field for which
squeezing is maximally pronounced.

1. Idealized filtering of light

Unless mentioned otherwise, we will in the following con-
sider the atom in the purely radiative damping regime, that is,
�1 = 2�2. For the special case when the pass bandwidth of the
spectral filter goes to zero (�f → 0), the detected squeezing
spectrum in Eq. (60) coincides with the one calculated in
Ref. [26]. This spectrum is shown in Fig. 5 for various values
of the Rabi frequency. Squeezing is present when Smax

sq < 0. In
the �ω region where this condition holds true, the fluctuations
of the field are below the vacuum-noise level.

For small values of �2
R/�2

1 (cf. with solid line in
Fig. 5), the term 〈 ◦

◦ Ê
(+)
1 Ê

(+)
2

◦
◦ 〉 contributes more strongly

than 〈 ◦
◦ Ê

(−)
1 Ê

(+)
2

◦
◦ 〉 to the squeezing spectrum, resulting in

a Lorentzian dip below the vacuum level. The maximal
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FIG. 5. The spectrum Smax
sq for the maximally squeezed phase, for

different values of the Rabi frequency �2
R/�2

1 : 1/2 (dotted line), 1/4
(dashed line), 1/12 (solid line).

squeezing is obtained for �2
R/�2

1 = 1
12 , in agreement with

the results of Refs. [22] and [27]. For increasing excitations
(dotted line in Fig. 5), the spectrum of inelastically scattered
light shows a pronounced peak of half-width �1 centered on
the driving frequency ωL. This peak is superimposed with

the Lorentzian dip of half-width �′
R =

√
�2

R + 1
2�2

1. In the

strong-driving limit (�2
R � 1

2�2
1), the main contribution to

Smax
sq stems from 〈 ◦

◦ Ê
(−)
1 Ê

(+)
2

◦
◦ 〉. The spectrum Smax

sq (�ω)
shows two peaks situated at frequencies �ω = ±�′

R that
correspond to the sideband peaks of the Mollow triplet [28].
While squeezing for small filter detuning �ω is absent in
this case, we always find some squeezing at higher detuning
if �1 > �2 holds. For �1 = �2, the radiationless dephasing
becomes as large as the energy relaxation rate, destroying all
squeezing [29]. For �1 > �2, we obtain a negative squeezing
spectrum for

(�ω)2 >
2�2

R�1

�1 − �2
− �2

1 . (61)

2. Realistic filtering of light

We now turn to the more realistic case of nonzero filter
width. Figure 6 depicts the squeezing spectra for different
values of �f/�1 in the case of weak pumping, �2

R/�2
1 = 1/12.

One can clearly see that in contrast to the idealized filtering
(�f = 0), realistic values of the spectral filter bandwidths
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0.08
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FIG. 6. The spectrum Smax
sq for �2

R/�2
1 = 1/12 and different

values of the pass bandwidth �f/�: 1/3 (dotted line), 1/10 (dashed
line), 1/100 (dash-dotted line), 0 (solid line).
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FIG. 7. The spectrum Smax
sq for �ω = 0 and different values of

the pass bandwidth �f/�1: 1/3 (dotted line), 1/10 (dashed line), 0
(solid line).

significantly reduce the accessible squeezing effect, especially
for small filter detunings �ω. For �f/�1 = 1/100, the
squeezing effect is preserved for �ω > �2, whereas for higher
values of the filter width, only a small squeezing effect can
be observed. Increasing the filter bandwidths further quickly
destroys the squeezing effect, which almost disappears already
for �f/�1 = 1/3. However, similar to the case of idealized
filtering, we find some squeezing for sufficiently large filter
detuning. The former condition for negativity generalizes to

�1 > �2 + �f . (62)

Hence,with respect to the possibility of detecting squeezing,
the filter bandwidth acts like a radiationless dephasing. Note
also that squeezing, which is lost through dephasing, cannot
be recovered by optical filtering.

It should be noted at this point that in all calculations,
we neglect the effect of backaction of light reflected by the
optical filter; compare [15]. This means that we assumed the
spectral filters to be slightly tilted with respect to the light to
be measured, to suppress effects of the fields reflected from
the filter to interfere with the original signal field. In turn, the
reason for the reduction of squeezing is not due to backaction
in this scenario. Spectral filters, which are narrow compared to
the squeezing spectrum of the signal field, act like δ functions,
reproducing the original field under convolution. Therefore,
narrow optical filters, while diminishing the intensity of the
light field substantially, are better for detecting squeezing.

In Fig. 7, we show the squeezing spectrum at �ω = 0.
Applying Eq. (60) to the case of idealized filters, we obtain,
for the maximal squeezing at �ω = 0,

Smax
sq (0) = 2σ22�1

π

�1�2 + 2�2
R − �2

1[
�1�2 + �2

R

]2 . (63)

For �1 > �2, there are values of the driving �R for which
squeezing can be observed. However, if we include a nonzero
filter width �f , no squeezing occurs at all at �ω = 0, as

Smax
sq (0) = 2σ22

π�f

(�1 + �f)2

(�1 + �f)(�2 + �f) + �2
R

. (64)

As it is also seen from Fig. 6, for a nonzero filter bandwidth, one
also needs nonzero �ω values to observe some nonclassical
effect.
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FIG. 8. The squeezing spectrum Smax
sq for the high-driving-field

limit (�2
R/�2

1 = 4) for different values of the optical filter pass
bandwidth �f/�1: 1/3 (dotted line), 1/10 (dashed line), 0 (solid
line).

The peak arising at �ω = 0 for nonzero �f can also be
seen in the strong-driving-field limit �2

R � 1
2�2

1 in Fig. 8.
Additionally, the two Mollow sideband peaks are visible in
such a scenario. As discussed in Ref. [30], a very similar
effect was observed in the emission spectrum from a two-level
atom driven by a strong coherent field to which an appropriate
noise has been added.

C. The squeezing spectrum for current filtering

We now turn to the discussion of the current filtering
procedure for squeezed light from resonance fluorescence. We
use the scheme of Fig. 4 with Lorentz-type filters, for which the
filter frequencies are chosen symmetrical relative to the laser
frequency ωL or, equivalently, to the resonance frequency ω0

of the signal field. The squeezing spectrum is calculated as
follows. One first calculates the total squeezing spectrum S
by using Eq. (42) for the filtering of the photocurrents, as in
the scheme of Fig. 4. To compare with typical experimental
procedures, in a next step the signal field is switched off
and the corresponding correlations give the photon shot-
noise spectrum Ssn. The difference Ssq = S − Ssn is the
squeezing spectrum of resonance fluorescence as it would
be determined in an experiment. It is derived by specifying
Eq. (42) for Lorentzian filter functions with equal bandwidths
�c and setting frequencies ωcj

(j = 1,2); cf. Appendix B. By
varying the phases φ1 and φ2 of the local oscillator, one can
reach the maximum squeezing effect, Ssq = Smax

sq . Here we
consider the case of resonance between the fluorescence and
the mean detection frequency.

Unfortunately, the filtered squeezing spectrum cannot be
given in a closed form for the current filtering as it was
possible for the optical filtering in Eq. (60). From the analysis
of Fig. 9, it is evident that the current filtering with narrow-band
filters is more suitable for the detection of squeezing than the
radiation filtering with the same bandwidth parameters. This is
especially evident for frequencies �ω close to zero (compare
the dash-dotted line with the dotted line). We conclude that the
current filtering procedure is more suitable for analyzing the
squeezing properties of light than the schemes involving
the spectral filters.

FIG. 9. The squeezing spectrum Smax
sq obtained from filtered

photocurrents (dash-dotted line: �c = 1/10�1; dashed line: �c =
10�1), compared to optical filtering with �f = 1/10γ (dotted line)
and ideal squeezing spectrum (solid line). The spectra are calculated
for �2

R/�2
1 = 1/12. Inset: The position of the central filter frequencies

ωcj
and local oscillator frequencies ωj,LO, j = 1,2, with respect to

the laser frequency ωL.

For broadband current filters, we obtain a flat squeezing
spectrum, indicating a small observed squeezing effect only.
Thus, we conclude that the narrow-band current filtering
procedure is the most appropriate among other possibilities
considered in the present paper. We also note that the relative
positions of the local oscillator and current filter frequencies, as
indicated in the inset of Fig. 9, are optimized for the detection
of squeezing. For other possible frequencies, one obtains
squeezing effects in a very small �ω range close to zero.

V. SUMMARY AND CONCLUSIONS

Based on the method of balanced homodyne correlation
measurements, we have studied the influences of the radiation
field and the photocurrent filtering on spectral correlation
measurements of general quantum correlations of light. We
have considered in detail the two different spectral measure-
ment schemes for second-order field correlation functions and
derived the connection between the original signal fields and
the filtered field correlations, which are eventually detected.
The theory has been formulated for normal- and time-ordered
correlation functions of second order in the field operators.

The general results have been illustrated for the example
of the squeezing spectra of the resonance fluorescence of a
two-level atom. Both the filtering of the radiation field and
the filtering of the photocurrent have been analyzed. For the
latter technique, the optimal setting of the local oscillator and
the current filter frequencies have been determined. Optical
filtering substantially limits the available squeezing that can
be detected. Only for different filter resonance frequencies and
very small filter bandwidth can squeezing be observed. On
the other hand, the current filtering is a powerful technique to
analyze spectral correlation effects for the considered example
of squeezing in atomic resonance fluorescence. In particular,
it has been demonstrated that the current filtering scheme
is better suited for the measurement of squeezing than the
setup with optical spectral filters. This feature, together with
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the lower costs and better controllability of current filters in
comparison with the spectral ones, makes current filtering
more favorable for the experimental study of nonclassical light.

ACKNOWLEDGMENTS

P.G., D.V., and W.V. gratefully acknowledge support by the
Deutsche Forschungsgemeinschaft (DFG) through SFB 652.
D.V. has benefited from discussions with D. Karnaushenko,
M. de Oliveira, and A. A. Semenov. D.V. also acknowledges
the support by the Project No. 0113U001093 of the National
Academy of Sciences of Ukraine.

APPENDIX A: LORENTZIAN RADIATION FILTER

Let us consider the measurement scheme in Fig. 2 with
two filters SFj , j = 1,2. In order to simulate the action of the
filter on the incident light field, we apply the special case of a
Lorentzian filter function, which is a very typical elementary
filter type. The shape of the function for the j th filter in the
time domain reads

Tfj (t) = �(t)�fe
−�f t−iωfj t

, (A1)

where ωfj is the characteristic frequency of the j th filter and �f

is the pass bandwidth, which is the same for both filters. The
unit step function �(t) ensures causality. One obtains, after
the substitution in Eq. (25), the following expression for the
function F

(1,1)
spectral:

F
(1,1)
spectral = E2

LO�2
f

∫ t

0
dt ′1

∫ t

0
dt ′2e

−�f (2t−t ′1−t ′2)

×
〈

◦
◦

2∏
j=1

[
Ê (+)(t ′j )e−iωfj t ′j e

i(ωj,LO−ωfj )t−iϕj

+ Ê (−)(t ′j )eiωfj t ′j e
−i(ωj,LO−ωfj )t+iϕj

] ◦
◦

〉
. (A2)

For the case of both filters having the same central pass
frequency as the respective phase-shifted LO fields, ωj,LO =
ωfj , we obtain

〈◦
◦

ˆ̃E(+)
1

ˆ̃E(+)
2

◦
◦
〉 = �2

f

∫ t

0
dt ′1

∫ t

0
dt ′2e

−�f (2t − t ′1 − t ′2)

× ei(ωf1 t ′1 +ωf2 t ′2)
〈◦
◦Ê (+)(t ′1)Ê (+)(t ′2)◦◦

〉
. (A3)

Further factorizing the incoming fields into slowly varying
amplitude and fast oscillating term with mean frequency ω0,

Ê (±) = ˆ̃E (±)e∓iω0t , (A4)

and denoting the frequency difference by �ω = ωf2 − ωf1 , we
get, in terms of new variables τj = t − t ′j for stationary fields,

the following expression:

〈◦
◦

ˆ̃E(+)
1

ˆ̃E(+)
2

◦
◦
〉 = �2

f

∫ t

0
dτ1

∫ t

0
dτ2e

−�f (τ1 + τ2)

× e−i �ω
2 (τ2−τ1)

〈◦
◦

ˆ̃E (+)(τ2 − τ1) ˆ̃E (+)(0)◦◦
〉
. (A5)

Denoting τ = τ2 − τ1 and integrating this expression over τ ′ =
τ2 + τ1 yields

〈◦
◦

ˆ̃E(+)
1

ˆ̃E(+)
2

◦
◦
〉 = �f

4
(1 − e−�f t )

∫ t

0
dτe− i�ωτ/2

× 〈◦
◦

ˆ̃E (+)(τ ) ˆ̃E (+)(0)◦◦
〉
. (A6)

The negative-negative frequency correlation function is ob-
tained from (A6) by conjugation. In the case of negative-
positive correlation, we obtain

〈◦
◦

ˆ̃E(−)
1

ˆ̃E(+)
2

◦
◦
〉 = �2

f

∫ t

0
dt ′1

∫ t

0
dt ′2e

−�f (2t − t ′1 − t ′2)

× ei�ω(t ′1 + t ′2)
〈 ◦
◦

ˆ̃E (−)(t ′1) ˆ̃E (+)(t ′2) ◦
◦
〉
. (A7)

Using Eqs. (A6) and (A7), one can calculate the squeezing
spectrum of the filtered light.

APPENDIX B: LORENTZIAN CURRENT FILTER

We consider the two filter frequency setup for current
filtering from Fig. 4. For the current filter and for the detector
response functions, the same Lorentz-type functions as for the
spectral filter [cf. (A1)] are used. Namely, we assume that

Tcj
(t) = �(t)�ce

−�ct − iωcj t
, (B1)

S(t) = �(t)�se
−�st − iωst , (B2)

where ωcj
(j = 1,2) and ωs are, correspondingly, the current

filter and detector response frequencies, and �c, �s are the
pass bandwidths of the current filter and detector, respectively.
Substituting Eq. (B1) into Eq. (42), we arrive at

F
(1,1)
current = �2

c �
2
s N

2E2
LO

∫ t

0
dt ′1

∫ t

0
dt ′2

× e−�c(2t−t ′1−t ′2)e−iωc1 (t−t ′1) − iωc2 (t−t ′2)

×
〈

◦
◦

2∏
j=1

∫ t ′j +�t

tj

dτj

∫ t ′j +�t

t ′j

dτ ′
j e

−�s(τj − τ ′
j )

× [ ˆ̃E
(−)

(τ1)e−i(ωs−ω0)τj ei(ωs−ωj,LO)τ ′
j + iϕ

+ ˆ̃E
(+)

(τ ′
2)ei(ωs−ω0)τ ′

j e−i(ωs−ωj,LO)τj − iϕ
] ◦

◦

〉
, (B3)

where we have used the slowly varying amplitudes, Ê (±) =
ˆ̃E (±)e∓iω0t . For the resonance condition ω0 = ωs, Eq. (B3) can

be further simplified.
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